TY - JOUR A1 - Ehlert, Christopher A1 - Gühr, Markus A1 - Saalfrank, Peter T1 - An efficient first principles method for molecular pump-probe NEXAFS spectra T2 - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - Pump-probe near edge X-ray absorption fine structure (PP-NEXAFS) spectra of molecules offer insight into valence-excited states, even if optically dark. In PP-NEXAFS spectroscopy, the molecule is "pumped" by UV or visible light enforcing a valence excitation, followed by an X-ray "probe" exciting core electrons into (now) partially empty valence orbitals. Calculations of PP-NEXAFS have so far been done by costly, correlated wavefunction methods which are not easily applicable to medium-sized or large molecules. Here we propose an efficient, first principles method based on density functional theory in combination with the transition potential and Delta SCF methodology (TP-DFT/Delta SCF) to compute molecular ground state and PP-NEXAFS spectra. We apply the method to n ->pi* pump/O-K-edge NEXAFS probe spectroscopy of thymine (for which both experimental and other theoretical data exist) and to n -> pi* or pi -> pi* pump/N-K-edge NEXAFS probe spectroscopies of trans-and cis-azobenzene. Published by AIP Publishing. Y1 - 2018 UR - https://publishup.uni-potsdam.de/frontdoor/index/index/docId/51488 SN - 0021-9606 SN - 1089-7690 VL - 149 IS - 14 PB - American Institute of Physics CY - Melville ER -