TY - JOUR A1 - Bojahr, Andre A1 - Herzog, Marc A1 - Schick, Daniel A1 - Vrejoiu, Ionela A1 - Bargheer, Matias T1 - Calibrated real-time detection of nonlinearly propagating strain waves T2 - Physical review : B, Condensed matter and materials physics N2 - Epitaxially grown metallic oxide transducers support the generation of ultrashort strain pulses in SrTiO3 (STO) with high amplitudes up to 0.5%. The strain amplitudes are calibrated by real-time measurements of the lattice deformation using ultrafast x-ray diffraction. We determine the speed at which the strain fronts propagate by broadband picosecond ultrasonics and conclude that, above a strain level of approx. 0.2%, the compressive and tensile strain components travel at considerably different sound velocities, indicating nonlinear wave behavior. Simulations based on an anharmonic linear-chain model are in excellent accord with the experimental findings and show how the spectrum of coherent phonon modes changes with time. Y1 - 2012 UR - https://publishup.uni-potsdam.de/frontdoor/index/index/docId/35574 SN - 1098-0121 VL - 86 IS - 14 PB - American Physical Society CY - College Park ER -