TY - GEN A1 - Döge, Nadine A1 - Schumacher, Fabian A1 - Balzus, Benjamin A1 - Colombo, Miriam A1 - Hadam, Sabrina A1 - Rancan, Fiorenza A1 - Blume-Peytavi, Ulrike A1 - Kleuser, Burkhard A1 - Bodmeier, Roland A1 - Vogt, Annika T1 - Particle- based formulations and controlled skin barrier disruption have a signifi cant impact on the delivery and penetration kinetics of dexamethasone as assessed in an ex vivo microdialysis T2 - Journal der Deutschen Dermatologischen Gesellschaft N2 - Preclinical assessment of penetration not only in intact, but also in barrier‐disrupted skin is important to explore the surplus value of novel drug delivery systems, which can be specifically designed for diseased skin. Here, we characterized physical and chemical barrier disruption protocols for short‐term ex vivo skin cultures with regard to structural integrity, physiological and biological parameters. Further, we compared the penetration of dexamethasone (Dex) in different nanoparticle‐based formulations in stratum corneum, epidermis and dermis extracts of intact vs. barrier‐disrupted skin as well as by dermal microdialysis at 6, 12 and 24 hours after topical application. Dex was quantified by liquid‐chromatography ‐ tandem‐mass spectrometry (LC‐MS/MS). Simultaneously, we investigated the Dex efficacy by interleukin (IL) analysis. Tape‐stripping (TS) and 4 hours sodium lauryl sulfate 5 % (SLS) exposure were identified as highly effective barrier disruption methods assessed by reproducible transepidermal water loss (TEWL) changes and IL‐6/8 increase which was more pronounced in SLS‐treated skin. The barrier state has also a significant impact on the Dex penetration kinetics: for all formulations, TS highly increased dermal Dex concentration despite the fact that nanocrystals quickly and effectively penetrated both, intact and barrier‐disrupted skin reaching significantly higher dermal Dex concentration after 6 hours compared to Dex cream. The surplus value of encapsulation in ethyl cellulose nanocarriers could mostly be observed when applied on intact skin, in general showing a delayed Dex penetration. Estimation of cytokines was limited due to the trauma caused by probe insertion. In summary, ex vivo human skin is a highly interesting short‐term preclinical model for the analysis of penetration and efficacy of novel drug delivery systems. Y1 - 2017 UR - https://publishup.uni-potsdam.de/frontdoor/index/index/docId/55145 SN - 1610-0379 SN - 1610-0387 VL - 15 SP - 182 EP - 182 PB - Wiley CY - Berlin ER -