TY - JOUR A1 - Ramiaramanantsoa, Tahina A1 - Moffat, Anthony F. J. A1 - Harmon, Robert A1 - Ignace, R. A1 - St-Louis, Nicole A1 - Vanbeveren, Dany A1 - Shenar, Tomer A1 - Pablo, Herbert A1 - Richardson, Noel D. A1 - Howarth, Ian D. A1 - Stevens, Ian R. A1 - Piaulet, Caroline A1 - St-Jean, Lucas A1 - Eversberg, Thomas A1 - Pigulski, Andrzej A1 - Popowicz, Adam A1 - Kuschnig, Rainer A1 - Zoclonska, Elzbieta A1 - Buysschaert, Bram A1 - Handler, Gerald A1 - Weiss, Werner W. A1 - Wade, Gregg A. A1 - Rucinski, Slavek M. A1 - Zwintz, Konstanze A1 - Luckas, Paul A1 - Heathcote, Bernard A1 - Cacella, Paulo A1 - Powles, Jonathan A1 - Locke, Malcolm A1 - Bohlsen, Terry A1 - Chené, André-Nicolas A1 - Miszalski, Brent A1 - Waldron, Wayne L. A1 - Kotze, Marissa M. A1 - Kotze, Enrico J. A1 - Böhm, Torsten T1 - BRITE-Constellation high-precision time-dependent photometry of the early O-type supergiant zeta Puppis unveils the photospheric drivers of its small- and large-scale wind structures T2 - Monthly notices of the Royal Astronomical Society N2 - From 5.5 months of dual-band optical photometric monitoring at the 1 mmag level, BRITE-Constellation has revealed two simultaneous types of variability in the O4I(n)fp star ζ Puppis: one single periodic non-sinusoidal component superimposed on a stochastic component. The monoperiodic component is the 1.78-d signal previously detected by Coriolis/Solar Mass Ejection Imager, but this time along with a prominent first harmonic. The shape of this signal changes over time, a behaviour that is incompatible with stellar oscillations but consistent with rotational modulation arising from evolving bright surface inhomogeneities. By means of a constrained non-linear light-curve inversion algorithm, we mapped the locations of the bright surface spots and traced their evolution. Our simultaneous ground-based multisite spectroscopic monitoring of the star unveiled cyclical modulation of its He ii λ4686 wind emission line with the 1.78-d rotation period, showing signatures of corotating interaction regions that turn out to be driven by the bright photospheric spots observed by BRITE. Traces of wind clumps are also observed in the He ii λ4686 line and are correlated with the amplitudes of the stochastic component of the light variations probed by BRITE at the photosphere, suggesting that the BRITE observations additionally unveiled the photospheric drivers of wind clumps in ζ Pup and that the clumping phenomenon starts at the very base of the wind. The origins of both the bright surface inhomogeneities and the stochastic light variations remain unknown, but a subsurface convective zone might play an important role in the generation of these two types of photospheric variability. KW - techniques: photometric KW - techniques: spectroscopic KW - stars: massive KW - stars: rotation KW - starspots KW - supergiants KW - stars: winds, outflows Y1 - 2017 UR - https://publishup.uni-potsdam.de/frontdoor/index/index/docId/53754 SN - 0035-8711 SN - 1365-2966 VL - 473 IS - 4 SP - 5532 EP - 5569 PB - Oxford Univ. Press CY - Oxford ER -