TY - JOUR A1 - McCarthy, Denis N. A1 - Stoyanov, Hristiyan A1 - Rychkov, Dmitry A1 - Ragusch, Huelya A1 - Melzer, Michael A1 - Kofod, Guggi T1 - Increased permittivity nanocomposite dielectrics by controlled interfacial interactions T2 - Composites science and technology N2 - The use of nanoparticles in polymer composite dielectrics has promised great improvements, but useful results have been elusive. Here, the importance of the interfacial interactions between the nanoparticles and the polymer matrix are investigated in TiO2 nanocomposites for dielectric materials using surface functionalisation. The interface is observed to dominate the nanocomposite properties and leads to a threefold increase in permittivity at volume fractions as low as 10%. Surface functionalisation of the filler nanoparticles with silanes allows control of this interface, avoiding significant degradation of the other important material properties, particularly electrical breakdown strength, and resulting in a material that is demonstrated successfully as an active material in a dielectric elastomer actuator application with increased work output compared to the pure polymer. Although further permittivity increases are observed when the interface regions have formed a percolation network, the other material properties deteriorate. The observation of percolation behaviour allows the interface thickness to be estimated. KW - Ceramics KW - Nanocomposites KW - Actuator KW - Interface KW - Electrical properties Y1 - 2012 UR - https://publishup.uni-potsdam.de/frontdoor/index/index/docId/36022 SN - 0266-3538 VL - 72 IS - 6 SP - 731 EP - 736 PB - Elsevier CY - Oxford ER -