TY - JOUR A1 - Wessel, Niels A1 - Voss, Andreas A1 - Malberg, Hagen A1 - Ziehmann, Christine A1 - Voss, Henning U. A1 - Schirdewan, Alexander A1 - Meyerfeldt, Udo A1 - Kurths, Jürgen T1 - Nonlinear analysis of complex phenomena in cardiological data N2 - The main intention of this contribution is to discuss different nonlinear approaches to heart rate and blood pressure variability analysis for a better understanding of the cardiovascular regulation. We investigate measures of complexity which are based on symbolic dynamics, renormalised entropy and the finite time growth rates. The dual sequence method to estimate the baroreflex sensitivity and the maximal correlation method to estimate the nonlinear coupling between time series are employed for analysing bivariate data. The latter appears to be a suitable method to estimate the strength of the nonlinear coupling and the coupling direction. Heart rate and blood pressure data from clinical pilot studies and from very large clinical studies are analysed. We demonstrate that parameters from nonlinear dynamics are useful for risk stratification after myocardial infarction, for the prediction of life-threatening cardiac events even in short time series, and for modelling the relationship between heart rate and blood pressure regulation. These findings could be of importance for clinical diagnostics, in algorithms for risk stratification, and for therapeutic and preventive tools of next generation implantable cardioverter defibrillators. Y1 - 2000 UR - https://publishup.uni-potsdam.de/frontdoor/index/index/docId/19974 ER -