TY - THES A1 - Schindler, Daniel T1 - Mathematical modeling and simulation of protrusion-driven cell dynamics T1 - Mathematische Modellierung und Simulation von amöboiden Zelldynamiken N2 - Amoeboid cell motility takes place in a variety of biomedical processes such as cancer metastasis, embryonic morphogenesis, and wound healing. In contrast to other forms of cell motility, it is mainly driven by substantial cell shape changes. Based on the interplay of explorative membrane protrusions at the front and a slower-acting membrane retraction at the rear, the cell moves in a crawling kind of way. Underlying these protrusions and retractions are multiple physiological processes resulting in changes of the cytoskeleton, a meshwork of different multi-functional proteins. The complexity and versatility of amoeboid cell motility raise the need for novel computational models based on a profound theoretical framework to analyze and simulate the dynamics of the cell shape. The objective of this thesis is the development of (i) a mathematical framework to describe contour dynamics in time and space, (ii) a computational model to infer expansion and retraction characteristics of individual cell tracks and to produce realistic contour dynamics, (iii) and a complementing Open Science approach to make the above methods fully accessible and easy to use. In this work, we mainly used single-cell recordings of the model organism Dictyostelium discoideum. Based on stacks of segmented microscopy images, we apply a Bayesian approach to obtain smooth representations of the cell membrane, so-called cell contours. We introduce a one-parameter family of regularized contour flows to track reference points on the contour (virtual markers) in time and space. This way, we define a coordinate system to visualize local geometric and dynamic quantities of individual contour dynamics in so-called kymograph plots. In particular, we introduce the local marker dispersion as a measure to identify membrane protrusions and retractions in a fully automated way. This mathematical framework is the basis of a novel contour dynamics model, which consists of three biophysiologically motivated components: one stochastic term, accounting for membrane protrusions, and two deterministic terms to control the shape and area of the contour, which account for membrane retractions. Our model provides a fully automated approach to infer protrusion and retraction characteristics from experimental cell tracks while being also capable of simulating realistic and qualitatively different contour dynamics. Furthermore, the model is used to classify two different locomotion types: the amoeboid and a so-called fan-shaped type. With the complementing Open Science approach, we ensure a high standard regarding the usability of our methods and the reproducibility of our research. In this context, we introduce our software publication named AmoePy, an open-source Python package to segment, analyze, and simulate amoeboid cell motility. Furthermore, we describe measures to improve its usability and extensibility, e.g., by detailed run instructions and an automatically generated source code documentation, and to ensure its functionality and stability, e.g., by automatic software tests, data validation, and a hierarchical package structure. The mathematical approaches of this work provide substantial improvements regarding the modeling and analysis of amoeboid cell motility. We deem the above methods, due to their generalized nature, to be of greater value for other scientific applications, e.g., varying organisms and experimental setups or the transition from unicellular to multicellular movement. Furthermore, we enable other researchers from different fields, i.e., mathematics, biophysics, and medicine, to apply our mathematical methods. By following Open Science standards, this work is of greater value for the cell migration community and a potential role model for other Open Science contributions. N2 - Amöboide Zellmotilität findet bei einer Vielzahl biomedizinischer Prozesse wie Krebsmetastasierung, embryonaler Morphogenese und Wundheilung statt. Im Gegensatz zu anderen Formen der Zellmotilität wird sie hauptsächlich durch erhebliche Formveränderungen der Zelle angetrieben. Sie beruht auf dem Zusammenspiel von explorativen Membranausstülpungen an der Vorderseite und einem langsamer wirkenden Membraneinzug an der Rückseite. Die Komplexität amöboider Zellmotilität machen neue Berechnungsmodelle erforderlich, um die Dynamik der Zellform mathematisch fundiert zu analysieren und zu simulieren. Ziel dieser Arbeit ist die Entwicklung (i) eines mathematischen Frameworks zur Beschreibung der Konturendynamik in Zeit und Raum, (ii) eines Computermodells, um Eigenschaften der Membranveränderungen von einzelnen Zellen zu inferieren und gleichzeitig realistische Konturdynamiken zu simulieren, (iii) und eines ergänzenden Open-Science-Ansatzes, um die oben genannten Methoden vollständig zugänglich und leicht anwendbar zu machen. Auf der Grundlage von aufeinander folgenden Mikroskopiebildern vom Modellorganismus Dictyostelium discoideum, wenden wir einen Bayesschen Ansatz an, um glatte Darstellungen der Zellmembran, sogenannte Zellkonturen, zu erhalten. Wir führen eine einparametrige Familie von regularisierten Konturflüssen ein, um Referenzpunkte auf der Kontur (virtuelle Marker) in Zeit und Raum zu verfolgen. Auf diese Weise definieren wir ein Koordinatensystem zur Visualisierung lokaler geometrischer und dynamischer Größen der individuellen Konturdynamiken in sogenannten Kymographen-Plots. Insbesondere führen wir die lokale Marker-Dispersion ein, mit der signifikante Membranveränderungen identifiziert werden können. Dieses mathematische Framework bildet die Grundlage für unser neues Modell zur Beschreibung von Konturendynamiken. Es besteht aus drei biophysiologisch motivierten Komponenten: einem stochastischen Term, der die Membranausstülpungen steuert, und zwei deterministischen Termen, die das Membraneinziehen, unter Berücksichtigung der Konturform und -fläche, steuern. Unser Modell bietet einen vollautomatisierten Ansatz zur Inferrenz der Charakteristiken von Membranveränderungen für experimentelle Zelldaten. Außerdem ermöglicht es die Simulation von realistischen und qualitativ unterschiedlichen Konturendynamiken. Mit dem ergänzenden Open-Science-Ansatz setzen wir einen hohen Standard hinsichtlich der Nutzbarkeit unserer Methoden und der Reproduzierbarkeit unserer Forschung. In diesem Kontext stellen wir die Softwarepublikation AmoePy vor, ein Open-Source-Pythonpaket zur Segmentierung, Analyse und Simulation von amöboider Zellmotilität. Darüber hinaus beschreiben wir Maßnahmen zur Verbesserung der Benutzerfreundlichkeit und Erweiterbarkeit, z. B. durch detaillierte Ausführanweisungen und eine automatisch generierte Quellcodedokumentation, und zur Gewährleistung der Funktionalität und Stabilität, z. B. durch automatische Softwaretests, Datenvalidierung und eine hierarchische Paketstruktur. Die mathematischen Methoden dieser Arbeit stellen wesentliche Verbesserungen in der Modellierung und Analyse der amöboiden Zellmotilität dar. Wir sind der Ansicht, dass die oben genannten Methoden aufgrund ihrer Verallgemeinerbarkeit von größerem Wert für andere wissenschaftliche Anwendungen sind und potentiell einsetzbar in verschiedenen Wissenschaftsfeldern sind, u. a. Mathematik, Biophysik und Medizin. Durch die Einhaltung von Open-Science-Standards ist diese Arbeit von größerem Wert und ein potenzielles Vorbild für andere Open-Science-Beiträge. KW - amöboide Bewegung KW - Zellmotilität KW - mathematische Modellierung KW - offene Wissenschaft KW - amoeboid motion KW - cell motility KW - mathematical modeling KW - open science Y1 - 2023 UR - https://publishup.uni-potsdam.de/frontdoor/index/index/docId/61327 UR - https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-613275 ER -