TY - JOUR A1 - Hüttl, Christine A1 - Hettrich, Cornelia A1 - Riedel, Melanie A1 - Henklein, Petra A1 - Rawel, Harshadrai Manilal A1 - Bier, Frank Fabian T1 - Development of Peptidyl Lysine Dendrons: 1,3-Dipolar Cycloaddition for Peptide Coupling and Antibody Recognition T2 - Chemical biology & drug design N2 - A straightforward synthesis strategy to multimerize a peptide mimotopes for antibody B13-DE1 recognition is described based on lysine dendrons as multivalent scaffolds. Lysine dendrons that possess N-terminal alkyne residues at the periphery were quantitative functionalized with azido peptides using click chemistry. The solid-phase peptide synthesis (SPPS) allows preparing the peptide dendron in high purity and establishing the possibility of automation. The presented peptide dendron is a promising candidate as multivalent ligand and was used for antibody B13-DE1 recognition. The binding affinity increases with higher dendron generation without loss of specificity. The analysis of biospecific interaction between the synthesized peptide dendron and the antibody was done via surface plasmon resonance (SPR) technique. The presented results show a promising tool for investigations of antigen-antibody reactions. KW - click chemistry KW - lysine dendron KW - peptide mimotopes KW - solid-phase peptide synthesis KW - surface plasmon resonance Y1 - 2015 UR - https://publishup.uni-potsdam.de/frontdoor/index/index/docId/38980 SN - 1747-0277 SN - 1747-0285 VL - 85 IS - 5 SP - 565 EP - 573 PB - Wiley-Blackwell CY - Hoboken ER -