TY - GEN A1 - Agarwal, Ankit A1 - Caesar, Levke A1 - Marwan, Norbert A1 - Maheswaran, Rathinasamy A1 - Merz, Bruno T1 - Network-based identification and characterization of teleconnections on different scales T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Sea surface temperature (SST) patterns can – as surface climate forcing – affect weather and climate at large distances. One example is El Niño-Southern Oscillation (ENSO) that causes climate anomalies around the globe via teleconnections. Although several studies identified and characterized these teleconnections, our understanding of climate processes remains incomplete, since interactions and feedbacks are typically exhibited at unique or multiple temporal and spatial scales. This study characterizes the interactions between the cells of a global SST data set at different temporal and spatial scales using climate networks. These networks are constructed using wavelet multi-scale correlation that investigate the correlation between the SST time series at a range of scales allowing instantaneously deeper insights into the correlation patterns compared to traditional methods like empirical orthogonal functions or classical correlation analysis. This allows us to identify and visualise regions of – at a certain timescale – similarly evolving SSTs and distinguish them from those with long-range teleconnections to other ocean regions. Our findings re-confirm accepted knowledge about known highly linked SST patterns like ENSO and the Pacific Decadal Oscillation, but also suggest new insights into the characteristics and origins of long-range teleconnections like the connection between ENSO and Indian Ocean Dipole. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 731 Y1 - 2019 UR - https://publishup.uni-potsdam.de/frontdoor/index/index/docId/43052 UR - https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-430520 SN - 1866-8372 IS - 731 ER -