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Abstract

One of the key challenges in service-oriented systems engineering is the prediction and assurance of
non-functional properties, such as the reliability and the availability of composite interorganizational
services. Such systems are often characterized by a variety of inherent uncertainties, which must be
addressed in the modeling and the analysis approach. The different relevant types of uncertainties can
be categorized into (1) epistemic uncertainties due to incomplete knowledge and (2) randomization as
explicitly used in protocols or as a result of physical processes.

In this report, we study a probabilistic timed model which allows us to quantitatively reason about non-
functional properties for a restricted class of service-oriented real-time systems using formal methods.
To properly motivate the choice for the used approach, we devise a requirements catalogue for the
modeling and the analysis of probabilistic real-time systems with uncertainties and provide evidence
that the uncertainties of type (1) and (2) in the targeted systems have a major impact on the used
models and require distinguished analysis approaches.

The formal model we use in this report are Interval Probabilistic Timed Automata (IPTA). Based on
the outlined requirements, we give evidence that this model provides both enough expressiveness for
a realistic and modular specification of the targeted class of systems, and suitable formal methods for
analyzing properties, such as safety and reliability properties in a quantitative manner. As technical
means for the quantitative analysis, we build on probabilistic model checking, specifically on probabilistic
time-bounded reachability analysis and computation of expected reachability rewards and costs.

To carry out the quantitative analysis using probabilistic model checking, we developed an extension
of the Prism tool for modeling and analyzing IPTA. Our extension of Prism introduces a means
for modeling probabilistic uncertainty in the form of probability intervals, as required for IPTA. For
analyzing IPTA, our Prism extension moreover adds support for probabilistic reachability checking
and computation of expected rewards and costs. We discuss the performance of our extended version
of Prism and compare the interval-based IPTA approach to models with fixed probabilities.

Keywords: service-oriented systems, real-time systems, quantitative analysis, formal verification meth-
ods



 



Zusammenfassung

Eine der wichtigsten Herausforderungen in der Entwicklung von Service-orientierten Systemen ist
die Vorhersage und die Zusicherung von nicht-funktionalen Eigenschaften, wie Ausfallsicherheit und
Verfügbarkeit von zusammengesetzten, interorganisationellen Diensten. Diese Systeme sind oft charak-
terisiert durch eine Vielzahl von inhärenten Unsicherheiten, welche sowohl in der Modellierung als
auch in der Analyse eine Rolle spielen. Die verschiedenen relevanten Arten von Unsicherheiten können
eingeteilt werden in (1) epistemische Unsicherheiten aufgrund von unvollständigem Wissen und (2) Zu-
fall als Mittel in Protokollen oder als Resultat von physikalischen Prozessen.

In diesem Bericht wird ein probabilistisches, Zeit-behaftetes Modell untersucht, welches es ermöglicht
quantitative Aussagen über nicht-funktionale Eigenschaften von einer eingeschränkten Klasse von
Service-orientierten Echtzeitsystemen mittels formaler Methoden zu treffen. Zur Motivation und Einord-
nung wird ein Anforderungskatalog für probabilistische Echtzeitsysteme mit Unsicherheiten erstellt und
gezeigt, dass die Unsicherheiten vom Typ (1) und (2) in den untersuchten Systemen einen Einfluss auf
die Wahl der Modellierungs- und der Analysemethode haben.

Als formales Modell werden Interval Probabilistic Timed Automata (IPTA) benutzt. Basierend auf den
erarbeiteten Anforderungen wird gezeigt, dass dieses Modell sowohl ausreichende Ausdrucksstärke für
eine realistische und modulare Spezifikation als auch geeignete formale Methoden zur Bestimmung
von quantitativen Sicherheits- und Zuverlässlichkeitseigenschaften bietet. Als technisches Mittel für die
quantitative Analyse wird probabilistisches Model Checking, speziell probabilistische Zeit-beschränkte
Erreichbarkeitsanalyse und Bestimmung von Erwartungswerten für Kosten und Vergütungen eingesetzt.

Um die quantitative Analyse mittels probabilistischem Model Checking durchzuführen, wird eine Er-
weiterung des Prism-Werkzeugs zur Modellierung und Analyse von IPTA eingeführt. Die präsentierte
Erweiterung von Prism ermöglicht die Modellierung von probabilistischen Unsicherheiten mittels Wahr-
scheinlichkeitsintervallen, wie sie für IPTA benötigt werden. Zur Verifikation wird probabilistische Er-
reichbarkeitsanalyse und die Berechnung von Erwartungswerten durch das Werkzeug unterstützt. Es
wird die Performanz der Prism-Erweiterung untersucht und der Intervall-basierte IPTA-Ansatz mit
Modellen mit festen Wahrscheinlichkeitswerten verglichen.

Schlagwörter: Service-orientierte Systme, Echtzeitsysteme, Quantitative Analysen, Formale Verifika-
tion
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Chapter 1

Introduction

The prediction and assurance of quantitative properties of composite service-oriented real-time systems
imposes a number of requirements on the used modeling and verification approaches. Particularly chal-
lenging is the fact that these systems are characterized by a variety of uncertainties which are moreover
of different natures. In general, two different relevant categories of uncertainties can be distinguished:
(1) empirical uncertainties due to incomplete knowledge and (2) probabilistic and stochastic uncertain-
ties due to protocol designs or random physical processes. Incorporating these two different kinds of
uncertainties into a modeling and verification approach is highly non-trivial, since the derived quanti-
tative predictions are sensitive to formally incorrect assumptions for uncertain properties. For example,
the assumption of a probabilistic decision making in settings where choices are actually controlled by
a possibly unknown software component inevitable leads to incorrect predictions.

In this report, we study the formal model Interval Probabilistic Timed Automata (IPTA) which we argue
is suitable for describing service-oriented real-time systems with uncertainties. In order to motivate and
justify our modeling choice, we devise a requirements catalogue for the modeling and verification of the
targeted class of systems. We particularly characterize a number of uncertainty dimensions and show
how they are formally represented in IPTA. The mathematical concepts for describing these phenomena
are (a) nondeterminism, (b) probabilistic modeling, and (c) interval-based specification of probabilities,
which can be seen as a combination of nondeterministic and probabilistic behavior.

Regarding the quantitative analysis, we mainly consider safety and reliability properties in this report.
An example of a quantitiative safety properties is ‘the probability that the system reaches a critical
error state is less than 1%’. A typical reliability property is the assurance of a bounded response time of
a service with a high probability, such as ‘the response time of a service is less than 200ms for at least
95% of the requests’. A major challenge for the verification of such properties is that they often make
assertions about the functional behavior, real-time constraints as well as probabilities. In the course of
this report, we show that such properties can be formally specified and analyzed using IPTA.

Applicability of the verification approach was one of the steering requirements for the work in this
report. Therefore, we developed a tool for automatically carrying out the quantitative analysis of IPTA.
Specifically, we have developed an extension of the Prism tool for model checking IPTA in the context
of this report, which we present in detail here and evaluate using benchmarks and a comparison of
IPTA with models that allow only the use of fixed probabilities.
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8 1 Introduction

1.1 Contributions

This report builds on results presented in [21]. In the following, we give an overview of the contributions
of this report.

We present a catalogue of 17 requirements for the modeling and the analysis of probabilistic real-time
systems with uncertainties. The inherent uncertainties due to incomplete knowledge and probabilistic
phenomena play a key role and are therefore discussed in more detail.

We give a comprehensive formal presentation of Interval Probabilistic Timed Automata (IPTA) and
provide evidence that this model is expressive enough for a realistic specification of the targeted class
of systems. In particular, we show how service-oriented real-time systems can be formally specified in
a modular way using IPTA.

Regarding quantitative analysis, we target safety and reliability properties in settings with time-bounded
contracts between participants in a service-oriented system. We motivate such settings by the existence
of service-level agreements (SLAs) which limit the time window in which properties are guaranteed.
As technical means for the quantitative analysis, we build on probabilistic time-bounded reachability
checking and computation of expected reachability reward and costs.

To carry out the quantitative analysis using probabilistic model checking, we developed an extension
of the Prism tool for modeling and analyzing IPTA. Our extension of Prism introduces a syntax
for modeling probabilistic uncertainty in the form of probability intervals, as required for IPTA. For
analyzing IPTA, our Prism extension moreover adds support for probabilistic reachability checking
and computation of expected rewards and costs. We discuss the performance of our tool and compare
the interval-based IPTA approach to models with fixed probabilities.

1.2 Organization

The rest of this report is organized as follows. In Chapter 2, we device a requirements catalogue for
modeling and analyzing service-oriented real-time systems with uncertainties. In Chapter 3, we present
our formal modeling approach for probabilistic real-time systems using Interval Probabilistic Timed
Automata. In Chapter 4, we review the requirements presented in Chapter 2 and give evidence that
IPTA provide a suitable modeling approach for the targeted settings. In Chapter 5, we present the
formal means for a quantitative analysis of IPTA. In Chapter 6, we present our tool support based on
an extension of Prism and evaluate our approach. Chapter 7 contains related work. In Chapter 8, we
present our conclusions.



Chapter 2

Requirements

Service-oriented systems engineering requires means for describing and reasoning about both functional
and non-functional behavioral aspects. The systems to be modeled are often characterized by a variety
of inherent uncertainties, which must be addressed in the modeling and the verification approach. The
different types of uncertainties can be categorized in:

(1) epistemic uncertainties due to incomplete knowledge,

(2) randomization as used in certain protocols or as a result of physical processes,

(3) linguistic ambiguities due to imprecise or informal descriptions.

In this chapter, we review requirements for a quantitative modeling and verification approach for service-
oriented real-time systems with uncertainties. In particular, we give evidence that nondeterminism
and probabilistic / stochastic models provide a formal and technical means for a proper handling of
uncertainties according to (1) and (2), respectively. Since our focus lies on formal modeling, the impact
of linguistic uncertainties in (3) is not relevant and therefore not covered in this report.

2.1 Modeling with Uncertainties

2.1.1 Basic Behavior Modeling with Uncertainties

Service-oriented computing (SOC) and model-driven engineering (MDE) have evolved to two of the
most influencing paradigms in the IT-world in the last decade. On the one hand, service-oriented
computing facilitates the development of interoperable, interorganizational, distributed software com-
ponents. On the other, model-driven engineering provides a methodology for defining systems using
high-level models and to automatically derive implementations through model transformation and code
generation.

An application of the model-driven paradigm to SOC can be found in the Service oriented architecture
Modeling Language (SoaML) [32]. SoaML is an open source specification project initiated by the
OMG and consist in its core of a UML profile and a meta-model for specifying service-oriented
systems.

For the definition of a system as a composition of a set of (primitive or composite) services, SoaML
provides among other concepts the notions of a service interface and a service contract. Service inter-

9



10 2 Requirements

Figure 2.1: A service contract specified in SoaML notation [32].

Figure 2.2: A protocol for a service contract defined using a UML sequence diagram [32].

faces describe the publicly available communication ports and the supported message types of a service.
Service contracts are used to specify the terms and conditions that all participants of the contract agree
on. In particular, service contracts hold information about the used service interfaces and specify the
choreography between the participants, e.g. in terms of protocols.

Figure 2.1 depicts a SoaML diagram notation of an example service contract. This contract consists
of two services of type 〈〈Orderer〉〉 and 〈〈OrderProcessor〉〉. The details of these services, in particular
the communication ports and message types, are omitted in this notation. However, to be useful for a
verification of functional properties, a behavioral model describing the interaction between these two
services is required.

Since SoaML is based on the UML, various diagram types can be used for modeling the choreography
in service contracts. For instance, Figure 2.2 describes the allowed interactions using a UML sequence
diagram. In this simple example, the orderer may send an order using the method fulfillPurchaseOrder()
on which the order processor either replies affirmatively using the message shipmentScheduled() or
which is signaled as failed using the message orderRejected(). The decision making within the order
processor can be modeled explicitly using a guard or another diagram or can be assumed as non-
deterministic. Nondeterminism therefore allows to express uncertainty, which, however, is of a purely
qualitative nature.

Note again that various behavioral models can be used to specify service contracts, e.g. UML activity
diagrams or state machines. However, to be useful for verification, formal models that describe the
complete behavior and not only a partial view of the system are required (e.g. finite-state automata).

Based on the sketched concepts of the SoaML, we now summarize the requirements of our modeling
approach with respect to the functional and architectural properties in service-oriented systems.
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Basic Requirements

(R1) Specification of stateful, behavioral service interfaces

(R2) Synchronous communication via a set of publicly accessible ports

(R3) Qualitative uncertainty expressed using nondeterminstic choice

(R4) Modular design and parallel composition

(R5) No enforced architectural style

(R6) Formal model with support for verification

Note that the behavior of service-oriented systems is additionally characterized by structure dynamics,
i.e. by dynamically changing architectures due to rebinding of service endpoints or reconfiguration at
run-time. These characteristics are not considered in this report and require behavioral models based
on local rewriting of structures rather than finite-state automata models. Furthermore, due to the scale
of service-oriented systems and the late binding and replacement of service links at runtime, a mono-
lithic approach to modeling and analysis cannot work. Instead, a compositional approach employing
abstraction in form of agreed upon service contracts is required. We leave this requirement also as
future work.

2.1.2 Real-Time Modeling with Uncertainties

Real-time behavior plays a key role in embedded systems, e.g. missing a deadline can lead to a total
system failure. Therefore, it is highly important that modeling approches for such systems can faithfully
represent real-time behavior, e.g. using strict timing constraints, such as deadlines.

Besides this classical notion of hard real-time behavior, in service-oriented systems the missing of
deadlines often only degrades the system’s Quality of Service (QoS), thus leading to soft real-time
requirements. Nevertheless, the non-functional properties and particularly the QoS properties can be as
important as functional properties for determining the value of a service in the market. The assurance
of QoS properties such as reliability and performance in service contracts is particularly challenging
because of the inherent interdependencies between the participants of a service contract. Therefore,
to be able to provide assurances of a service-oriented system, it is crucial to incorporate also QoS
properties into service contracts in the form of assume–guarantee statements.

A large number of QoS properties that are relevant in real-world applications are related to time. For
instance, the throughput of a communication channel is a measure for its performance and is defined
as the number of delivered messages per time unit. In service-oriented settings, reliability also plays
an important role. For example, the response time of a server is an important measure since clients
may switch to another service provider if they do not receive a response within a reasonable amount
of time. In such scenarios, timeout values of clients can be seen as deadlines which should be met by a
service implementation in order to be useful. Response time guarantees therefore constitute a standard
example for real-time behavior in service-oriented systems.

To provide an example for the relevance of response time guarantees in service-oriented systems, we
consider an industry standard for the specification of QoS properties in service contracts, also referred to
as Service Level Agreements (SLAs). A specific notation for SLAs is the XML-based Web Service Level
Agreement (WSLA) [17, 7] language, which provides a syntax to specify QoS metrics and guarantees
for web services. Listing 2.1 contains an adaptation of a WSLA specification presented in [17] in which
a response time metric is defined. This metric measures the percentage of server responses which are
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Listing 2.1: A real-time metric in WSLA.

1 <Metric name="NormalResponsePercentage" type="float" unit="Percentage">

2 <Source>ServiceProvider</Source>

3 <Function resultType="float" xsi:type="wsla:PercentageLessThanThreshold">

4 <Metric>ResponseTime</Metric>

5 <Value>

6 <LongScalar>20</LongScalar> <!-- Normal responses should take less than 20ms -->

7 </Value>

8 </Function>

9 </Metric>

delivered within a deadline of 20ms. Thus, the ability of specifying and verifying real-time behavior
plays an important role for service-oriented systems engineering.

Uncertainty in the form of nondeterminism plays also an important role in real-time modeling. Specifi-
cally, uncertainty can be expressed by specifying time windows in which the triggering of transitions is
based again on nondeterministic choice.

Real-Time Modeling Requirements

(R7) Observable timed behavior: execution steps occur at specific time points in a dense time domain

(R8) Measuring of durations

(R9) Specification of real-time behavior using time-dependent guards on transitions, e.g. minimal
waiting times or hard deadlines

(R10) Nondeterminism for choosing a specific time point within an allowed time interval

2.1.3 Probabilistic Modeling with Uncertainties

For a realistic modeling of service-oriented real-time systems, incorporating uncertainty using prob-
abilistic behavior is necessary. For example, service providers usually guarantee an upper limit for a
response time up to a small percentage of requests for which it is allowed that the deadline is missed.
As a specific example, consider the WSLA-excerpt in Listing 2.2 which uses the response time metric
in Listing 2.1 to define a response time guarantee of at least 95% of responses that are delivered
within the deadline of 20ms. Thus, probabilities can be used for the specification of soft deadlines, i.e.
deadlines which are allowed to be missed for a given percentage of executions.

The compliance of a service implementation with an SLA such as the response time guarantee in
Listing 2.2 is usually checked either at runtime by means of monitoring, or at design time using simu-
lations or statistical model checking. The quantitative nature of SLAs and particularly the probabilistic
features provide more flexibility for the specification of non-functional properties while still allowing to
formally analyze them. Similarly to response time guarantees, probabilistic models also facilitate the
specification of unreliable media, such as lossy communication channels.

Probabilistic real-time behavior can be moreover found in systems that make explicit use of random-
ization to achieve a functional goal. For instance, in communication and multimedia protocols such
as the IEEE 1394 FireWire Root Contention Protocol [13], randomization in the form of electronic
coin tossing is used to elect a root node among a number of interconnected nodes with initially equal
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Listing 2.2: A probabilistic response time guarantee in WSLA.

1 <Obligations>

2 <ServiceLevelObjective name="ResponseTimeGuarantee">

3 <Obliged>ServiceProvider</Obliged>

4 <Expression>

5 <Predicate xsi:type="GreaterEqual">

6 <SLAParameter>NormalResponsePercentage</SLAParameter>

7 <Value>0.95</Value> <!-- At least 95% normal responses -->

8 </Predicate>

9 </Expression>

10 </ServiceLevelObjective>

11 <Obligations>

status (also referred to as a randomized leader election protocol). Hence, probabilistic behavior can be
relevant for both non-functional and functional properties.

We emphasize here that probabilistic behavior is not a replacement for nondeterminism. The assumption
that a nondeterministic choice is governed by a probability mechanism is valid only in special cases and
therefore cannot be justified in general. Informally, probabilistic choices produce predictable long-run or
average behavior, whereas nondeterministic choices result in completely unpredictable behavior. Thus,
it is highly important to keep these two concepts completely separate (see, e.g., [36]).

Regarding uncertainty, it is often desirable to allow for a specification of probability intervals, as opposed
to fixed probabilities. For instance, probability intervals are commonly required for the specification of
SLAs, such as the response time guarantee in Listing 2.2. Here a probability of at least 95% is required
which is formally represented by the probability interval [0.95, 1].

Probabilistic Requirements

(R11) Support for probabilistic choices in addition to nondeterministic choices

(R12) Probabilistic uncertainty using probability intervals

(R13) Combination of uncertain probabilistic and uncertain real-time behavior: uncertain probabilistic
real-time behavior

2.1.4 Stochastic Modeling

Probabilistic real-time behavior as described in the previous section is limited to discrete probabilistic
branching. Consequently, stochastic behavior, i.e. behavior where the choice for a point in time is
steered by a continuous-time probability distribution is not supported. Such stochastic behavior can
be modeled, e.g., using continuous-time Markov chains and is often used to describe random physical
processes, such as hardware failures, and inter-arrival times of customers in a shop. Stochastic behavior
is particularly useful to model events based on the expected time of their occurrence. However, note that
hard real-time behavior as demanded in requirements (R9)–(R10) cannot be expressed using probability
distributions with an unbounded time domain, such as exponential distributions.

For the targeted class of systems and settings in this report, stochastic behavior is less important than
probabilistic real-time behavior. On the one hand, the typical interaction time of clients with services
(e.g. in a session) is comparatively short which means that probabilities for hardware failures in such
an interaction do not change in practice. Since we focus on on-request probabilistic behavior, modeling
uncertain failure behavior can be realized using discrete probabilistic choices, as demanded in (R11).
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On the other hand, the modeling of inter-arrival times of requests at a server, which is a standard
application of stochastic processes, is primarily important for reasoning about long-run characteristics
such as average availability and performance. As we argue in Section 2.2, our focus for the quantitative
analysis of service-oriented real-time systems lies on on-request behavioral properties, such as safety and
reliability properties. For these settings and properties, probabilistic real-time behavior as demanded in
requirement (R13) provides sufficient expressiveness and therefore we do not have to rely on stochastic
behavior modeling.

2.2 Quantitative Analysis

In this section, we summarize the requirements for a quantitative analysis for models featuring the
modeling requirements (R1)–(R13) in the previous section.

2.2.1 Probabilistic Time-Bounded Reachability

The classical version of the reachability problem in model checking is to determine whether a set of
target states, e.g. given by a logical state formula, can be reached from the initial state or not. Since we
target a modeling language with quantitative aspects, specifically time and probabilities, it is reasonable
to reformulate the reachability problem based on these quantitative properties.

Time-Bounded Reachability extends the classical reachability problem by requiring to reach the set
of target state within a given amount of time. An example of a time-bounded reachability problem is
the requirement that in a given interaction between a client and a server, the server sends a response
within a given number of time units after the client has sent a request.

Probabilistic Reachability generalizes the classical reachability problem by demanding to compute a
probability for reaching the target states, as opposed to simply ‘yes’ or ‘no’ answer. If the model also
supports nondeterminism, a minimal and maximal probability should be computed. An example for a
probabilistic reachability problem is to determine the (minimal and maximal) probability that a client
receives a response from a server after the client has sent a request.

Probabilistic Time-Bounded Reachability is an orthogonal combination of the time-bounded and
probabilistic reachability problems. An example of probabilistic time-bounded reachability is to deter-
mine the (minimal and maximal) probability that a client receives a response from a server within a
given number of time units after the client has sent a request.

For service-oriented systems, probabilistic time-bounded reachability is a means that enables service
providers to estimate the ‘goodness’ of their services by quantifying their non-functional properties. A
quantitative analysis for probabilistic time-bounded reachability problems can moreover be a starting
point for the specification of service level agreements.

In the context of service-oriented real-time systems, relevant quantitative properties that can be formal-
ized using probabilistic reachability properties include safety and reliability of systems. Safety properties
usually assert that the probability for reaching a failure state is sufficiently small. Note that such a
safety property can be also defined in the context of an SLA by specifying an upper bound for the
probability of a failure event. Additionally, if the failure can be caused by a (stochastic) malfunctioning
of a hardware component, it is often desirable to fix a bounded mission time in which the failure state
is reached. Thus, the combination of time-bounded and probabilistic reachability is important here. As
described above, another common example for probabilistic real-time properties are bounded response
time guarantees, such as the service level objective in the WSLA excerpt in Listing 2.2. Note that
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estimating probabilities for slow responses and thereby effectively checking soft deadlines provides in
practice more useful information for the reliability of (real-time) services than average response times.

Probabilistic Reachability Requirements

(R14) Logic for the formal specification of probabilistic time-bounded reachability properties

(R15) Availability of model checking algorithms and verification tools for (R14)

2.2.2 Expected Reachability Costs and Rewards

In addition to probabilistic time-bounded reachability problems, it is often useful to calculate the
accumulated costs or rewards until a set of target states is reached. A typical expected value of interest
is the amount of time that has elapsed until a target state is reached. Depending on the concrete
system, the elapsed time may be considered as a cost or as a reward. For example, it is common to try
to minimize the response time of a server, whereas the expected time until a failure occurs should be
maximized. Note also that in real-time systems the goal is usually to compute absolute time values,
whereas in other applications time is measured as a discrete number of steps, e.g. the number of
communicated messages or the number of rounds until a goal state is reached.

Besides expected values related to time, a wide range of other quantitative measures can be derived
using expected reachability analysis. In particular, expected costs include the utilization or energy
consumption of (hardware) components, and the charges for using a third-party service. Expected
rewards on the other hand include the collected fees for a provided service or collected advertising
revenue.

Note that in models supporting nondeterminism, is is in general not possible compute exact values for
expected costs and rewards, but only minimal and maximal values.

Expected Reachability Costs and Rewards Requirements

(R16) Logic for the formal specification of properties referring to expected costs and rewards, in par-
ticular for expected durations

(R17) Availability of model checking algorithms and verification tools for (R16)

2.3 Conclusions

In this chapter, we have identified 16 requirements for the modeling and analysis of probabilistic
real-time systems with uncertainties. For the three main modeling dimensions, i.e., (1) the functional
behavior, (2) the real-time behavior, and (3) the probabilistic behavior, we have shown that inherent
nondeterminism which arises from incomplete knowledge leads to uncertainties. We have argued that
for a realistic modeling it is crucial to incorporate these uncertainties. Consequently, the quantitative
analysis methods must be also capable of dealing with the uncertainties in the model.



 



Chapter 3

Foundations: Interval Probabilistic
Timed Automata

Automata are a standard approach for formally modeling and analyzing system behavior. As a relevant
automata model in the context of this report, Probabilistic Timed Automata (PTA) [26] constitute
an expressive model for real-time behavior with both probabilistic and nondeterministic parts. Interval
Probabilistic Timed Automata (IPTA) [38] have been recently introduced as an extension of PTA and
additionally allow to explicitly model an uncertainty for probabilities. In IPTA, probabilities for events
are not given as fixed values, but as intervals. An important aspect of this model is that the actual
probability for an event may change over time. In this chapter we give a detailed formal presentation
of the syntax and semantics of the IPTA model.

3.1 Preliminaries

We now recall some preliminary notions including the concept of a discrete probability distribution and
standard definitions from the theory of Timed Automata [2].

3.1.1 Discrete Probability Distributions

For a finite set S, Dist(S) is the set of probability distributions over S, i.e., the set of functions
µ : S → [0, 1], such that

∑
s∈S µ(s) = 1. The point distribution µ1

s is the unique distribution on S
with µ(s) = 1.

3.1.2 Clocks, Valuations and Constraints

Let R+ denote the set of non-negative reals. Let X = {x1, . . . , xn} be a set of variables in R+, called
clocks. An X -valuation is a map v : X → R+. For a subset X ⊆ X , v[X := 0] denotes the valuation
v′ with v′(x) = 0 if x ∈ X and v′(x) = v(x) if x /∈ X. For d ∈ R+, v + d is the valuation v′′ with
v′′(x) = v(x) + d for all x ∈ X . A clock constraint ζ on X is an expression of the form x ./ c or
x− y ./ c such that x, y ∈ X , c ∈ R+ and ./ ∈ {≤, <,>,≥}, or a conjunction of clock constraints. A
clock valuation v satisfies ζ, written as v . ζ if and only ζ evaluates to true when all clocks x ∈ X are
substituted with their clock value v(x). Let CC (X ) denote the set of all clock constraints over X .

17
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3.2 Syntax

In this section, we present the syntax of interval probabilistic timed automata and introduce a means
to compose them. Our formalization is based on a syntactical notion of probability intervals.

Definition 3.1 (Interval distribution)
Let S be a finite set. A probability interval distribution λ on S is a pair of functions λ = 〈λ`, λu〉 with

λ`, λu : S → [0, 1], such that λ`(s) ≤ λu(s) for all s ∈ S and furthermore:∑
s∈S

λ`(s) ≤ 1 ≤
∑
s∈S

λu(s) (3.1)

The set of probability interval distributions over S is denoted by IntDist(S). The support of λ is
defined as the set Supp(λ) = {s ∈ S | λu(s) > 0}. Let λ1s be the unique interval distribution that
assigns 〈1, 1〉 to s, and 〈0, 0〉 to all t ∈ S, t 6= s.

A probability interval distribution λ is a symbolic representation of the non-empty and in most cases
infinite set of probability distributions that respect all lower and upper interval bounds, formally given
by the set: { µ ∈ Dist(S) | ∀s ∈ S : `(s) ≤ µ(s) ≤ u(s) }. If clear from the context, we may abuse
notation and identify λ with this set. Note that interval distributions are equivalent to the notion of
closed interval specifications in [14]. However, the explicit definition using lower and upper interval
bounds in our model enables a syntactical treatment of interval distributions such as the minimality
notion defined in the following.

Definition 3.2 (Minimal interval distribution)
An interval distribution λ on S is called minimal if for all s ∈ S the following conditions hold:

(1) λu(s) +
∑
t∈S,t 6=s λ

`(t) ≤ 1

(2) λ`(s) +
∑
t∈S,t 6=s λ

u(t) ≥ 1

Minimal interval distributions have the property that the bounds of all intervals can be reached (but
not necessarily at the same time). Even though minimality is formally not required in most of the
properties that we consider, it is often a desirable requirement since it can serve as a sanity check for a
specification. For instance, consider a specification for a communication protocol in which a message is
send to either component A or B. Assume that the choice of the receiver is of probabilistic nature and
that for both A and B the probability is given by the interval [0.4, 0.5]. Syntactically, this forms a correct
interval distribution according to Definition 3.1. However, it is obvious that the lower bound of 0.4 can
never be reached and that in fact, the probability for choosing A or B is exactly 0.5, respectively. The
minimality condition in Definition 3.2 can be used to circumvent such design mistakes. Note also that
it is always possible to derive a minimal interval distribution from a non-minimal one by pruning the
interval bounds, e.g., by setting λu(s) := 1−

∑
t∈S,t 6=s λ

`(t) if condition (2) is violated for the state s.
In the following we define our central notion of interval probabilistic timed automata (IPTA) [38].

Definition 3.3 (Interval probabilistic timed automaton)
An interval probabilistic timed automaton I = (L,L0,A,X , inv , prob,L) consists of:

• a finite set of locations L with L0 ⊆ L the set of initial locations,

• a finite set of action A,

• a finite set of clocks X ,

• a clock invariant assignment function inv : L→ CC (X ),
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• an interval probabilistic edge relation prob ⊆ L× CC (X )× IntDist(2X × L), and

• a labeling function L : L→ 2AP assigning atomic propositions to locations.

Example 3.4 (Interval probabilistic timed automaton)
Figure 3.1 depicts a graphical visualization of an IPTA which models a simple server. The set of
locations is given by L = {l1, l2, l3} with L0 = {l1} the only initial location. We assume that the
atomic propositions are the location names. The set of actions is given by A = {request , response}
and there is a single clock X = {x}. Nondeterministic choices are indicated by multiple outgoing
edges from a location (this example does not contain any nondeterminism). Probabilistic choices are
visualized using a forking of edges in filled circles. For example, the edge via the action request targets
l2 with a probability in the interval [0.95, 1], and l3 with a probability in the interval [0, 0.05]. Note
also that the request-edge resets the clock x. The location l2 has a clock invariant x ≤ 20 and the
response-edge from l2 to l1 has a guard x ≤ 20. T is an integer constant greater than 20 and denotes
a timeout. Intuitively, the IPTA models a simple server which answers to requests with a probability of
0.95 or higher within 20 time units.

l1

l2

x≤20

l3

x≤T

request

x :=0

[0.95, 1]

[0, 0.05]

x≤20
response

response
x>20

Figure 3.1: IPTA model of a simple server.

3.2.1 Costs and Rewards

In order to reason about expected costs (or rewards), IPTA can be equipped with a cost function which
defines costs or rewards that accumulate as time passes. Formally, cost functions for IPTA are defined
as follows (cf. [24]).

Definition 3.5 (Cost function)
Given an IPTA I = (L,L0,A,X , inv , prob,L). A cost function for I is a pair (c, r) consisting of:

• c : L×A → R+ a function assigning the cost in each location in L of executing each action in A,

• r ∈ R+ the rate at which the costs are accumulated as time passes (independent of the location).

Passed time is a special case of a cost or reward and can be formally defined by a cost function (c, 1)
where c assigns 0 to all location-action pairs. Also note that IPTA together with a cost function form
a generalization of uniformly priced timed automata [3].
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3.3 Semantics

In this section we give semantics of interval probabilistic timed automata in terms of two semantical
models. On the one hand, semantics of IPTA can be given in terms of Timed Interval Probabilistic
Systems (TIPS) [38], which are an extension of Interval Markov Decision Processes [31]. On the other,
IPTA can be reduced to Probabilistic Timed Automata (PTA) [26], which we interpret here as IPTA
with point intervals. Both semantics yield naive, i.e., infinite models. However, symbolic representations
enable model checking and refinement analysis of IPTA as we will show later.

3.3.1 Timed Interval Probabilistic Systems

Definition 3.6 (Timed interval probabilistic system)
A timed interval probabilistic system T = (S, S0,A,Steps,L) consists of:

• a set of states S with S0 ⊆ S the set of initial states,

• a set of actions A, such that A ∩ R+ = ∅,

• a probability transition function Steps : S → 2(A∪R+)×IntDist(S), such that, if (a, λ) ∈ Steps(s)
and a ∈ R+, then λ is a point interval distribution, and

• a labeling function L : S → 2AP assigning atomic propositions to states.

The operational semantics of a timed interval probabilistic system can be understood as follows. A

probabilistic transition, written as s
a,λ,µ−−−→ s′, is made from a state s ∈ S by:

(1) nondeterministically selecting an action/duration and interval distribution pair (a, λ) ∈ Steps(s),

(2) nondeterministically choosing a probability distribution µ ∈ λ,

(3) making a probabilistic choice of target state s′ according to µ.

A path of a timed interval probabilistic system is a non-empty finite or infinite sequence of probabilistic
transitions:

ω = s0
a0,λ0,µ0−−−−−→ s1

a1,λ1,µ1−−−−−→ s2
a2,λ2,µ2−−−−−→ . . .

where for all i ∈ N it holds that si ∈ S, (ai, λi) ∈ Steps(si), µi ∈ λi and µi(si) > 0. We denote with
ω(i) the (i + 1)th state of ω, and with last(ω) the last state of ω, if it is finite. Moreover, we define
step(ω, i) = ai (the action or duration associated with the (i+ 1)th transition.

An adversary is a particular resolution of the nondeterminism in a timed interval probabilistic system
T . Formally, an adversary A for T is a function mapping every finite path ω of T to a triple (a, λ, µ),
such that (a, λ) ∈ Steps(last(ω)) and µ ∈ λ. We restrict ourselves to time-divergent adversaries, i.e.,
we require that time has to advance beyond any given time bound. This is a common restriction in
real-time models to rule out unrealizable behavior. The set of all time-divergent adversaries of T is
denoted by AdvT .

For any s ∈ S and adversary A ∈ AdvT , we define PathsAfinite(s) and PathsAfull(s) as the sets of all
finite and infinite paths starting in s that correspond to A, respectively. Under a given adversary, the
behavior of a timed interval probabilistic system is purely probabilistic. Formally, an adversary for a
timed interval probabilistic system induces an infinite Discrete-Time Markov Chain (DTMC) and thus
a probability measure ProbAs on the set of paths PathsAfull(s) (cf. [18] for details).

In the following, we define the semantics of an interval probabilistic timed automaton in terms of a
timed interval probabilistic system.
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Definition 3.7 (TIPS semantics)
Let I = (L,L0,A,X , inv , prob,L) be an interval probabilistic timed automaton. The TIPS semantics
of I is the timed interval probabilistic system TI = (S, S0,A,Steps,L′) where:

• S ⊆ L× RX+ , such that 〈l, v〉 ∈ S if and only if v . inv(l),

• S0 = { 〈l, v[X := 0]〉 | l ∈ L0 },

• 〈a, λ〉 ∈ Steps(〈l, v〉) if and only if one of the following conditions holds:

– Time transitions: a ∈ R+, λ = λ1〈l,v+t〉 and v + t′ . inv(l) for all 0 ≤ t′ ≤ t

– Discrete transitions: a ∈ A and there exists 〈l, ζ, λ̂〉 ∈ prob such that v . ζ and for any
〈l′, v′〉 ∈ S it holds that:

∗ λ`(l′, v′) =
∑
X⊆X∧v′=v[X:=0] λ̂

`(X, l′)

∗ λu(l′, v′) =
∑
X⊆X∧v′=v[X:=0] λ̂

u(X, l′),

• L′(〈l, v〉) = L(l) for all 〈l, v〉 ∈ S.

3.3.2 Probabilistic Timed Automata

Alternatively to the TIPS semantics presented above, it is also possible to flatten an interval probabilistic
timed automaton to a probabilistic timed automaton (PTA) [26]. In this approach, the choice for a
particular probability distribution in an interval distribution is naturally encoded using nondeterminism,
which is also available in PTA.

In our approach, we view probabilistic timed automata as special interval probabilistic timed automata
in which all intervals are points.

Definition 3.8 (Probabilistic timed automaton)
An interval probabilistic timed automaton P = (L,L0,A,X , inv , prob,L) is also called probabilistic
timed automaton if and only if for all 〈l, ζ, a, λ〉 ∈ prob it holds that λ contains only point intervals,
i.e., λ`(X, l) = λu(X, l) for all X ⊆ X and l ∈ L.

Definition 3.9 (PTA semantics)
Let I = (L,L0,A,X , inv , prob,L) be an interval probabilistic timed automaton. The PTA semantics
of I is the probabilistic timed automaton PI = (L,L0,A,X , inv , prob′,L) such that:

〈l, ζ, a, λ〉 ∈ prob ∧ µ ∈ λ ⇔ 〈l, ζ, a, µ〉 ∈ prob′

Thus, the PTA semantics of an IPTA simply replaces interval probabilistic choices by nondeterministic
choices over the infinite set of probability distributions that respect the interval bounds.

PTA∗-Encoding

The semantics of an interval distribution, i.e., the set of all probability distributions that respect the
bounds of all its intervals, is in general infinite. However, it is possible to encode any finite IPTA into
an equivalent finite PTA. This encoding, which we also refer to as PTA∗, works as follows:

• The actions, clocks and locations of the PTA are the same as in the IPTA.

• For every transition s
a−→λ in the IPTA we add all corners of λ interpreted as a polytope. Formally,

for every ordering of the set Supp(λ) we add the transition s
a−→µmax

λ to the PTA where µmax
λ is

the probability distribution as defined in Section 5.2.2.
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Figure 3.2: PTA∗-encoding of a simple server IPTA.

Example 3.10 (PTA∗-encoding)
Figure 3.2 depicts an example PTA∗ encoding. The interval probabilistic edge via the intervals [0.95, 1]
and [0, 0.05] is mapped to two probabilistic edges via 0.95 and 0.05, and 1 and 0, respectively.

Note that the PTA∗-encoding is similar to the MDP reduction of IMDPs in [31]. With respect to
IPTA, we show the correctness of the encoding for probabilistic reachability properties in Lemma 5.1.
However, note that the number of generated transitions in the PTA is exponential in the size of the
support of the transition. Thus, there is a significant blow-up in the size of the model. We give an
evaluation of the run-times of the different model checking approaches in Section 6.2.2.

Parallel Composition

Modular specification of systems is an important modeling feature since it offers the possibility to define
complex systems by composing a set of more basic components. For probabilistic timed automata, a
parallel composition operator (cf. [24]) facilitates modular specifications. In the following, we recall the
definition of the parallel operator for PTA.

Definition 3.11 (Parallel composition [24])
Let Pi = (Li, L

0
i ,Ai,Xi, inv i, probi,Li) for i ∈ {1, 2} be two probabilistic timed automata. Their

parallel composition is defined as:

P1 ‖ P2 = (L1 × L2, L
0
1 × L0

2,A1 ∪ A2,X1 ∪ X2, inv , prob,L)

such that

• L(〈l1, l2〉) = L1(l1) ∪ L2(l2) for all l1 ∈ L1, l2 ∈ L2,

• inv(〈l1, l2〉) = inv1(l1) ∧ inv2(l2) for all l1 ∈ L1, l2 ∈ L2,

• 〈〈l1, l2〉, ζ, a, λ〉 ∈ prob if and only if one of the following conditions hold:

(1) a ∈ A1 \ A2 and there exists 〈l1, ζ, a, λ1〉 ∈ prob1 such that λ = λ1 ⊗ λ1〈∅,l2〉
(2) a ∈ A2 \ A1 and there exists 〈l2, ζ, a, λ2〉 ∈ prob2 such that λ = λ1〈∅,l1〉 ⊗ λ2
(3) a ∈ A1 ∩A2 and there exists 〈li, ζi, a, λi〉 ∈ probi such that λ = λ1 ⊗ λ2 and ζ = ζ1 ∧ ζ2

where for any li ∈ Li, Xi ⊆ Xi:

λ1 ⊗ λ2(X1 ∪X2, 〈l1, l2〉)
def
= λ1(X1, l1) · λ2(X2, l2)
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The parallel composition of probabilistic timed automata synchronizes transitions via shared actions,
and interleaves all other actions. In the rest of this paper, we use parallel composition also for IPTA
and define it by first applying the PTA∗-encoding to both IPTA, and then applying the parallel operator
for PTA as in Def. 3.11.

3.4 Conclusions

Interval probabilistic time automata are an expressive model for probabilistic real-time behavior with
uncertainties. In this chapter, we have recalled the formal definitions for IPTA without discussing their
features with respect to the requirements given in Chapter 2. A detailed discussion on this topic is
given in Chapter 4.



 



Chapter 4

Modeling with Uncertainties

There exists a large variety of informal, semi-formal and formal models that can be used to describe
service-oriented systems. In this chapter, we focus on formal, automata-based models which extend the
basic modeling techniques by probabilistic real-time aspects. We present here their modeling concepts
and describe how they can be exploited for service-oriented real-time systems modeling and discuss to
what extent they cover the requirements in Chapter 2.

4.1 Basic Behavior Modeling with Uncertainties

Basic formal behavior modeling of service-oriented systems can be realized using labeled transitions
systems. Labeled transition systems are particularly well-suited for modeling the control-flow, e.g., of
a service and the communication with its environment. Multiple labeled transition systems can be
composed using a binary parallel operator, often written as ‘‖’. This parallel operator combines the
states of the two labeled transition systems pair-wise and allows to synchronize transitions with the
same labels and to interleave transitions with unshared labels. We present a formal definition of a
parallel operator for a more advanced automata model in Section 3.3.2.

Example 4.1 (Basic behavior modeling with uncertainties)
Figure 4.1 depicts a basic behavior model of a composite service-oriented system consisting of a client,
a server and a database back-end. The client model describes a scenario in which the client sends
an unbounded number of requests to the server and waits for responses. The client model includes
uncertainty expressed using nondeterminism, since the number of requests (or if it terminates at all) is
not specified.

The server reads a request and either immediately sends a response, or first queries a database and then
sends the response. The database accepts queries, processes them and returns the result. Note that
for simplicity, we model the communication between the components using mere synchronizations and
in particular without modeling the direction and contents of the communication. Note also that this
general approach also allows multi-party synchronizations. Furthermore, communication channels can
be explicitly modeled using additional labeled transition systems, e.g. to specify buffered or blocking
communication.1

1Lossy communication channels can be also modeled using labeled transition systems. However, the loss of a message
can depend only on a deterministic or nondeterministic choice. For a more realistic modeling of lossy communication
channels using probabilities, see Section 4.3.

25
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Figure 4.1: Basic behavior modeling using labeled transition systems.

We claim that labeled transition systems, as informally described here, provide a suitable, formal mod-
eling language for basic behavior modeling of service-oriented systems with uncertainties. Uncertainties
can be expressed only in qualitative way though, i.e., using nondeterminism. Labeled transition systems
fulfill the requirements (R1)–(R6) in Section 2.1.1.

4.2 Real-Time Modeling with Uncertainties

The behavior modeling in labeled transition systems is essentially based on discrete, untimed execution
steps and therefore does not account for modeling real-time behavior. To express real-time constraints,
the formal model of Timed Automata [2] can be used which extends labeled transition systems by a
concept for real-valued clocks which can be used to measure durations. The states in a timed automaton
are referred to as locations and can be augmented with clock invariants which essentially model the
allowed duration the automaton can stay in a location. The transitions in a timed automaton are called
edges and can be annotated with 1) a clock guard that constrains the enabledness of an edge based on
the current clock values, and 2) a number of clock resets which allow to model cyclic timed behavior
by setting the value a clock back to 0.

Example 4.2 (Real-time modeling with Uncertainties)
Figure 4.2 depicts a client / server application modeled as a parallel composition of two timed automata.
The client model contains a clock y and uses a positive constant T which denotes a time-out value. In
the first step, the client spawns a request and resets its clock. The client allows to receive a response
in less than T time units and fires a time-out transition if this is not possible within the deadline. The
server uses its own clock x to measure time. On a request action the server nondeterministically either
moves into state q1 in which a response is guaranteed to be sent within 20 time units, or into state q2
in which the answer takes longer than 20 time units or does not happen at all. Note that analogously
to this example, timed automata can be used real-time communication channels.
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timeout
y≥T

‖

q1

x<20

q2

request , x :=0

request , x :=0

x<20
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Figure 4.2: Real-time modeling of a client / server application using timed automata.
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Timed automata are able to express real-time behavior using clock invariant and guards which can
be used to model forced waiting times and deadlines. Since timed automata also inherit the modeling
features of labeled transition systems, they support the requirements (R1)–(R10) in Chapter 2. In
particular, uncertain real-time is supported since the triggering of an edge in an enabled time window
is nondeterministic.

Example 4.2, however, also shows a major limitation of timed automata, i.e., their inability to model
probabilistic behavior. Specifically, the decision in the server component whether the response can be
sent within 20 time units or not is nondeterministic. Therefore, in this model it is not possible to
distinguish between ideal servers which always answer on time and completely unreliable servers that
never answer within the deadline. Similarly, the modeling of lossy communication channels using timed
automata cannot be done in a realistic way.

4.3 Probabilistic Real-Time Modeling with Uncertainties

A realistic modeling of reliability properties of real-time systems requires not only the ability to express
real-time constraints, but also concepts for expressing the likelihood of a particular timed behavior.
This can be achieved by not only supporting nondeterministic, but also probabilistic choices. A formal
model that supports probabilistic real-time modeling are Interval Probabilistic Timed Automata [38]
(IPTA), which extend timed automata by probabilistic interval edges2.

Example 4.3 (Probabilistic real-time modeling)
Figure 4.3 depicts an IPTA for a client / server application in which the server answers a request within
20 time units with a probability of at least 95%. For this purposes, the nondeterministic choice between
the two request-edges in the server in Example 4.2 has been replaced by a single probabilistic interval
edge with two target locations. Intuitively, on every incoming request, the server moves into state q1
with a probability in the interval [0.95, 1], and to state q2 with a probability in the interval [0, 0.05].
Thereby, this IPTA server model accurately describes the response time guarantee in the service level
agreement introduced in Section 4.3. Note also that in the same way lossy communication channels
can be modeled using probabilities.
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Figure 4.3: Probabilistic real-time modeling using interval probabilistic timed automata.

IPTA provide sufficient expressiveness to model uncertain probabilistic real-time behavior for service-
oriented systems and particularly fulfill requirements (R1)–(R13) in Chapter 2. Uncertain probabilistic
behavior is supported using probabilities intervals, as opposed to fixed probabilities. In the rest of this
report, we use IPTA as our primary modeling language.

2The concept of probabilistic interval edges is based on Interval-Valued Discrete-Time Markov Chains [31] (IDTMCs).



 



Chapter 5

Quantitative Analysis

In this chapter, we formally define the property specification language for model checking IPTAs and
sketch the symbolic algorithms for verifying probabilistic time-bounded reachability properties and
expected reward properties.

5.1 Property Specification

Probabilistic real-time properties can be expressed using the formal specification language Probabilistic
Timed Computation Tree Logic (PTCTL). Timing constraints in PTCTL are expressed using a set of
system clocks X , which are the clocks from the IPTA to be checked, and a set of formula clocks Z,
which is disjoint from X . The syntax of PTCTL is defined as follows (cf. [26]):

φ ::= a | ζ | ¬φ | φ ∨ φ | z.φ | P∼κ[φ U φ]

where:

• a ∈ AP is an atomic proposition,

• ζ ∈ CC (X
⋃
Z) is a clock constraint over all system and formula clocks,

• z.φ with z ∈ Z is a reset quantifier, and

• P∼κ[ ] is a probabilistic quantifier with ∼ ∈ {≤, <,>,≥} and κ ∈ [0, 1] a probability threshold.

As an example for the specification of a combined probabilistic and timed property, the requirement
for a bounded response time, e.g. ‘with a probability of at least 95% a response is sent within 20ms’
can be formalized in PTCTL as the formula:

z.P≥0.95[true U (responseSent ∧ z < 20)]

Furthermore, it is possible to specify properties over system clocks, e.g. the formula:

P≤0.05[(x ≥ 4)U(z = 8)]

represents the property ‘with a probability of at most 5%, the system clock x exceeds 4 before 8 time
units elapse’. In the remainder of this chapter, we focus on probabilistic reachability and expected
values properties. For the complete formal semantics of PTCTL, we refer to [26].
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5.2 Symbolic Model Checking

In this section, we recall the symbolic approach for PTCTL model checking, as introduced for proba-
bilistic timed automata in [27], and adapted for interval probabilistic timed automata in [38].

5.2.1 Operations on Symbolic States

Since the timed interval probabilistic systems that we generate as semantics for an interval probabilistic
timed automaton are in general infinite (cf. Definition 3.7), it is crucial to find a finite representation
which can be used for model checking. For this purpose, a notion of symbolic state is considered
in [27, 38], which is formally given by a pair (l, ζ) of a location l and a clock constraint ζ, also referred
to as zone in this context. A symbolic state (l, ζ) is a finite representation of the set of state and
formula clock valuations { 〈〈l, v〉, E〉 | v, E . ζ }. Based on this finite representation using the notion
of zones, PTCTL model checking can be carried out by recursively evaluating the parse tree of a given
formula, computing the set of reachable symbolic states.

5.2.2 Probabilistic Time-Bounded Reachability

The probabilistic quantifier P∼κ[ ] in PTCTL can be reduced to computing the minimum and maximum
probabilities for reaching the given set of symbolic target states [27]. Computing these probabilities is
known as the problem of probabilistic reachability and can be formally stated as follows.

Let A be an adversary for a timed interval probabilistic system T = (S, s0,A,Steps,L), and F ⊆ S
be a set of target states. The probability of reaching F from a state s ∈ S is defined as:

pAs (F ) = ProbAs {ω ∈ PathsAfull(s) | ∃i ∈ N : ω(i) ∈ F} (5.1)

Then, the minimal and maximal reachability probabilities of F are defined as:

pmin(F ) = inf
A∈AdvT

pAs0(F ) pmax(F ) = sup
A∈AdvT

pAs0(F ) (5.2)

A central property of interval probabilistic timed automata is that their infinite PTA semantics and
symbolic TIPS semantics are equivalent with respect to probabilistic reachability. Therefore, it is valid
to consider IPTA as a symbolic representation of an infinite, but equivalent, PTA.

Lemma 5.1 (Probabilistic reachability for TIPS and PTA semantics)
Given an interval probabilistic timed automaton I. Let TI = (S, S0,A,Steps,L) be its TIPS semantics
and TPI = (S, S0,A,Steps ′,L) the TIPS model of its PTA semantics PI . Then for any F ⊆ S the
following holds:

pmin
TI (F ) = pmin

TPI
(F ) and pmax

TI (F ) = pmax
TPI

(F ) (5.3)

Proof. For any λ that occurs TI we know that µmax
λ ∈ λ, and thus that µmax

λ occurs also in TPI .
Conversely, for any µ ∈ λ that occurs in TPI and any probability vector p over S, it holds that:∑

t∈Supp(λ)

µ(t) · p(t) ≤
∑

t∈Supp(λ)

µmax
λ (t) · p(t)

Therefore µmax
λ suffices to compute the correct maximum probability of reaching F (analogously for

the minimum probability). �
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Iterative Algorithm

The minimum and maximum probabilities for a set of target states in a timed interval probabilistic
system can be computed using an iterative algorithm [31, 38] known as value iteration, which is used
to solve the stochastic shortest path problem [4] for (interval) Markov decision processes.

Let T = (S, S0,A,Steps,L) be a timed interval probabilistic system and F ⊆ S be a set of target
states. Moreover, let F ⊆ S be the set of states from which F cannot be reached. We define (pn)n∈N
as the sequence of probability vectors over S, such that for any s ∈ S:

• pn(s) = 1 if s ∈ F for all n ∈ N,

• pn(s) = 0 if s ∈ F for all n ∈ N,

• pn(s) is computed iteratively if s ∈ S \ (F ∪ F ) by:

pn(s) = 0

pn+1(s) = max
(a,λ)∈Steps(s)

∑
t∈Supp(λ)

µmax
λ (t) · pn(t)

where we consider an ordering t1, t2, . . . tN of the set of states Supp(λ), such that the vector
pn(t1), pn(t2), . . . , pn(tN ) is in descending order, and µmax

λ is given by:

µmax
λ (tm) = min

(
λu(tm),

(
1−

m−1∑
i=1

µmax
λ (ti)−

N∑
i=m+1

λ`(ti)

))

with m ∈ {1, . . . , N}.1

Then pn(s0) converges to pmax(F ) for n→∞. For a correctness proof of this algorithm see [38].

Complexity

Except for the additional sorting of the support states in the value iteration algorithm, the complexity
for computing the maximum and minimum probabilities for IPTA is the same as for PTA. In general,
PTCTL model checking of (Interval) Probabilistic Timed Automata is EXPTIME-complete. However,
for certain subclasses of PTCTL the model checking problem can be shown to be PTIME-complete [15].

5.2.3 Expected Reachability Costs and Rewards

For IPTA equipped with cost functions as in Definition 3.5, it is desirable to compute the expected
accumulated cost or reward until a set of target states is reached.

Given a timed interval probabilistic system T = (S, s0,A,Steps,L) generated from an IPTA, a set of
target states F ⊆ S and an adversary A for T . For a cost function (c, r) we define statecost (c,r)((l, v), a)
for any location-clock valuation pair (l, v) ∈ S and a ∈ A ∪ R+ as:

statecost (c,r)((l, v), a) =

{
c(l, a) if a ∈ A
a · r otherwise

1We define
∑m

i=k x
def
= 0 if k > m.
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For any path ω ∈ PathsAfull(s0) let pathcost(c, r)(ω) be the total cost accumulated along ω until a
state in F is reached:

pathcost(c, r)(ω) =

min(j | ω(j)∈F )∑
i=1

statecost(ω(i− 1), step(w, i− 1))

Now, the expected cost with respect to the probability measure ProbAs0 is given by [24]:

eAs0(c, r) =

∫
ω∈PathsA

full (s0)

pathcost(c, r)(ω)dProbAs0

The minimum and the maximum expected cost is respectively given by the infimum and the supremum
of the expected costs with respect to all adversaries.

Computing Expected Reachability Costs and Rewards

Expected reachability costs and reward as defined above can be computed using an integral time model,
specifically using the digital clocks semantics for PTA [24]. Note that this semantics has the restriction
that strict comparisons in clock constraints are not allowed.

5.3 Conclusions

Symbolic representations of IPTA using digital clocks [24] and zones [27] facilitate the quantitative
analysis of IPTA using probabilistic model checking. As specific analysis methods we considered the
verification of probabilistic time-bounded reachability properties and the computation of expected costs
and rewards for reaching a set of target states. Therefore, the described analysis methods provide a
means for tackling requirements (R14)–(R17) as defined in Section 2.2. Note, however, due to the
inherent nondeterminism in IPTA, only minimum and maximum probabilities and expected values can
be computed.



Chapter 6

Tool Support and Evaluation

In this chapter, we describe a tool for the quantitative analysis of IPTA and give an evaluation of its
modeling features and performance.

6.1 Tool Support

At the time of writing, Prism 4.0 [23] was the latest version of the probabilistic model checker
developed at the University of Oxford. For various probabilistic models including PTA, Prism provides
verification methods based on explicit and symbolic model checking, and discrete-event simulation.
However, Prism 4.0 does not support IPTA or any other interval-valued Markov chain models.

We have extended Prism 4.0 with support for IPTA. Our tool is available at www.mdelab.org/?p=50
and published under an open source license. In the rest of this section, we describe the usage of our
tool for specifying and analyzing IPTA.

6.1.1 System Specification

Listing 6.1 contains the Prism code for an extended version of the client / server application in
Example 4.3. The specification consists of two modules which respectively model the IPTA of a server
and a client. Note that since Prism supports a variety of probabilistic models, it is necessary two
specify the module type using the keyword ipta for interval probabilistic timed automata in line 1.
The syntax for IPTA extends the syntax for PTA which is indicated using the module type pta as part
of Prism 4.0. In lines 3–6 we specified a number of constants to be used in the module definitions.
These constants are usually set as command-line parameters when executing the model checker.

The server module in lines 8–19 is contains three locations specified using the variable s which ranges
over 0 . . . 3, and uses the clock x to measure durations. Additionally, the variable w is used to keep
track of the number of slow requests that occurred during the execution.

For the definition of probability intervals as needed for IPTA, we added the new binary operator ∼ to
the Prism language which can be used in the specification of commands. A command in the IPTA
version of Prism corresponds to a probabilistic interval edge and takes the form

[action] guard → interval1:update1 + ... + intervaln:updaten;

33
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Listing 6.1: Client / server example in the IPTA version of Prism

1 ipta

2
3 const double L; // Lower probability bound for normal response times

4 const double U; // Upper probability bound for normal response times

5 const int REQUESTS; // Number of requests

6 const int TIMEOUT = 1000; // Timeout value

7
8 module Server

9 s : [0..2] init 0;

10 w : [0..REQUESTS] init 0; // Number of slow responses

11 x : clock;

12 invariant

13 (s=0 ⇒ x≤100) & (s=1 ⇒ x≤20) & (s=2 ⇒ x≤TIMEOUT)
14 endinvariant

15
16 [request] (s=0 & w<REQUESTS) → (L∼U):(s’=1)&(x’=0)
17 + ((1-U)∼(1-L)):(s’=2)&(w’=w+1)&(x’=0);
18 [response] (s=1 & x≤20) | (s=2 & x>20) → (s’=0)&(x’=0);

19 endmodule

20
21 module Client

22 t : [0..REQUESTS] init 0;

23 y : clock;

24 invariant

25 (y<=TIMEOUT)

26 endinvariant

27
28 [request] t<REQUESTS → (t’=t+1)&(y’=0);

29 [] t=REQUESTS → (y’=0);

30 endmodule

31
32 label "lessThan50PercentSlow" = (t=REQUESTS & w<REQUESTS/2);

33
34 rewards

35 true : 1;

36 endrewards

where action denotes the label of the edge, guard is a condition that restricts the enabledness of
the edge, updatei define the target locations and possible clock resets, and intervali are either
probability intervals written as ` ∼ u, or fixed probabilities which are formally interpreted as point
intervals (where the lower and upper bounds coincide). Therefore, any pta model is also a valid ipta

model in our tool.

As described above, guards and updates in Prism can be used respectively to restrict the enabledness
of an edge or to specify clock resets for edges. Another important modeling feature of IPTA is the
possibility to specify clock invariants for locations. In Prism 4.0, clock invariants are specified using
the keywords invariant...endinvariant, as shown in lines 12–14 and 24–26 of Listing 6.1.

The probabilistic real-time behavior of the server module in the example is specified using the two
commands in line 16 and 18. In the initial location (s=0), the server can fire a request-action,
resetting the clock (x’=0) and moving to the location (s=1) with a probability in the interval [L, U],
and to the location (s=2) with a probability in the interval [1−U, 1−L]. When moving to (s=2), the
counter variable w for slow responses is increased using the update (w’=w+1). The initial state is reached
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again using two response-edges. One of them leaves the location (s=1) in 20 time units or less, the
other leaves (s=2) after more then 20 time units. Thus, the specification models a simple server with
a probabilistic response time guarantee, i.e. the server responds to a request within 20 time units with
a probability of at least L.

The client is specified in lines 21–30 and performs a pre-defined number of requests, given by the
constant REQUESTS, and then terminates. This allows us to control and count the number of subsequent
requests and (slow) responses and to reason about probabilities for specific scenarios, such as the
probability that less than 50% of all requests will result in a slow response. This particular property is
encoded using the label lessThan50PercentSlow in line 32. Note also that this definition of the client
provides a convenient way to scale the size of the state space by increasing the number of requests,
i.e. the constant REQUESTS. This is particularly useful for conducting benchmarks, e.g. for measuring
the run-times of the model checker for different model sizes (cf. Section 6.2.2).

In order to be able to reason about expected times in the specified model, we additionally need to
define a state reward, which is specified in lines 34–36. In the real-time models supported by Prism,
state rewards accumulate at a rate related to time elapsing. Therefore, to compute expected times
later we simply associate a reward of 1 to all locations.

For the two modules defined in Listing 6.1, automatically Prism forms the system to be analyzed as
the parallel composition of the server and the client, (cf. Definition 3.11).

The Prism specification language for PTA already provides an expressive formalism to model prob-
abilistic real-time service-oriented systems. Adding support for interval-based definition of uncertain
probabilistic behavior using the ’∼’ operator, the IPTA extension of Prism covers the relevant mod-
eling concepts and fulfills the requirements (R1)–(R13) as defined in Chapter 2.

6.1.2 Property Specification and Verification

In addition to a detailed system modeling, the specification of properties and their analysis is vital.
In particular, we have stated in requirements (R14)–(R17) that the specification and verification of
probabilistic time-bounded reachability properties and expected rewards and costs are important for
reasoning about safety and reliability in service-oriented real-time systems.

Probabilistic Time-Bounded Reachability

In Prism, probabilistic reachability properties can be specified as

Pmin=? [ F target ] and Pmax=? [ F target ]

where target is a label for a set of target states, such as "lessThan50PercentSlow" in line 32
of Listing 6.1. The keyword Pmin refers to the minimum probability whereas Pmax to the maximum
probability for reaching the target states, as formally defined in Section 5.2.2.

As an example, we computed the minimum and maximum probabilities for less than 50% of slow
responses for 10 requests and lower and upper probability bound of L=0.7 and U=0.8. The mini-
mum probability for this property was computed as 0.8497316674 and the maximum probability as
0.9672065024 by the IPTA version of Prism.

Formulas for querying minimum and maximum probabilities as above can be also extended using
time bounds, thus allowing to specify time-bounded probabilistic rechability properties, as discussed in
Section 2.2.1. The Prism syntax for such properties is
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Pmin=? [ F≤T target ] and Pmax=? [ F≤T target ]

where T is a time bound. For our example, we computed the probabilities for the server having processed
5 or more requests within 200 time units, i.e. the property Pmin/Pmax=? [ F≤200 (t≥5)&(s=0) ].
The minimum probability was computed as 0.20664 and the maximum probability as 0.66384 for this
time-bounded property.

Regarding the implementation, Prism includes an engine which implements an algorithm for proba-
bilistic reachability analysis of PTA based on stochastic two-player games [22] per default. For IPTA, we
extended this engine by adding support for interval edges and adapting the value iteration algorithm as
described in Section 5.2.2. Thus, our extension of Prism can be used to specify and verify probabilistic
time-bounded reachability properties as required in (R14)–(R15).

Expected Reachability Rewards and Costs

The syntax for querying expected rewards in Prism is analogously to the notation for probabilistic
reachability properties. To compute the minimum and the maximum expected reward, the following
formulas can be used:

Rmin=? [ F target ] and Rmax=? [ F target ]

where target specifies a set of target states. For example, the expected time for the server having
processed 5 requests can be calculated using the formula Rmin/Rmax=? [ F (t=5)&(s=0) ]. Using
the IPTA-version of Prism we computed the minimum expected time as 1.0 and the maximum expected
time as 97.5 for this property.

Prism currently supports expected rewards and costs only using an engine based on the digital clocks
semantics [24] of PTA. To enable the computation of expected values for IPTA, we extended this
engine also with support for interval edges. Thus, our extension of Prism can be used for specifying
and verifying expected costs and rewards for IPTA as required in (R16)–(R17).

6.2 Evaluation

To evaluate the correctness and the performance of the IPTA extension of Prism, we conducted a
number of experiments whose results are summarized in the following.

6.2.1 Difference to Sampling

An important aspect of the interval-based specification of uncertain probabilities is the fact that the
semantics of IPTA allows to choose different specific values in the intervals during the execution. We
argue here that therefore, the probabilistic behavior in IPTA cannot be mimicked using sampling in the
probability intervals.

To support the above claim, we conducted an experiment where we computed the minimum and the
maximum reachability probabilities for a property of the client/server example in Listing 6.1 where we
set L=0.7, U=0.8 and REQUESTS=2. Thus, the model is essentially the same as the parallel composition
of IPTA in Example 4.3 with the difference that the client makes two requests and the server has slightly
different failure probabilities. Using the IPTA version of PRISM, we then calculated the minimum and
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maximum probabilities for the property that one out of two responses was slow: (t=2 & w=1). The
computed minimum and maximum probabilities are:

pmin
ipta = 0.30, pmax

ipta = 0.45

To illustrate the difference to approaches with fixed probabilities, we also encoded this example as a
pta model, where we tested the following probabilities for normal response times: y=0.7, 0.75 and 0.8.
For this model and the above property, we obtain the following probabilities:

p
(y=0.7)
pta = 0.42 p

(y=0.75)
pta = 0.375 p

(y=0.8)
pta = 0.32

It is obvious that these three samples are not sufficient to obtain the actual minimum and maximum
probabilities as predicted using the IPTA model. In fact, no fixed value for y in the interval [0.7, 0.8]
produces the correct results, because the probability for the chosen property is minimal / maximal
when y is chosen differently for each request. To illustrate this situation we computed the solutions
analytically, depicted in the graph in Figure 6.1.
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Figure 6.1: Analytic solutions for the property ‘one out of two response is slow’

The plane in the middle represents the solution for the sampling-based pta approach, which reaches a
minimum probability of 0.32 for y=0.7 and a maximum probability of 0.42 for y=0.8. The upper and
lower plane depict the IPTA version which reaches a minimum and maximum probabilities of 0.3 and
0.45, respectively. Therefore, the sampling approach using PTA is not sufficient for determining the
correct minimum and maximum probabilities in the original IPTA model.

6.2.2 Performance

In addition to the correctness tests of our implementation, we also investigated the model checking
run-times of different encodings of the client / server example. To scale the application, we increased
the number of requests performed by the client in our running example and compared the different
run-times of Prism.

Table 6.1 summarizes the run-times of our IPTA version of PRISM for three different encodings of the
above example:

(1) PTA: sampling where a single probability distribution in the interval distribution is tested;

(2) IPTA: the original model as in Listing 6.1;

(3) PTA∗: the encoding of the original IPTA as described in Section 3.3.2;
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The measured run-times indicate that the checking of the PTA version was the fastest. However, we
have shown in Section 6.2.1 that such a naive analysis using sampling does not produce the correct
results.

While the PTA∗ version yields the correct results, the numbers show that the direct checking of the
IPTA is more efficient. This is due to the fact the number of transitions to be checked in PTA∗ encoding
is higher than in the original IPTA. The actual numbers of the transitions in the example are listed in
Table 6.2. Note that in the simple client / server example, the support sets of the transitions are very
small (of size 1 or 2). We expect that with a greater branching of transitions, the performance loss
using the PTA∗ encoding gets significantly worse.

#Requests #States PTA IPTA PTA∗

10 235 0.752 0.804 0.816
20 865 2.274 2.625 2.888
30 1,895 7.274 7.818 9.225
40 3,325 19.170 21.662 25.990
50 5,155 43.573 47.908 57.847

Table 6.1: Runtime in seconds for computing minimum probabilities for ‘less than 50% slow responses’

#Requests PTA IPTA PTA∗

10 339 339 521
20 1,269 1,269 2,031
30 2,799 2,799 4,541
40 4,929 4,929 8,051
50 7,659 7,659 12,561

Table 6.2: Number of transitions for different encodings of the client/server example

6.3 Conclusions

In this chapter, we have introduced an extension of the Prism tool for modeling and analysis of
IPTA. For this purpose, we have (1) extended the modeling language of Prism with an operator
for specifying probability intervals and (2) adapted the model checking algorithms for probabilistic
reachability and expected costs and rewards. Moreover, we have shown using an example that naive
sampling of probabilities in intervals does not yield the correct results. Using benchmarks, we have
shown that the PTA∗-encoding as presented in Section 3.3.2 produces a significant blow-up of the
semantic model to be analyzed which also results in longer run-times of the model checker.
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Related Work

7.1 Probabilistic Timed Automata

Probabilistic reachability and expected reachability analysis for PTA based on an integral model of time
(digital clocks) is studied in [24]. The zone-based algorithm for symbolic PTCTL model checking of
PTA is introduced in [27]. We rely on both approaches since probabilistic reachability analysis can be
more efficiently carried out using the zone-based approach, while computing expected values related
to time requires the digital clocks semantics of PTA in the current version of the Prism tool.

Probabilistic timed simulation and bisimulation for PTA and an EXPTIME-algorithm to decide whether
two PTA are (bi)similar are discussed in [35]. A notion of probabilistic time-abstracting bisimulation
for PTA is introduced in [5]. An abstraction technique for MDPs based on stochastic two-player games
can be found in [22].

Continuous Probabilistic Timed Automata [25] provide a means for modeling stochastic phenomena in
probabilistic real-time models. However, since only decidability results and no practical tool support is
readily available for this model, it is not applicable in our work.

The Prism tool [23] natively supports model checking of probabilistic timed automata using two
engines, respectively based on a digital clocks [24] and a stochastic two-player game semantics [22].
IPTA can be either encoded into PTA and then analyzed or directly modeled and mode efficiently
analyzed using the IPTA extension of Prism presented in this report. For an overview of other tools
that support verification of PTA we refer to the related tools section in [23].

7.2 Interval Probabilistic Systems and Logics

Interval-based probabilistic models and their use for specification and refinement / abstraction have
been studied already in ’91 in [14]. PCTL model checking of interval Markov chains is introduced
in [31]. Symbolic model checking for IPTA is presented in [38] based on the approaches in [27, 31].
However, no tool support or evaluation is given. Moreover, we show here that IPTA can also be encoded
into PTA and provide empirical evidence that a direct modeling and analysis of IPTA is more efficient
than encodings in PTA.

Probabilistic temporal interval networks [30] are constraint satisfaction problems in which the nodes
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model temporal intervals and the edges probabilistic interval relations. In [30], a path consistency
algorithm is presented, which – similarly to our approach – uses a lexicographical order on interval
relations. However, probabilistic reachability is not considered.

Probabilistic interval temporal logic [10] is a probabilistic extensions of interval temporal logic (ITL)
and the duration calculus (DC) with infinite intervals. The work approach consists of a Hilbert-style
proof systems for such logics.

An overview of real-time and probabilistic temporal logics is given in [20] and includes a number of
interval temporal logics such as ITL, and probabilistic logics, such as PCTL∗ and the probabilistic
µ-calculus.

7.3 Quantitative Analysis of Service-Oriented Systems

Quality prediction of service compositions based on probabilistic model checking with Prism is sug-
gested in [9]. A comparison of different QoS models for service-oriented systems and an extension of
the UML for quantitative models is given in [16]. A formal syntax for service level agreements of web
services can be given using WSLA [17, 7]. In the area of channel-based coordination of services, a
compositional QoS model and analysis using Prism is presented in [28], and a performance analysis
approach based on discrete event simulation is introduced in [37].



Chapter 8

Conclusions and Future Work

One of the aims of this report was to show that formal models, specifically with the introduction of
Interval Probabilistic Timed Automata (IPTA), have reached a level of expressiveness in the last five
years that allows to model service-oriented real-time systems including their inherent uncertainties.
These uncertainties arise from a number of unavoidable phenomena, such as incomplete knowledge
and probabilistic / stochastic behavior. Since the formal modeling of such systems uncertain behavioral
properties alone does not yield usable predictions, we have investigated the state of the art for analysis
techniques for IPTA and their applicability to real-world scenarios.

We have characterized a class of service-oriented real-time systems using a catalogue of requirements
for both their modeling and their quantitative analysis. As one of the applications of our approach, we
have shown how IPTA can be analyzed to make predictions for safety and reliability properties, such
as probabilistic response-time guarantees. Furthermore, IPTA are sufficiently expressive to describe
uncertain behavior due to hardware failure for on-request-based scenarios, i.e. where the probability of
a hardware failure does not depend on the passage of time.

We have shown in this report that the quantitative analysis of important properties, such as safety and
reliability properties for the targeted class of systems and settings can be formalized and performed
automatically using tools. As a concrete contribution of this report, we have developed an extension of
the Prism model checker which allows to automate the formal verification of IPTA. We have shown the
applicability of our approach and tool using benchmarks and compared our modeling approach using
IPTA with models that only allow fixed probabilities. Additionally, we have shown that probabilistic
uncertainty modeled using probability intervals is a key ingredient for specifying quantitative guarantees
about the non-functional properties of services as commony described in service level agreements.
Moreover, since IPTA inherit the expressiveness of timed automata, the approach can be applied to a
wide range of systems – from services with uncertain QoS properties to hard real-time systems.

As future work, we plan to incorporate structure dynamics into the modeling approach in order to deal
with dynamically changing architectures, e.g. due to rebinding of service endpoints or reconfiguration
at run-time. Such characteristics require behavioral models based on local rewriting of structures rather
than finite-state automata models. Therefore, we plan to develop a modeling approach based on rewrite
systems, such as the rewrite logic in Maude [6] or typed attributed graph transformation systems [8].
Probabilistic and timed extensions of these approaches (see, e.g., [1, 29, 12, 11]) will provide rigorous
methods for a quantitative modeling and analysis of the targeted class of service-oriented systems with
structure dynamics.

In order to achieve better scalability and to analyze open systems, e.g., due to late binding of service
implementations, we additionally aim at developing compositional reasoning schemes. For this purpose,
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we plan to exploit variants of probabilistic timed simulation relations [35] for checking compliance of
concrete services with their abstract specifications, and to investigate their compositionality and the
preservation of relevant classes of quantitative properties. In the context of service-oriented systems,
abstractions will furthermore provide a suitable concept for a formal account of service contracts.
Compositional analysis approaches will moreover allow us to lift properties shown for a composition of
abstract service models to the level of a concrete system.
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