TY - GEN A1 - Chen, Pan A1 - Bornhorst, Julia A1 - Aschner, Michael A. T1 - Manganese metabolism in humans T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Manganese (Mn) is an essential nutrient for intracellular activities; it functions as a cofactor for a variety of enzymes, including arginase, glutamine synthetase (GS), pyruvate carboxylase and Mn superoxide dismutase (Mn-SOD). Through these metalloproteins, Mn plays critically important roles in development, digestion, reproduction, antioxidant defense, energy production, immune response and regulation of neuronal activities. Mn deficiency is rare. In contrast Mn poisoning may be encountered upon overexposure to this metal. Excessive Mn tends to accumulate in the liver, pancreas, bone, kidney and brain, with the latter being the major target of Mn intoxication. Hepatic cirrhosis, polycythemia, hypermanganesemia, dystonia and Parkinsonism-like symptoms have been reported in patients with Mn poisoning. In recent years, Mn has come to the forefront of environmental concerns due to its neurotoxicity. Molecular mechanisms of Mn toxicity include oxidative stress, mitochondrial dysfunction, protein misfolding, endoplasmic reticulum (ER) stress, autophagy dysregulation, apoptosis, and disruption of other metal homeostasis. The mechanisms of Mn homeostasis are not fully understood. Here, we will address recent progress in Mn absorption, distribution and elimination across different tissues, as well as the intracellular regulation of Mn homeostasis in cells. We will conclude with recommendations for future research areas on Mn metabolism. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 711 KW - Manganese KW - Metal Metabolism KW - Homeostasis KW - Blood-Brain Barrier KW - Neurotoxicity KW - Transporters KW - Review Y1 - 2019 UR - https://publishup.uni-potsdam.de/frontdoor/index/index/docId/42743 UR - https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-427432 SN - 1866-8372 IS - 711 ER -