Elliptic boundary problems on manifolds with polycylindrical ends

  • We investigate general Shapiro-Lopatinsky elliptic boundary value problems on manifolds with polycylindrical ends. This is accomplished by compactifying such a manifold to a manifold with corners of in general higher codimension, and we then deal with boundary value problems for cusp differential operators. We introduce an adapted Boutet de Monvel’s calculus of pseudodifferential boundary value problems, and construct parametrices for elliptic cusp operators within this calculus. Fredholm solvability and elliptic regularity up to the boundary and up to infinity for boundary value problems on manifolds with polycylindrical ends follows.

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS
  • Export XML

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Thomas Krainer
URN:urn:nbn:de:kobv:517-opus-29912
Series (Serial Number):Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis ((2005) 15)
Document Type:Preprint
Language:English
Date of Publication (online):2009/04/29
Year of Completion:2005
Publishing Institution:Universität Potsdam
Release Date:2009/04/29
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
MSC Classification:35-XX PARTIAL DIFFERENTIAL EQUATIONS / 35Jxx Elliptic equations and systems [See also 58J10, 58J20] / 35J70 Degenerate elliptic equations
74-XX MECHANICS OF DEFORMABLE SOLIDS / 74Kxx Thin bodies, structures / 74K20 Plates
Collections:Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis
Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis / 2005
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht
Notes extern:
Die Printversion kann in der Universitätsbibliothek Potsdam eingesehen werden:
Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis, 1997-

Die Online-Fassung wird auf der Homepage des Instituts für Mathematik veröffentlicht.

RVK-KLassifikation: SI 990