TY - JOUR A1 - Cherstvy, Andrey G. A1 - Metzler, Ralf T1 - Nonergodicity, fluctuations, and criticality in heterogeneous diffusion processes T2 - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We study the stochastic behavior of heterogeneous diffusion processes with the power-law dependence D(x) similar to vertical bar x vertical bar(alpha) of the generalized diffusion coefficient encompassing sub- and superdiffusive anomalous diffusion. Based on statistical measures such as the amplitude scatter of the time-averaged mean-squared displacement of individual realizations, the ergodicity breaking and non-Gaussianity parameters, as well as the probability density function P(x, t), we analyze the weakly nonergodic character of the heterogeneous diffusion process and, particularly, the degree of irreproducibility of individual realizations. As we show, the fluctuations between individual realizations increase with growing modulus vertical bar alpha vertical bar of the scaling exponent. The fluctuations appear to diverge when the critical value alpha = 2 is approached, while for even larger alpha the fluctuations decrease, again. At criticality, the power-law behavior of the mean-squared displacement changes to an exponentially fast growth, and the fluctuations of the time-averaged mean-squared displacement do not converge for increasing number of realizations. From a systematic comparison we observe some striking similarities of the heterogeneous diffusion process with the familiar subdiffusive continuous time random walk process with power-law waiting time distribution and diverging characteristic waiting time. Y1 - 2014 UR - https://publishup.uni-potsdam.de/frontdoor/index/index/docId/37703 SN - 1539-3755 SN - 1550-2376 VL - 90 IS - 1 PB - American Physical Society CY - College Park ER -