TY - JOUR A1 - van Afferden, Manfred A1 - Rahman, Khaja Z. A1 - Mosig, Peter A1 - De Biase, Cecilia A1 - Thullner, Martin A1 - Oswald, Sascha Eric A1 - Müller, Roland A. T1 - Remediation of groundwater contaminated with MTBE and benzene the potential of vertical-flow soil filter systems T2 - Water research N2 - Field investigations on the treatment of MTBE and benzene from contaminated groundwater in pilot or full-scale constructed wetlands are lacking hugely. The aim of this study was to develop a biological treatment technology that can be operated in an economic, reliable and robust mode over a long period of time. Two pilot-scale vertical-flow soil filter eco-technologies, a roughing filter (RF) and a polishing filter (PF) with plants (willows), were operated independently in a single-stage configuration and coupled together in a multi-stage (RF + PF) configuration to investigate the MTBE and benzene removal performances. Both filters were loaded with groundwater from a refinery site contaminated with MTBE and benzene as the main contaminants, with a mean concentration of 2970 +/- 816 and 13,966 +/- 1998 mu g L(-1), respectively. Four different hydraulic loading rates (HLRs) with a stepwise increment of 60, 120, 240 and 480 L m(-2) d(-1) were applied over a period of 388 days in the single-stage operation. At the highest HLR of 480 L m(-2)d(-1), the mean concentrations of MTBE and benzene were found to be 550 +/- 133 and 65 +/- 123 mu g L(-1) in the effluent of the RF. In the effluent of the PP system, respective mean MTBE and benzene concentrations of 49 +/- 77 and 0.5 +/- 0.2 mu g L(-1) were obtained, which were well below the relevant MTBE and benzene limit values of 200 and 1 mu g L-1 for drinking water quality. But a dynamic fluctuation in the effluent MTBE concentration showed a lack of stability in regards to the increase in the measured values by nearly 10%, which were higher than the limit value. Therefore, both (RF + PF) filters were combined in a multi-stage configuration and the combined system proved to be more stable and effective with a highly efficient reduction of the MTBE and benzene concentrations in the effluent. Nearly 70% of MTBE and 98% of benzene were eliminated from the influent groundwater by the first vertical filter (RF) and the remaining amount was almost completely diminished (similar to 100% reduction) after passing through the second filter (PF), with a mean MTBE and benzene concentration of 5 +/- 10 and 0.6 +/- 0.2 mu g L(-1) in the final effluent. The emission rate of volatile organic compounds mass into the air from the systems was less than 1% of the inflow mass loading rate. The results obtained in this study not only demonstrate the feasibility of vertical-flow soil filter systems for treating groundwater contaminated with MTBE and benzene, but can also be considered a major step forward towards their application under full-scale conditions for commercial purposes in the oil and gas industries. KW - Benzene KW - Groundwater remediation KW - Hydraulic loading rate KW - MTBE KW - Pilot-scale constructed wetland KW - Vertical-flow soil filter KW - Willow tree Y1 - 2011 UR - https://publishup.uni-potsdam.de/frontdoor/index/index/docId/36550 SN - 0043-1354 VL - 45 IS - 16 SP - 5063 EP - 5074 PB - Elsevier CY - Oxford ER -