TY - JOUR A1 - Schultze, Dina A1 - Wirth, Richard A1 - Wunder, Bernd A1 - Loges, Anselm A1 - Wilke, Max A1 - Franz, Gerhard T1 - Corundum-quartz metastability T2 - Contributions to mineralogy and petrology N2 - The metastable paragenesis of corundum and quartz is rare in nature but common in laboratory experiments where according to thermodynamic predictions aluminum-silicate polymorphs should form. We demonstrate here that the existence of a hydrous, silicon-bearing, nanometer-thick layer (called "HSNL") on the corundum surface can explain this metastability in experimental studies without invoking unspecific kinetic inhibition. We investigated experimentally formed corundum reaction products synthesized during hydrothermal and piston-cylinder experiments at 500-800 degrees C and 0.25-1.8 GPa and found that this HSNL formed inside and on the corundum crystals, thereby controlling the growth behavior of its host. The HSNL represents a substitution of Al with Si and H along the basal plane of corundum. Along the interface of corundum and quartz, the HSNL effectively isolates the bulk phases corundum and quartz from each other, thus apparently preventing their reaction to the stable aluminum silicate. High temperatures and prolonged experimental duration lead to recrystallization of corundum including the HSNL and to the formation of quartz + fluid inclusions inside the host crystal. This process reduces the phase boundary area between the bulk phases, thereby providing further opportunity to expand their coexistence. In addition to its small size, its transient nature makes it difficult to detect the HSNL in experiments and even more so in natural samples. Our findings emphasize the potential impact of nanometer-sized phases on geochemical reaction pathways and kinetics under metamorphic conditions in one of the most important chemical systems of the Earth's crust. KW - Experimental KW - Metastability KW - Corundum KW - Quartz KW - Nanolayers KW - Aluminium– silicates Y1 - 2021 UR - https://publishup.uni-potsdam.de/frontdoor/index/index/docId/63595 SN - 0010-7999 SN - 1432-0967 VL - 176 IS - 4 PB - Springer CY - Berlin ; Heidelberg ER -