On the inverse of parabolic boundary value problems for large times

  • We construct algebras of Volterra pseudodifferential operators that contain, in particular, the inverses of the most natural classical systems of parabolic boundary value problems of general form. Parabolicity is determined by the invertibility of the principal symbols, and as a result is equivalent to the invertibility of the operators within the calculus. Existence, uniqueness, regularity, and asymptotics of solutions as t → ∞ are consquences of the mapping properties of the operators in exponentially weighted Sobolev spaces and subspaces with asymptotics. An important aspect of this work is that the microlocal and global kernel structure of the inverse operator (solution operator) of a parabolic boundary value problem for large times is clarified. Moreover, our approach naturally yields qualitative pertubation results for the solvability theory of parabolic boundary value problems. To achieve these results, we assign t = ∞ the meaning of a conical point and treat the operators as totally characteristic pseudodifferential boundary vWe construct algebras of Volterra pseudodifferential operators that contain, in particular, the inverses of the most natural classical systems of parabolic boundary value problems of general form. Parabolicity is determined by the invertibility of the principal symbols, and as a result is equivalent to the invertibility of the operators within the calculus. Existence, uniqueness, regularity, and asymptotics of solutions as t → ∞ are consquences of the mapping properties of the operators in exponentially weighted Sobolev spaces and subspaces with asymptotics. An important aspect of this work is that the microlocal and global kernel structure of the inverse operator (solution operator) of a parabolic boundary value problem for large times is clarified. Moreover, our approach naturally yields qualitative pertubation results for the solvability theory of parabolic boundary value problems. To achieve these results, we assign t = ∞ the meaning of a conical point and treat the operators as totally characteristic pseudodifferential boundary value problems.show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS
  • Export XML

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Thomas Krainer
URN:urn:nbn:de:kobv:517-opus-26310
Series (Serial Number):Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis ((2002) 12)
Document Type:Preprint
Language:English
Date of Publication (online):2008/11/11
Year of Completion:2002
Publishing Institution:Universität Potsdam
Release Date:2008/11/11
RVK - Regensburg Classification:SI 990
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Collections:Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis
Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis / 2002
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht
Notes extern:
Die Printversion kann in der Universitätsbibliothek Potsdam eingesehen werden:
Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis, 1997-

Die Online-Fassung wird auf der Homepage des Instituts für Mathematik veröffentlicht.