On the root functions of general elliptic boundary value problems

  • We consider a boundary value problem for an elliptic differential operator of order 2m in a domain D ⊂ n. The boundary of D is smooth outside a finite number of conical points, and the Lopatinskii condition is fulfilled on the smooth part of δD. The corresponding spaces are weighted Sobolev spaces H(up s,Υ)(D), and this allows one to define ellipticity of weight Υ for the problem. The resolvent of the problem is assumed to possess rays of minimal growth. The main result says that if there are rays of minimal growth with angles between neighbouring rays not exceeding π(Υ + 2m)/n, then the root functions of the problem are complete in L²(D). In the case of second order elliptic equations the results remain true for all domains with Lipschitz boundary.

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS
  • Export XML

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Nikolai Tarkhanov
URN:urn:nbn:de:kobv:517-opus-29822
Series (Serial Number):Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis ((2005) 07a)
Document Type:Preprint
Language:English
Date of Publication (online):2009/04/29
Year of Completion:2005
Publishing Institution:Universität Potsdam
Release Date:2009/04/29
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
MSC Classification:35-XX PARTIAL DIFFERENTIAL EQUATIONS / 35Jxx Elliptic equations and systems [See also 58J10, 58J20] / 35J70 Degenerate elliptic equations
74-XX MECHANICS OF DEFORMABLE SOLIDS / 74Kxx Thin bodies, structures / 74K20 Plates
Collections:Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis
Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis / 2005
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht
Notes extern:
Die Printversion kann in der Universitätsbibliothek Potsdam eingesehen werden:
Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis, 1997-

Die Online-Fassung wird auf der Homepage des Instituts für Mathematik veröffentlicht.

RVK-KLassifikation: SI 990