Optimal factorization of Muckenhoupt weights

  • Peter Jones' theorem on the factorization of Ap weights is sharpened for weights with bounds near 1, allowing the factorization to be performed continuously near the limiting, unweighted case. When 1 < p < infinite and omega is an Ap weight with bound Ap(omega) = 1 + epsilon, it is shown that there exist Asub1 weights u, v such that both the formula omega = uv(1-p) and the estimates A1 (u), A1 (v) = 1 + Omikron (√epsilon) hold. The square root in these estimates is also proven to be the correct asymptotic power as epsilon -> 0.

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS
  • Export XML

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Michael Brian Korkey
URN:urn:nbn:de:kobv:517-opus-25266
Series (Serial Number):Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis ((1998) 15 )
Document Type:Preprint
Language:English
Date of Publication (online):2008/10/30
Year of Completion:1998
Publishing Institution:Universität Potsdam
Release Date:2008/10/30
RVK - Regensburg Classification:SI 990
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Collections:Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis
Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis / 1998
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht
Notes extern:
Die Printversion kann in der Universitätsbibliothek Potsdam eingesehen werden:
Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis, 1997-

Die Online-Fassung wird auf der Homepage des Instituts für Mathematik veröffentlicht.