How imperfect mixing and differential diffusion accelerate the rate of nonlinear reactions in microfluidic channels

  • In this paper, we show experimentally that inside a microfluidic device, where the reactants are segregated, the reaction rate of an autocatalytic clock reaction is accelerated in comparison to the case where all the reactants are well mixed. We also find that, when mixing is enhanced inside the microfluidic device by introducing obstacles into the flow, the clock reaction becomes slower in comparison to the device where mixing is less efficient. Based on numerical simulations, we show that this effect can be explained by the interplay of nonlinear reaction kinetics (cubic autocatalysis) and differential diffusion, where the autocatalytic species diffuses slower than the substrate.

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Robert Raimund NiedlGND, Igal Berenstein, Carsten BetaORCiDGND
DOI:https://doi.org/10.1039/c6cp00224b
ISSN:1463-9076
ISSN:1463-9084
Title of parent work (English):Physical chemistry, chemical physics : PCCP ; a journal of European Chemical Societies
Publisher:Royal Society of Chemistry
Place of publishing:Cambridge
Publication type:Article
Language:English
Date of first publication:2016/02/10
Publication year:2016
Publishing institution:Universität Potsdam
Release date:2016/09/15
Tag:arsenious acid; fronts; paper; poly(dimethylsiloxane); scale; systems
Volume:18
First page:6451
Last Page:6457
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Peer review:Referiert
Publishing method:Open Access
Grantor:RSC
License (English):License LogoCreative Commons - Namensnennung 3.0 Unported
External remark:Zweitveröffentlichung in der Schriftenreihe Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe ; 253
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.