TY - JOUR A1 - Bouakline, Foudhil A1 - Althorpe, Stuart C. A1 - Larregaray, Pascal A1 - Bonnet, Laurent T1 - Strong geometric-phase effects in the hydrogen-exchange reaction at high collision energies : II. quasiclassical trajectory analysis N2 - Recent calculations on the hydrogen-exchange reaction [Bouakline et al., J. Chem. Phys. 128, 124322 (2008)], have found strong geometric phase (GP) effects in the state-to-state differential cross-sections (DCS), at energies above the energetic minimum of the conical intersection (CI) seam, which cancel out in the integral cross-sections (ICS). In this article, we explain the origin of this cancellation and make other predictions about the nature of the reaction mechanisms at these high energies by carrying out quasiclassical trajectory (QCT) calculations. Detailed comparisons are made with the quantum results by splitting the quantum and the QCT cross-sections into contributions from reaction paths that wind in different senses around the CI and that scatter the products in the nearside and farside directions. Reaction paths that traverse one transition state (1-TS) scatter their products in just the nearside direction, whereas paths that traverse two transition states (2-TS) scatter in both the nearside and farside directions. However, the nearside 2-TS products scatter into a different region of angular phase-space than the 1-TS products, which explains why the GP effects cancel out in the ICS. Analysis of the QCT results also suggests that two separate reaction mechanisms may be responsible for the 2-TS scattering at high energies. Y1 - 2010 UR - https://publishup.uni-potsdam.de/frontdoor/index/index/docId/32091 UR - http://www.informaworld.com/openurl?genre=journal&issn=0026-8976 SN - 0026-8976 ER -