TY - JOUR A1 - Meessen, Christian A1 - Sippel, Judith A1 - Scheck-Wenderoth, Magdalena A1 - Heine, C. A1 - Strecker, Manfred T1 - Crustal structure of the andean foreland in Northern Argentina T2 - Journal of geophysical research : Solid earth N2 - Previous thermomechanical modeling studies indicated that variations in the temperature and strength of the crystalline crust might be responsible for the juxtaposition of domains with thin-skinned and thick-skinned crustal deformation along strike the foreland of the central Andes. However, there is no evidence supporting this hypothesis from data-integrative models. We aim to derive the density structure of the lithosphere by means of integrated 3-D density modeling, in order to provide a new basis for discussions of compositional variations within the crust and for future thermal and rheological modeling studies. Therefore, we utilize available geological and geophysical data to obtain a structural and density model of the uppermost 200km of the Earth. The derived model is consistent with the observed Bouguer gravity field. Our results indicate that the crystalline crust in northern Argentina can be represented by a lighter upper crust (2,800kg/m(3)) and a denser lower crust (3,100kg/m(3)). We find new evidence for high bulk crustal densities >3,000kg/m(3) in the northern Pampia terrane. These could originate from subducted Puncoviscana wackes or pelites that ponded to the base of the crystalline crust in the late Proterozoic or indicate increasing bulk content of mafic material. The precise composition of the northern foreland crust, whether mafic or felsic, has significant implications for further thermomechanical models and the rheological behavior of the lithosphere. A detailed sensitivity analysis of the input parameters indicates that the model results are robust with respect to the given uncertainties of the input data. KW - central Andean foreland KW - gravity modeling KW - crustal density structure Y1 - 2018 UR - https://publishup.uni-potsdam.de/frontdoor/index/index/docId/53730 SN - 2169-9313 SN - 2169-9356 VL - 123 IS - 2 SP - 1875 EP - 1903 PB - American Geophysical Union CY - Washington ER -