TY - JOUR A1 - Melin, Johanna A1 - Parra-Guillen, Zinnia Patricia A1 - Hartung, Niklas A1 - Huisinga, Wilhelm A1 - Ross, Richard J. A1 - Whitaker, Martin J. A1 - Kloft, Charlotte T1 - Predicting Cortisol Exposure from Paediatric Hydrocortisone Formulation Using a Semi-Mechanistic Pharmacokinetic Model Established in Healthy Adults T2 - Clinical Pharmacokinetics N2 - Background and objective Optimisation of hydrocortisone replacement therapy in children is challenging as there is currently no licensed formulation and dose in Europe for children under 6 years of age. In addition, hydrocortisone has non-linear pharmacokinetics caused by saturable plasma protein binding. A paediatric hydrocortisone formulation, Infacort (R) oral hydrocortisone granules with taste masking, has therefore been developed. The objective of this study was to establish a population pharmacokinetic model based on studies in healthy adult volunteers to predict hydrocortisone exposure in paediatric patients with adrenal insufficiency. Methods Cortisol and binding protein concentrations were evaluated in the absence and presence of dexamethasone in healthy volunteers (n = 30). Dexamethasone was used to suppress endogenous cortisol concentrations prior to and after single doses of 0.5, 2, 5 and 10 mg of Infacort (R) or 20 mg of Infacort (R)/hydrocortisone tablet/hydrocortisone intravenously. A plasma protein binding model was established using unbound and total cortisol concentrations, and sequentially integrated into the pharmacokinetic model. Results Both specific (non-linear) and non-specific (linear) protein binding were included in the cortisol binding model. A two-compartment disposition model with saturable absorption and constant endogenous cortisol baseline (Baseline (cort),15.5 nmol/L) described the data accurately. The predicted cortisol exposure for a given dose varied considerably within a small body weight range in individuals weighing < 20 kg. Conclusions Our semi-mechanistic population pharmacokinetic model for hydrocortisone captures the complex pharmacokinetics of hydrocortisone in a simplified but comprehensive framework. The predicted cortisol exposure indicated the importance of defining an accurate hydrocortisone dose to mimic physiological concentrations for neonates and infants weighing < 20 kg. Y1 - 2018 UR - https://publishup.uni-potsdam.de/frontdoor/index/index/docId/53218 SN - 0312-5963 SN - 1179-1926 VL - 57 IS - 4 SP - 515 EP - 527 PB - Springer CY - Northcote ER -