TY - JOUR A1 - Füchsel, Gernot A1 - Schimka, Selina A1 - Saalfrank, Peter T1 - On the role of electronic friction for dissociative adsorption and scattering of hydrogen molecules at a Ru(0001) surface T2 - The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment & general theory N2 - The role of electronic friction and, more generally, of nonadiabatic effects during dynamical processes at the gas/metal surface interface is still a matter of discussion. In particular, it is not clear if electronic nonadiabaticity has an effect under "mild" conditions, when molecules in low rovibrational states interact with a metal surface. In this paper, we investigate the role of electronic friction on the dissociative sticking and (inelastic) scattering of vibrationally and rotationally cold H-2 molecules at a Ru(0001) surface theoretically. For this purpose, classical molecular dynamics with electronic friction (MDEF) calculations are performed and compared to MD simulations without friction. The two H atoms move on a six-dimensional potential energy surface generated from gradient-corrected density functional theory (DFT), that is, all molecular degrees of freedom are accounted for. Electronic friction is included via atomic friction coefficients obtained from an embedded atom, free electron gas (FEG) model, with embedding densities taken from gradient-corrected DFT. We find that within this model, dissociative sticking probabilities as a function of impact kinetic energies and impact angles are hardly affected by nonadiabatic effects. If one accounts for a possibly enhanced electronic friction near the dissociation barrier, on the other hand, reduced sticking probabilities are observed, in particular, at high impact energies. Further, there is always an influence on inelastic scattering, in particular, as far as the translational and internal energy distribution of the reflected molecules is concerned. Additionally, our results shed light on the role played by the velocity distribution of the incident molecular beam for adsorption probabilities, where, in particular, at higher impact energies, large effects are found. Y1 - 2013 UR - https://publishup.uni-potsdam.de/frontdoor/index/index/docId/34736 SN - 1089-5639 VL - 117 IS - 36 SP - 8761 EP - 8769 PB - American Chemical Society CY - Washington ER -