Process identification at a slow-moving landslide in the Vorarlberg Alps

  • A fine-grained slope that exhibits slow movement rates was investigated to understand how geohydrological processes contribute to a consecutive development of mass movements in the Vorarlberg Alps, Austria. For that purpose intensive hydrometeorological, hydrogeological and geotechnical observations as well as surveying of surface movement rates were conducted during 1998–2001. Subsurface water dynamics at the creeping slope turned out to be dominated by a three-dimensional pressure system. The pressure reaction is triggered by fast infiltration of surface water and subsequent lateral water flow in the south-western part of the hillslope. The related pressure signal was shown to propagate further downhill, causing fast reactions of the piezometric head at 5Ð5 m depth on a daily time scale. The observed pressure reactions might belong to a temporary hillslope water body that extends further downhill. The related buoyancy forces could be one of the driving forces for the mass movement. A physically based hydrological model was adopted tA fine-grained slope that exhibits slow movement rates was investigated to understand how geohydrological processes contribute to a consecutive development of mass movements in the Vorarlberg Alps, Austria. For that purpose intensive hydrometeorological, hydrogeological and geotechnical observations as well as surveying of surface movement rates were conducted during 1998–2001. Subsurface water dynamics at the creeping slope turned out to be dominated by a three-dimensional pressure system. The pressure reaction is triggered by fast infiltration of surface water and subsequent lateral water flow in the south-western part of the hillslope. The related pressure signal was shown to propagate further downhill, causing fast reactions of the piezometric head at 5Ð5 m depth on a daily time scale. The observed pressure reactions might belong to a temporary hillslope water body that extends further downhill. The related buoyancy forces could be one of the driving forces for the mass movement. A physically based hydrological model was adopted to model simultaneously surface and subsurface water dynamics including evapotranspiration and runoff production. It was possible to reproduce surface runoff and observed pressure reactions in principle. However, as soil hydraulic functions were only estimated on pedotransfer functions, a quantitative comparison between observed and simulated subsurface dynamics is not feasible. Nevertheless, the results suggest that it is possible to reconstruct important spatial structures based on sparse observations in the field which allow reasonable simulations with a physically based hydrological model. Copyright  2005 John Wiley & Sons, Ltd. KEY WORDS rainfall-induced landslides; soil creep; hydrological modelling; Vorarlberg; Austria; pressure propagationshow moreshow less

Download full text files

  • application/pdf Dokument_1.pdf (1409 KB) eng

Export metadata

  • Export Bibtex
  • Export RIS
  • Export XML

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Falk Lindenmaier, Erwin Zehe, Angela Dittfurth, Jürgen Ihringer
URN:urn:nbn:de:kobv:517-opus-60226
Document Type:Postprint
Language:English
Date of Publication (online):2012/07/03
Year of Completion:2004
Publishing Institution:Universität Potsdam
Release Date:2012/07/03
Source:Hydrological Process. - ISSN 1099-1085 . - 19 (2005), S. 1635–1651.
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geoökologie
Extern / Extern
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht
Notes extern:This is a postprint of an article who was published in Hydrological Process. - ISSN 1099-1085 . - 19 (2005), S. 1635–1651. Online First Publication, December 22, 2004. DOI: 10.1002/hyp.5592 2005 Copyright John Wiley & Sons, Ltd.