TY - JOUR A1 - Pham, Duong Tung A1 - Quan, Ting A1 - Mei, Shilin A1 - Lu, Yan T1 - Colloidal metal sulfide nanoparticles for high performance electrochemical energy storage systems T2 - Current opinion in green and sustainable chemistry N2 - Transition metal sulfides have emerged as excellent replacement candidates of traditional insertion electrode materials based on their conversion or alloying mechanisms, facilitating high specific capacity and rate ability. However, parasitic reactions such as massive volume change during the discharge/ charge processes, intermediate polysulfide dissolution, and passivating solid electrolyte interface formation have led to poor cyclability, hindering their feasibility and applicability in energy storage systems. Colloidal metal sulfide nanoparticles, a special class that integrates the intrinsic chemical properties of metal sulfides and their specified structural features, have fairly enlarged their contribution due to the synergistic effect. This review highlights the latest synthetic approaches based on colloidal process. Their corresponding electrochemical outcomes will also be discussed, which are thoroughly updated along with their insight scientific standpoints. Y1 - 2022 UR - https://publishup.uni-potsdam.de/frontdoor/index/index/docId/63672 SN - 2452-2236 VL - 34 PB - Elsevier CY - Amsterdam ER -