TY - JOUR A1 - Yang, Jie A1 - Gühr, Markus A1 - Vecchione, Theodore A1 - Robinson, Matthew Scott A1 - Li, Renkai A1 - Hartmann, Nick A1 - Shen, Xiaozhe A1 - Coffee, Ryan A1 - Corbett, Jeff A1 - Fry, Alan A1 - Gaffney, Kelly A1 - Gorkhover, Tais A1 - Hast, Carsten A1 - Jobe, Keith A1 - Makasyuk, Igor A1 - Reid, Alexander A1 - Robinson, Joseph A1 - Vetter, Sharon A1 - Wang, Fenglin A1 - Weathersby, Stephen A1 - Yoneda, Charles A1 - Centurion, Martin A1 - Wang, Xijie T1 - Diffractive imaging of a rotational wavepacket in nitrogen molecules with femtosecond megaelectronvolt electron pulses T2 - Nature Communications N2 - Imaging changes in molecular geometries on their natural femtosecond timescale with sub-Angstrom spatial precision is one of the critical challenges in the chemical sciences, as the nuclear geometry changes determine the molecular reactivity. For photoexcited molecules, the nuclear dynamics determine the photoenergy conversion path and efficiency. Here we report a gas-phase electron diffraction experiment using megaelectronvolt (MeV) electrons, where we captured the rotational wavepacket dynamics of nonadiabatically laser-aligned nitrogen molecules. We achieved a combination of 100 fs root-mean-squared temporal resolution and sub-Angstrom (0.76 angstrom) spatial resolution that makes it possible to resolve the position of the nuclei within the molecule. In addition, the diffraction patterns reveal the angular distribution of the molecules, which changes from prolate (aligned) to oblate (anti-aligned) in 300 fs. Our results demonstrate a significant and promising step towards making atomically resolved movies of molecular reactions. Y1 - 2016 UR - https://publishup.uni-potsdam.de/frontdoor/index/index/docId/45477 SN - 2041-1723 VL - 7 PB - Nature Publ. Group CY - London ER -