Degeneration of boundary layer at singular points

  • We study the Dirichlet problem in a bounded plane domain for the heat equation with small parameter multiplying the derivative in t. The behaviour of solution at characteristic points of the boundary is of special interest. The behaviour is well understood if a characteristic line is tangent to the boundary with contact degree at least 2. We allow the boundary to not only have contact of degree less than 2 with a characteristic line but also a cuspidal singularity at a characteristic point. We construct an asymptotic solution of the problem near the characteristic point to describe how the boundary layer degenerates.

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS
  • Export XML

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Evgueniya Dyachenko, Nikolai Tarkhanov
URN:urn:nbn:de:kobv:517-opus-60135
Series (Serial Number):Preprints des Instituts für Mathematik der Universität Potsdam, ISSN 2193-6943 (1(2012)23)
Document Type:Preprint
Language:English
Date of Publication (online):2012/07/06
Year of Completion:2012
Publishing Institution:Universität Potsdam
Release Date:2012/07/06
Tag:Dirichlet problem; Heat equation; boundary layer; characteristic points
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
MSC Classification:35-XX PARTIAL DIFFERENTIAL EQUATIONS / 35Gxx General higher-order equations and systems / 35G15 Boundary value problems for linear higher-order equations
35-XX PARTIAL DIFFERENTIAL EQUATIONS / 35Kxx Parabolic equations and systems [See also 35Bxx, 35Dxx, 35R30, 35R35, 58J35] / 35K35 Initial-boundary value problems for higher-order parabolic equations
58-XX GLOBAL ANALYSIS, ANALYSIS ON MANIFOLDS [See also 32Cxx, 32Fxx, 32Wxx, 46-XX, 47Hxx, 53Cxx](For geometric integration theory, see 49Q15) / 58Jxx Partial differential equations on manifolds; differential operators [See also 32Wxx, 35-XX, 53Cxx] / 58J35 Heat and other parabolic equation methods
Collections:Universität Potsdam / Schriftenreihen / Preprints des Instituts für Mathematik der Universität Potsdam, ISSN 2193-6943 / 2012
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht
Notes extern:RVK-Klassifikation: SI 990