TY - GEN A1 - Zhang, Youjun A1 - Chen, Moxian A1 - Siemiatkowska, Beata A1 - Toleco, Mitchell Rey A1 - Jing, Yue A1 - Strotmann, Vivien A1 - Zhang, Jianghua A1 - Stahl, Yvonne A1 - Fernie, Alisdair R. T1 - A highly efficient agrobacterium-mediated method for transient gene expression and functional studies in multiple plant species T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Although the use of stable transformation technology has led to great insight into gene function, its application in high-throughput studies remains arduous. Agro-infiltration have been widely used in species such as Nicotiana benthamiana for the rapid detection of gene expression and protein interaction analysis, but this technique does not work efficiently in other plant species, including Arabidopsis thaliana. As an efficient high-throughput transient expression system is currently lacking in the model plant species A. thaliana, we developed a method that is characterized by high efficiency, reproducibility, and suitability for transient expression of a variety of functional proteins in A. thaliana and 7 other plant species, including Brassica oleracea, Capsella rubella, Thellungiella salsuginea, Thellungiella halophila, Solanum tuberosum, Capsicum annuum, and N. benthamiana. Efficiency of this method was independently verified in three independent research facilities, pointing to the robustness of this technique. Furthermore, in addition to demonstrating the utility of this technique in a range of species, we also present a case study employing this method to assess protein-protein interactions in the sucrose biosynthesis pathway in Arabidopsis. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1189 KW - transient expression KW - agro-infiltration KW - subcellular localization KW - protein-protein interaction Y1 - 2020 UR - https://publishup.uni-potsdam.de/frontdoor/index/index/docId/52425 UR - https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-524254 SN - 1866-8372 IS - 5 ER -