TY - THES A1 - Oancea, Marius-Adrian T1 - Spin Hall effects in general relativity T1 - Spin Hall Effekte in der Allgemeinen Relativitätstheorie N2 - The propagation of test fields, such as electromagnetic, Dirac or linearized gravity, on a fixed spacetime manifold is often studied by using the geometrical optics approximation. In the limit of infinitely high frequencies, the geometrical optics approximation provides a conceptual transition between the test field and an effective point-particle description. The corresponding point-particles, or wave rays, coincide with the geodesics of the underlying spacetime. For most astrophysical applications of interest, such as the observation of celestial bodies, gravitational lensing, or the observation of cosmic rays, the geometrical optics approximation and the effective point-particle description represent a satisfactory theoretical model. However, the geometrical optics approximation gradually breaks down as test fields of finite frequency are considered. In this thesis, we consider the propagation of test fields on spacetime, beyond the leading-order geometrical optics approximation. By performing a covariant Wentzel-Kramers-Brillouin analysis for test fields, we show how higher-order corrections to the geometrical optics approximation can be considered. The higher-order corrections are related to the dynamics of the spin internal degree of freedom of the considered test field. We obtain an effective point-particle description, which contains spin-dependent corrections to the geodesic motion obtained using geometrical optics. This represents a covariant generalization of the well-known spin Hall effect, usually encountered in condensed matter physics and in optics. Our analysis is applied to electromagnetic and massive Dirac test fields, but it can easily be extended to other fields, such as linearized gravity. In the electromagnetic case, we present several examples where the gravitational spin Hall effect of light plays an important role. These include the propagation of polarized light rays on black hole spacetimes and cosmological spacetimes, as well as polarization-dependent effects on the shape of black hole shadows. Furthermore, we show that our effective point-particle equations for polarized light rays reproduce well-known results, such as the spin Hall effect of light in an inhomogeneous medium, and the relativistic Hall effect of polarized electromagnetic wave packets encountered in Minkowski spacetime. N2 - Unser grundlegendes Verständnis des Universums basiert auf Einsteins allgemeiner Relativitätstheorie, die eine Beschreibung in Form einer vierdimensional gekrümmten Raumzeit liefert, in der die Anziehungskraft der Gravitation in der Krümmung der Raumzeit kodiert ist. Die überwiegende Mehrheit der experimentellen Tests, die Einsteins allgemeine Relativitätstheorie bestätigt haben, basiert auf der Beobachtung elektromagnetischer Strahlung, die von entfernten astrophysikalischen Quellen wie Sternen oder Galaxien stammt. Daher ist ein tiefgreifendes Verständnis der Dynamik der sich in der Raumzeit ausbreitenden elektromagnetischen Strahlung von entscheidender Bedeutung. Elektromagnetische Phänomene werden durch Maxwell-Gleichungen beschrieben. Die Ausbreitung elektromagnetischer Strahlung in der Raumzeit ist jedoch sehr komplexe, und es ist im Allgemeinen nützlich, Näherungen zu betrachten, welche eine vereinfachte Beschreibung liefern. Auf diese Weise können die Haupteigenschaften des Systems in einem reduzierten Gleichungssystem codiert und die Gültigkeit der Näherung quantitativ kontrolliert werden. Beispielsweise kann die Ausbreitung elektromagnetischer Strahlung in der Raumzeit durch Anwendung der geometrischen Optik auf die Maxwell-Gleichungen beschrieben werden. Diese liefert ein Modell für die Ausbreitung elektromagnetischer Strahlung in Form von Lichtstrahlen, die sich auf dem kürzesten Weg zwischen zwei Punkten ausbreiten. Im Kontext von Einsteins allgemeiner Relativitätstheorie entsprechen dise Lichtstrahlen den Nullgeodäten der zugrunde liegenden gekrümmten Raumzeit. Für die meisten astrophysikalischen Anwendungen von Interesse, wie die Beobachtung von Himmelskörpern oder Gravitationslinsen, stellen die Näherungen der geometrischen Optik und damit die Beschreibung der Ausbreitung elektromagnetischer Strahlung durch Lichtstrahlen ein zufriedenstellendes theoretisches Modell dar. In dieser Arbeit untersuchen wir mögliche Korrekturen der Ausbreitung elektromagnetischer Strahlung in der Raumzeit, welche durch die Näherung der geometrischen Optik nicht erfasst werden. Solche Korrekturen sind aus der Optik bekannt, wo beobachtet wurde, dass die Ausbreitung von Lichtstrahlen in bestimmten Materialien durch die Polarisation des Lichts beeinflusst werden kann. Diese Korrekturen sind als Spin-Hall-Effekt von Licht bekannt. In dieser Arbeit wird gezeigt, dass ein ähnlicher Effekt für elektromagnetische Strahlung auftreten kann, welche sich in gekrümmter Raumzeit in der Nähe massiver astrophysikalischer Objekte wie Schwarzer Löcher oder Sterne ausbreitet. Darüber hinaus präsentieren wir, basierend auf der Dirac-Gleichung, eine ähnliche Analyse für die Bewegung von Elektronen in gekrümmten Raumzeiten. KW - spin Hall effect KW - gravitation KW - black hole KW - Schwarzes Loch KW - Gravitation KW - Spin Hall effekte Y1 - 2021 UR - https://publishup.uni-potsdam.de/frontdoor/index/index/docId/50229 UR - https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-502293 ER -