The resolvent of closed extensions of cone differential operators

  • We study an elliptic differential operator on a manifold with conical singularities, acting as an unbounded operator on a weighted Lp-space. Under suitable conditions we show that the resolvent (λ - A )-¹ exists in a sector of the complex plane and decays like 1/|λ| as |λ| -> ∞. Moreover, we determine the structure of the resolvent with enough precision to guarantee existence and boundedness of imaginary powers of A. As an application we treat the Laplace-Beltrami operator for a metric with striaght conical degeneracy and establish maximal regularity for the Cauchy problem u - Δu = f, u(0) = 0.

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS
  • Export XML

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Elmar Schrohe, Jörg Seiler
URN:urn:nbn:de:kobv:517-opus-26378
Series (Serial Number):Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis ((2002) 19)
Document Type:Preprint
Language:English
Date of Publication (online):2008/11/11
Year of Completion:2002
Publishing Institution:Universität Potsdam
Release Date:2008/11/11
RVK - Regensburg Classification:SI 990
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Collections:Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis
Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis / 2002
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht
Notes extern:
Die Printversion kann in der Universitätsbibliothek Potsdam eingesehen werden:
Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis, 1997-

Die Online-Fassung wird auf der Homepage des Instituts für Mathematik veröffentlicht.