TY - JOUR A1 - Kussmaul, Bjoern A1 - Risse, Sebastian A1 - Kofod, Guggi A1 - Wache, Remi A1 - Wegener, Michael A1 - McCarthy, Denis N. A1 - Krüger, Hartmut A1 - Gerhard, Reimund T1 - Enhancement of dielectric permittivity and electromechanical response in silicone elastomers molecular grafting of organic dipoles to the macromolecular Network T2 - Advanced functional materials N2 - A novel method is established for permittivity enhancement of a silicone matrix for dielectric elastomer actuators (DEAs) by molecular level modifications of the elastomer matrix. A push-pull dipole is synthesized to be compatible with the silicone crosslinking chemistry, allowing for direct grafting to the crosslinker molecules in a one-step film formation process. This method prevents agglomeration and yields elastomer films that are homogeneous down to the molecular level. The dipole-to-silicone network grafting reaction is studied by FTIR. The chemical, thermal, mechanical and electrical properties of films with dipole contents ranging from 0 wt% to 13.4 wt% were thoroughly characterized. The grafting of dipoles modifies the relative permittivity and the stiffness, resulting in the actuation strain at a given electrical field being improved by a factor of six. KW - dipole grafting KW - silicone based dielectric elastomer actuators KW - permittivity enhancement Y1 - 2011 UR - https://publishup.uni-potsdam.de/frontdoor/index/index/docId/36443 SN - 1616-301X VL - 21 IS - 23 SP - 4589 EP - 4594 PB - Wiley-VCH CY - Weinheim ER -