Pseudodifferential analysis on manifolds with boundary - a comparison of b-calculus and cone algebra

  • We establish a relation between two different approaches to a complete pseudodifferential analysis of totally characteristic or Fuchs type operators on compact manifolds with boundary respectively conical singularities: Melrose's (overblown) b-calculus and Schulze's cone algebra. Though quite different in their definition, we show that these two pseudodifferential calculi basically contain the same operators.

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS
  • Export XML

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Robert Lauter, Jörg Seiler
URN:urn:nbn:de:kobv:517-opus-25611
Series (Serial Number):Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis ((1999) 27)
Document Type:Preprint
Language:English
Date of Publication (online):2008/11/04
Year of Completion:1999
Publishing Institution:Universität Potsdam
Release Date:2008/11/04
RVK - Regensburg Classification:SI 990
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Collections:Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis
Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis / 1999
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht
Notes extern:
Die Printversion kann in der Universitätsbibliothek Potsdam eingesehen werden:
Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis, 1997-

Die Online-Fassung wird auf der Homepage des Instituts für Mathematik veröffentlicht.