Boundary value problems for elliptic differential operators of first order

  • We study boundary value problems for linear elliptic differential operators of order one. The underlying manifold may be noncompact, but the boundary is assumed to be compact. We require a symmetry property of the principal symbol of the operator along the boundary. This is satisfied by Dirac type operators, for instance. We provide a selfcontained introduction to (nonlocal) elliptic boundary conditions, boundary regularity of solutions, and index theory. In particular, we simplify and generalize the traditional theory of elliptic boundary value problems for Dirac type operators. We also prove a related decomposition theorem, a general version of Gromov and Lawson's relative index theorem and a generalization of the cobordism theorem.

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS
  • Export XML

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Christian Bär, Werner Ballmann
URN:urn:nbn:de:kobv:517-opus-60023
Series (Serial Number):Preprints des Instituts für Mathematik der Universität Potsdam (1(2012)18)
Document Type:Preprint
Language:English
Date of Publication (online):2012/07/06
Year of Completion:2012
Publishing Institution:Universität Potsdam
Release Date:2012/07/06
Tag:Elliptic operators; boundary regularity; coercivity; completeness; elliptic boundary conditions
Source:arXiv:1101.1196v2 [math.DG] 21 Nov 2011
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
MSC Classification:35-XX PARTIAL DIFFERENTIAL EQUATIONS / 35Jxx Elliptic equations and systems [See also 58J10, 58J20] / 35J56 Boundary value problems for first-order elliptic systems
58-XX GLOBAL ANALYSIS, ANALYSIS ON MANIFOLDS [See also 32Cxx, 32Fxx, 32Wxx, 46-XX, 47Hxx, 53Cxx](For geometric integration theory, see 49Q15) / 58Jxx Partial differential equations on manifolds; differential operators [See also 32Wxx, 35-XX, 53Cxx] / 58J05 Elliptic equations on manifolds, general theory [See also 35-XX]
58-XX GLOBAL ANALYSIS, ANALYSIS ON MANIFOLDS [See also 32Cxx, 32Fxx, 32Wxx, 46-XX, 47Hxx, 53Cxx](For geometric integration theory, see 49Q15) / 58Jxx Partial differential equations on manifolds; differential operators [See also 32Wxx, 35-XX, 53Cxx] / 58J20 Index theory and related fixed point theorems [See also 19K56, 46L80]
58-XX GLOBAL ANALYSIS, ANALYSIS ON MANIFOLDS [See also 32Cxx, 32Fxx, 32Wxx, 46-XX, 47Hxx, 53Cxx](For geometric integration theory, see 49Q15) / 58Jxx Partial differential equations on manifolds; differential operators [See also 32Wxx, 35-XX, 53Cxx] / 58J32 Boundary value problems on manifolds
Collections:Universität Potsdam / Schriftenreihen / Preprints des Instituts für Mathematik der Universität Potsdam, ISSN 2193-6943 / 2012
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht
Notes extern:RVK-Klassifikation: SI 990