On a mathematical model of a bar with variable rectangular cross-section

  • Generalizing an idea of I. Vekua [1] who, in order to construct theory of plates and shells, fields of displacements, strains and stresses of threedimensional theory of linear elasticity expands into the orthogonal Fourier-series by Legendre Polynomials with respect to the variable along thickness, and then leaves only first N + 1, N = 0, 1, ..., terms, in the bar model under consideration all above quantities have been expanded into orthogonal double Fourier-series by Legendre Polynomials with respect to the variables along thickness, and width of the bar, and then first (Nsub(3) + 1)(Nsub(2) + 1), Nsub(3), Nsub(2) = 0, 1,..., terms have been left. This case will be called (Nsub(3), Nsub(2)) approximation. Both in general (Nsub(3), Nsub(2)) and in particular (0,0) (1,0) cases of approximation, the question of wellposedness of initial and boundary value problems, existence and uniqueness of solutions have been investigated. The cases when variable cross-section turns into segments of straight line, and points have been also consideredGeneralizing an idea of I. Vekua [1] who, in order to construct theory of plates and shells, fields of displacements, strains and stresses of threedimensional theory of linear elasticity expands into the orthogonal Fourier-series by Legendre Polynomials with respect to the variable along thickness, and then leaves only first N + 1, N = 0, 1, ..., terms, in the bar model under consideration all above quantities have been expanded into orthogonal double Fourier-series by Legendre Polynomials with respect to the variables along thickness, and width of the bar, and then first (Nsub(3) + 1)(Nsub(2) + 1), Nsub(3), Nsub(2) = 0, 1,..., terms have been left. This case will be called (Nsub(3), Nsub(2)) approximation. Both in general (Nsub(3), Nsub(2)) and in particular (0,0) (1,0) cases of approximation, the question of wellposedness of initial and boundary value problems, existence and uniqueness of solutions have been investigated. The cases when variable cross-section turns into segments of straight line, and points have been also considered. Such bars will be called cusped bars (see also [2]).show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS
  • Export XML

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:George Jaiani
URN:urn:nbn:de:kobv:517-opus-25347
Series (Serial Number):Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis ((1998) 21 )
Document Type:Preprint
Language:English
Date of Publication (online):2008/11/03
Year of Completion:1998
Publishing Institution:Universität Potsdam
Release Date:2008/11/03
Tag:bar with variable cross-section; cusped bar; elastic bar
RVK - Regensburg Classification:SI 990
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Collections:Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis
Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis / 1998
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht
Notes extern:
Die Printversion kann in der Universitätsbibliothek Potsdam eingesehen werden:
Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis, 1997-

Die Online-Fassung wird auf der Homepage des Instituts für Mathematik veröffentlicht.