TY - JOUR A1 - Sauter, Tilman A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Pore-size distribution controls shape-memory properties on the macro- and microscale of polymeric foams T2 - Macromolecular chemistry and physics N2 - Open porous foams with identical foam density but different pore-size distributions (bimodal or monomodal) are prepared from a shape-memory polyetherurethane (PEU) by thermally induced phase separation. The shape-memory effect of the two PEU foams is explored by cyclic thermomechanical compression tests and microstructural analysis. The obtained results reveal that the PEU foam with a bimodal pore-size distribution exhibits an increased shape-recovery under stress-free conditions, both on the macro- (foam level) as well as the microscale (pore level). While bimodal pore-size distributions induce microscale bending during compression, buckling occurs in foams with monomodal pore-size distributions, leading to both a reduced and delayed shape recovery. KW - microstructure KW - morphology KW - polymer foams KW - pore-size distribution KW - shape-memory polymers Y1 - 2013 UR - https://publishup.uni-potsdam.de/frontdoor/index/index/docId/34938 SN - 1022-1352 VL - 214 IS - 11 SP - 1184 EP - 1188 PB - Wiley-VCH CY - Weinheim ER -