TY - JOUR A1 - Ahnert, Karsten A1 - Abel, Markus A1 - Kollosche, Matthias A1 - Jorgensen, Per Jorgen A1 - Kofod, Guggi T1 - Soft capacitors for wave energy harvesting T2 - Journal of materials chemistry N2 - Wave energy harvesting could be a substantial renewable energy source without impact on the global climate and ecology, yet practical attempts have struggled with the problems of wear and catastrophic failure. An innovative technology for ocean wave energy harvesting was recently proposed, based on the use of soft capacitors. This study presents a realistic theoretical and numerical model for the quantitative characterization of this harvesting method. Parameter regions with optimal behavior are found, and novel material descriptors are determined, which dramatically simplify analysis. The characteristics of currently available materials are evaluated, and found to merit a very conservative estimate of 10 years for raw material cost recovery. Y1 - 2011 UR - https://publishup.uni-potsdam.de/frontdoor/index/index/docId/37105 SN - 0959-9428 SN - 1364-5501 VL - 21 IS - 38 SP - 14492 EP - 14497 PB - Royal Society of Chemistry CY - Cambridge ER -