TY - JOUR A1 - Steyrleuthner, Robert A1 - Bange, Sebastian A1 - Neher, Dieter T1 - Reliable electron-only devices and electron transport in n-type polymers N2 - Current-voltage analysis of single-carrier transport is a popular method for the determination of charge carrier mobilities in organic semiconductors. Although in widespread use for the analysis of hole transport, only a few reports can be found where the method was applied to electron transport. Here, we summarize the experimental difficulties related to the metal electrode leakage currents and nonlinear differential resistance (NDR) effects and explain their origin. We present a modified preparation technique for the metal electrodes and show that it significantly increases the reliability of such measurements. It allows to produce test devices with low leakage currents and without NDR even for thin organic layers. Metal oxides were often discussed as a possible cause of NDR. Our measurements on forcibly oxidized metal electrodes demonstrate that oxide layers are not exclusively responsible for NDR effects. We present electron transport data for two electron-conducting polymers often applied in all-polymer solar cells for a large variety of layer thicknesses and temperatures. The results can be explained by established exponential trapping models. Y1 - 2009 UR - https://publishup.uni-potsdam.de/frontdoor/index/index/docId/31949 UR - http://jap.aip.org/ SN - 0021-8979 ER -