TY - JOUR A1 - Harutjunjan, Gohar A1 - Schulze, Bert-Wolfgang T1 - Parametrices of mixed elliptic problems N2 - Mixed elliptic problems for differential operators A in a domain Q with smooth boundary Y are studied in the form Au = f in Omega, T+/-u = g+/- on Y+/-, where Y+/- subset of Y are manifolds with a common boundary Z, such that Y- boolean OR Y+ = Y and Y- boolean AND Y+ = z, with boundary conditions T+/- on Y+/- (with smooth coefficients up to Z from the respective side) satisfying the Shapiro-Lopatinskij condition. We consider such problems in standard Sobolev spaces and characterise natural extra conditions on the interface Z with an analogue of Shapiro-Lopatinskij ellipticity for an associated transmission problem on the boundary; then the extended operator is Fredholm. The transmission operators on the boundary with respect to Z belong to a complete pseudo-differential calculus, a modification of the algebra of boundary value problems without the transmission property. We construct parametrices of elliptic elements in that calculus, and we obtain parametrices of the original mixed problems under additional conditions on the interface. We consider the Zaremba problem and other mixed problems for the Laplace operator, determine the number of extra conditions and calculate the index of associated Fredholm operators. (C) 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Y1 - 2004 UR - https://publishup.uni-potsdam.de/frontdoor/index/index/docId/15332 SN - 0025-584X ER -