TY - JOUR A1 - Muksin, Umar A1 - Haberland, Christian A1 - Bauer, Klaus A1 - Weber, Michael H. T1 - Three-dimensional upper crustal structure of the geothermal system in Tarutung (North Sumatra, Indonesia) revealed by seismic attenuation tomography T2 - Geophysical journal international N2 - The geothermal potential in Tarutung is controlled by both the Sumatra Fault system and young arc volcanism. In this study we use the spatial distribution of seismic attenuation, calculated from local earthquake recordings, to image the 3-D seismic attenuation of the area and relate it with the temperature anomalies and the fluid distribution of the subsurface. A temporary seismic network of 42 stations was deployed around Tarutung and Sarulla (south of Tarutung) for a period of 10 months starting in 2011 May. Within this period, the network recorded 2586 local events. A high-quality subset of 229 events recorded by at least 10 stations was used for the attenuation inversion (tomography). Path-average attenuation (t(p)*) was calculated by using a spectral inversion method. The spread function, the contour lines of the model resolution matrix and the recovery test results show that our 3-D attenuation model (Q(p)) has good resolution around the Tarutung Basin and along the Sarulla graben. High attenuation (low Q(p)) related to the geothermal system is found in the northeast of the Tarutung Basin suggesting fluid pathways from below the Sumatra Fault. The upper part of the studied geothermal system in the Tarutung district seems to be mainly controlled by the fault structure rather than by magmatic activities. In the southwest of the Tarutung Basin, the high attenuation zone is associated with the Martimbang volcano. In the Sarulla region, a low-Q(p) anomaly is found along the graben within the vicinity of the Hopong caldera. KW - Seismicity and tectonics KW - Body waves KW - Seismic attenuation KW - Seismic tomography Y1 - 2013 UR - https://publishup.uni-potsdam.de/frontdoor/index/index/docId/34567 SN - 0956-540X SN - 1365-246X VL - 195 IS - 3 SP - 2037 EP - 2049 PB - Oxford Univ. Press CY - Oxford ER -