TY - JOUR A1 - Boeniger, Urs A1 - Tronicke, Jens T1 - On the potential of kinematic GPR surveying using a self-tracking total station : evaluating system crosstalk and latency N2 - In this paper, we present an efficient kinematic ground-penetrating radar (GPR) surveying setup using a self- tracking total station (TTS). This setup combines the ability of modern GPR systems to interface with Global Positioning System (GPS) and the capability of the employed TTS system to immediately make the positioning information available in a standardized GPS data format. Wireless communication between the GPR and the TTS system is established by using gain variable radio modems. Such a kinematic surveying setup faces two major potential limitations. First, possible crosstalk effects between the GPR and the positioning system have to be evaluated. Based on multiple walkaway experiments, we show that, for reasonable field setups, instrumental crosstalk has no significant impact on GPR data quality. Second, we investigate systematic latency (i.e., the time delay between the actual position measurement by TTS and its fusion with the GPR data) and its impact on the positional precision of kinematically acquired 2-D and 3-D GPR data. To quantify latency for our kinematic survey setup, we acquired forward-reverse profile pairs across a well-known subsurface target. Comparing the forward and reverse GPR images using three fidelity measures allows determining the optimum latency value and correcting for it. Accounting for both of these potential limitations allows us to kinematically acquire high- quality and high-precision GPR data using off-the-shelf instrumentation without further hardware modifications. Until now, these issues have not been investigated in detail, and thus, we believe that our findings have significant implications also for other geophysical surveying approaches. Y1 - 2010 UR - https://publishup.uni-potsdam.de/frontdoor/index/index/docId/32083 UR - http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?puNumber=36 SN - 0196-2892 ER -