TY - JOUR A1 - Hoffmann, Bernd A1 - Kahmen, Ansgar A1 - Cernusak, Lucas A. A1 - Arndt, Stefan K. A1 - Sachse, Dirk T1 - Abundance and distribution of leaf wax n-alkanes in leaves of Acacia and Eucalyptus trees along a strong humidity gradient in northern Australia T2 - Organic geochemistry : the international journal for rapid publication of current research in organic geochemistry and biochemistry N2 - Environmental parameters such as rainfall, temperature and relative humidity can affect the composition of higher plant leaf wax. The abundance and distribution of leaf wax biomarkers, such as long chain n-alkanes, in sedimentary archives have therefore been proposed as proxies reflecting climate change. However, a robust palaeoclimatic interpretation requires a thorough understanding of how environmental changes affect leaf wax n-alkane distributions in living plants. We have analysed the concentration and chain length distribution of leaf wax n-alkanes in Acacia and Eucalyptus species along a 1500 km climatic gradient in northern Australia that ranges from subtropical to arid. We show that aridity affected the concentration and distribution of n-alkanes for plants in both genera. For both Acacia and Eucalyptus n-alkane concentration increased by a factor of ten to the dry centre of Australia, reflecting the purpose of the wax in preventing water loss from the leaf. Furthermore, Acacian-alkanes decreased in average chain length (ACL) towards the arid centre of Australia, whereas Eucalyptus ACL increased under arid conditions. Our observations demonstrate that n-alkane concentration and distribution in leaf wax are sensitive to hydroclimatic conditions. These parameters could therefore potentially be employed in palaeorecords to estimate past environmental change. However, our finding of a distinct response of n-alkane ACL values to hydrological changes in different taxa also implies that the often assumed increase in ACL under drier conditions is not a robust feature for all plant species and genera and as such additional information about the prevalent vegetation are required when ACL values are used as a palaeoclimate proxy. Y1 - 2013 UR - https://publishup.uni-potsdam.de/frontdoor/index/index/docId/34779 SN - 0146-6380 VL - 62 IS - 9 SP - 62 EP - 67 PB - Elsevier CY - Oxford ER -