TY - JOUR A1 - Neusser, David A1 - Sun, Bowen A1 - Tan, Wen Liang A1 - Thomsen, Lars A1 - Schultz, Thorsten A1 - Perdigon-Toro, Lorena A1 - Koch, Norbert A1 - Shoaee, Safa A1 - McNeill, Christopher R. A1 - Neher, Dieter A1 - Ludwigs, Sabine T1 - Spectroelectrochemically determined energy levels of PM6:Y6 blends and their relevance to solar cell performance T2 - Journal of materials chemistry : C, Materials for optical and electronic devices N2 - Recent advances in organic solar cell performance have been mainly driven forward by combining high-performance p-type donor-acceptor copolymers (e.g.PM6) and non-fullerene small molecule acceptors (e.g.Y6) as bulk-heterojunction layers. A general observation in such devices is that the device performance, e.g., the open-circuit voltage, is strongly dependent on the processing solvent. While the morphology is a typically named key parameter, the energetics of donor-acceptor blends are equally important, but less straightforward to access in the active multicomponent layer. Here, we propose to use spectral onsets during electrochemical cycling in a systematic spectroelectrochemical study of blend films to access the redox behavior and the frontier orbital energy levels of the individual compounds. Our study reveals that the highest occupied molecular orbital offset (Delta E-HOMO) in PM6:Y6 blends is similar to 0.3 eV, which is comparable to the binding energy of Y6 excitons and therefore implies a nearly zero driving force for the dissociation of Y6 excitons. Switching the PM6 orientation in the blend films from face-on to edge-on in bulk has only a minor influence on the positions of the energy levels, but shows significant differences in the open circuit voltage of the device. We explain this phenomenon by the different interfacial molecular orientations, which are known to affect the non-radiative decay rate of the charge-transfer state. We compare our results to ultraviolet photoelectron spectroscopy data, which shows distinct differences in the HOMO offsets in the PM6:Y6 blend compared to neat films. This highlights the necessity to measure the energy levels of the individual compounds in device-relevant blend films. Y1 - 2022 UR - https://publishup.uni-potsdam.de/frontdoor/index/index/docId/64067 SN - 2050-7526 SN - 2050-7534 VL - 10 IS - 32 SP - 11565 EP - 11578 PB - Royal Society of Chemistry CY - Cambridge ER -