TY - JOUR A1 - Tella, Timothy Oluwatobi A1 - Winterleitner, Gerd A1 - Mutti, Maria T1 - Investigating the role of differential biotic production on carbonate geometries through stratigraphic forward modelling and sensitivity analysis T2 - Petroleum geoscience N2 - The geometry of carbonate platforms reflects the interaction of several factors. However, the impact of carbonate-producing organisms has been poorly investigated so far. This study applies stratigraphic forward modelling (SFM) and sensitivity analysis to examine, referenced to the Miocene Llucmajor Platform, the effect of changes of dominant biotic production in the oligophotic and euphotic zones on platform geometry. Our results show that the complex interplay of carbonate production rates, bathymetry and variations in accommodation space control the platform geometry. The main driver of progradation is the oligophotic production of rhodalgal sediments during the lowstands. This study demonstrates that platform geometry and internal architecture varies significantly according to the interaction of the predominant carbonate-producing biotas. The input parameters for this study are based on well-understood Miocene carbonate biotas with characteristic euphotic, oligophotic and photo-independent carbonate production in which it is crucial that each carbonate-producing class is modelled explicitly within the simulation run and not averaged with a single carbonate production-depth profile. This is important in subsurface exploration studies based on stratigraphic forward models where the overall platform geometry may be approximated through calibration runs, and constrained by seismic surveys and wellbores. However, the internal architecture is likely to be oversimplified without an in-depth understanding of the target carbonate system and a transfer to forward modelling parameters. Y1 - 2022 UR - https://publishup.uni-potsdam.de/frontdoor/index/index/docId/62024 SN - 1354-0793 SN - 2041-496X VL - 28 IS - 2 PB - Geological Soc. Publ. House CY - Bath ER -