
Technische Berichte Nr. 55

des Hasso-Plattner-Instituts für
Softwaresystemtechnik
an der Universität Potsdam

Proceedings of the

4th Many-core

Applications Research

Community (MARC)

Symposium

Peter Tröger, Andreas Polze (Eds.)

Technische Berichte des Hasso-Plattner-Instituts für
 Softwaresystemtechnik an der Universität Potsdam

Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam | 55

Peter Tröger | Andreas Polze (Eds.)

Proceedings of the 4th Many-core Applications
Research Community (MARC) Symposium

Universitätsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet über http://dnb.de/ abrufbar.

Universitätsverlag Potsdam 2012
http://info.ub.uni-potsdam.de/verlag.htm

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 2533 / Fax: 2292
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam wird herausgegeben
von den Professoren des Hasso-Plattner-Instituts für Softwaresystemtechnik
an der Universität Potsdam.

ISSN (print) 1613-5652
ISSN (online) 2191-1665

Das Manuskript ist urheberrechtlich geschützt.

Online veröffentlicht auf dem Publikationsserver der Universität Potsdam
URL http://pub.ub.uni-potsdam.de/volltexte/2012/5789/
URN urn:nbn:de:kobv:517-opus-57898
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-57898

Zugleich gedruckt erschienen im Universitätsverlag Potsdam:
ISBN 978-3-86956-169-1

MESSAGE FROM THE PROGRAM CO-CHAIRS

In continuation of a successful series of events, the 4th symposium of the Many-core Applications Research Community

(MARC) took place at the Hasso Plattner Institute for Software Systems Engineering (HPI) in Potsdam. On December 8th and
9th 2011, researchers from different fields presented their current and future work on many-core hardware architectures, their
programming models, and the resulting research questions for the upcoming generation of heterogeneous parallel systems.

While the Intel Single Chip Cloud Computer (SCC) serves as common research platform for most MARC members, other
interesting research on next generation many-core platforms was also discussed on this event. The symposium focused on
topics such as

• Operating system support for novel many-core architectures
• Virtualization solutions to deal with hardware limitations
• Dealing with legacy software on novel many-core architectures
• New approaches for leveraging on-die messaging facilities
• Traditional and new programming models for novel many-core hardware
• Concepts for runtime systems on novel many-core hardware
• Performance issues with modern on-die messaging facilities and caching infrastructures

This proceedings include 14 papers from 5 symposium sessions. Every paper was reviewed by at least three reviewers from
the program committee, consisting of:

• Dr. Ulrich Bretthauer (Intel)
• Jaewoong Chung (Intel)
• Saurabh Dighe (Intel)
• Prof. Dr. Michael Gerndt (TU München)
• Diana Göhringer (Fraunhofer IOSB)
• Matthias Gries (Intel)
• Werner Haas (Intel)
• Prof. Dr. Hans-Ulrich Heiß (TU Berlin)
• Jim P. Held (Intel)
• Prof. Dr. Robert Hirschfeld HPI)
• Ulrich Hoffmann (Intel)
• Jason M. Howard (Intel)

• Dr. Michael Hübner (Karlsruhe Institute of Technology)
• Timothy M. Mattson (Intel)
• Georg Müller (Fujitsu)
• Prof. Dr. Jörg Nolte (BTU Cottbus)
• Prof. Dr. Andreas Polze (HPI)
• Dr. Felix Salfner (SAP Innovation Center)
• Prof. Dr. Bettina Schnor (Uni Potsdam)
• Prof. Dr. Theo Ungerer (Universität Augsburg)
• Dr. Peter Tröger (HPI)
• Dr. Daniel Versick (University of Rostock)
• Rob F. Van Der Wijngaart (Intel)

We would like to thank our program committee members for their hard work and for their suggestions in the selection of
papers. We would like to thank all those who submitted papers for their efforts and for the quality of their submissions. We
also would like to thank Jan-Arne Sobania and Sabine Wagner for their assistance and support.

Thank you for your active participation in the 4th MARC Symposium. We hope you found this event to be productive and
enjoyable, and we look forward to seeing you next year at 5th MARC symposium and related events.

Peter Tröger & Andreas Polze, Hasso Plattner Institute, University of Potsdam, Germany

Potsdam, January 2012

CONTENTS

I Isaias A. Compres and Michael Gerndt.
Improved RCKMPI’s SCCMPB Channel: Scaling and Dynamic Processes Support 1

II Stefan Lankes, Pablo Reble, Carsten Clauss and Oliver Sinnen
The Path to MetalSVM: Shared Virtual Memory for the SCC 7

III Vincent Vidal, Simon Vernhes, and Guillaume Infantes
Parallel AI Planning on the SCC 15

IV Bertrand Putigny, Brice Goglin, and Denis Barthou
Performance modeling for power consumption reduction on SCC 21

V John-Nicholas Furst and Ayse K. Coskun
Performance and Power Analysis of RCCE Message Passing on the Intel Single-Chip Cloud Computer 27

VI Kouhei Ueno and Koichi Sasada
Ruby on SCC: Casually Programming SCC with Ruby 33

VII Tommaso Cucinotta and Vivek Subramanian
Characterization and analysis of pipelined applications on the Intel SCC 37

VIII Bruno d’Ausbourg, Marc Boyer, Eric Noulard, and Claire Pagetti
Deterministic Execution on Many-Core Platforms: application to the SCC 43

IX Paul Cockshott and Alexandros Koliousis
The SCC and the SICSA Multi-core Challenge 49

X Roy Bakker and Michiel W. van Tol
Experiences in porting the SVP concurrency model to the 48-core Intel SCC using dedicated copy cores 55

XI Björn Saballus, Stephan-Alexander Posselt, and Thomas Fuhrmann
Caching Strategies and Access Path Optimizations for a Distributed Runtime System in SCC Clusters 61

XII Thomas Prescher, Randolf Rotta, and Jörg Nolte
Flexible Sharing and Replication Mechanisms for Hybrid Memory Architectures 67

XIII Jan-Arne Sobania, Peter Tröger, and Andreas Polze
Towards Symmetric Multi-Processing Support for Operating Systems on the SCC 73

XIV Markus Partheymüller, Julian Stecklina, and Björn Döbel
Fiasco.OC on the SCC 79

Improved RCKMPI’s SCCMPB Channel:
Scaling and Dynamic Processes Support

Isaı́as A. Comprés Ureña and Michael Gerndt
Technical University of Munich (TUM), Institute of Informatics,

Boltzmannstr. 3, 85748 Garching, Germany
{compresu,gerndt}@in.tum.de

Abstract—The Single-chip Cloud Computer (SCC), a 48 core
experimental processor from Intel labs, is a platform for parallel
programming research. Its hardware features and memory orga-
nization map naturally to message passing models. Standard and
non-standard message passing libraries are already available for
the SCC; one of the standard solutions is the RCKMPI library.
RCKMPI’s main features are three SCC specific MPICH2
channels. In this work, improvements to the SCCMPB channel
are introduced; performance results for the new channel show
better scaling with process count. The added flexibility of the
new design also allows for the support of dynamic processes, a
feature previously not supported in RCKMPI.

Index Terms—MPI, dynamic processes, communication proto-
col

I. INTRODUCTION AND RELATED WORK

The Single-chip Cloud Computer (SCC)[2] from Intel Labs
is an attractive platform for parallel programming research.
Having a distributed memory organization, the message pass-
ing model maps naturally to it. The Message Passing Interface
(MPI) is a dominant standard for message passing; it is widely
used in super computers and has been shown to scale to
hundreds of thousands of cores. A large number of parallel
applications that use MPI are available; these applications can
be compiled and run in systems that have a compatible MPI
library. Support for MPI on the SCC was possible since early
in the chip’s life, through the use of a network driver[11] and
MPI libraries configured to use sockets. The downside of using
the driver was that communication performance was much
lower than the lightweight but non-standard solutions. In order
to reach acceptable performance with message passing on the
SCC, applications needed to be ported to its libraries, like
RCCE[3] or its non-blocking improvement (iRCCE[4] from
RTWH Aachen). In addition to RCCE, other projects have
implemented their own message passing based communication
protocols, like the TACO[9] and X10[10] ports to the SCC.

Compatibility with MPI with no significant compromise in
performance is desirable in new parallel architectures, given
the large amount of software and tools available for it. There
are currently two MPI projects for the SCC: the RCKMPI[5]
and the SCC-MPICH[8] libraries. With the introduction of
RCKMPI, MPI applications reached performance that was
comparable to that of the non-standard lightweight solutions
on the SCC. RCKMPI’s main contribution was the introduc-
tion of three SCC specific MPICH2[7] channels. Being a first

attempt at efficient MPI on the SCC, it is natural to expect
that there is potential for performance improvements in the
channels; one such improvement was presented by Christgau
et al. in [1], by the addition of topology-awareness to the
library. In this paper, an improved communication protocol
is presented for the SCCMPB channel of RCKMPI; the new
design shows improvements in scaling with process count and
supports dynamic processes from MPI-2.

II. IMPROVED SCCMPB CHANNEL

RCKMPI introduced three SCC channels: SCCMPB, SCC-
SHM and SCCMULTI. The SCCMPB channel uses only the
Message Passing Buffer (MPB) for communication; in this
work, this channel is improved.

At initialization for the SCCMPB protocol, each MPB of a
participating process was partitioned in sections of equal size.
The main disadvantage of this design is that the size of each
EWS becomes smaller as the size of an MPI job increases;
in the 48 process case, the EWS size is 160 bytes (with
12 bytes used for protocol metadata). The size of the EWS
influences channel performance, since with smaller buffers the
communication protocol requires more round trips to complete
the transmission of a packet. The second disadvantage is that,
because these are initialized at job startup and remain static
until job termination, MPI-2 dynamic processes can not be
supported. Finally, it was not possible to share the MPB with
other subsystems or use it directly for optimized collectives.
The new channel design addresses all of these shortcomings.

The new SCCMPB channel is partitioned differently and
works with two different protocols. The first protocol is the
original one found in RCKMPI and is labeled as the base
protocol. The second protocol is labeled as the extended
protocol, and it depends on the base protocol for coordination.

Extended Protocol (32x128B) Base Protocol (48x64B) Other
(1KB)

Fig. 1. MPB areas used by the base and extended protocols.

A. Base Protocol

Similarly to the channels in RCKMPI, the base proto-
col consists of statically allocated Exclusive Write Sections
(EWSs) placed at the receiver and a polling based strategy for

1

new message detection. In contrast to the original, the size
of these EWSs is not modified depending of the number of
participating processes. They are always 48 and fixed at 64
bytes in size, for a total of 3KBs at each core’s MPB. The 64
bytes in the static EWS setup allows for 48 bytes of payload.
The remaining 16 bytes are used by the channel for metadata.
The size of 64 bytes was selected based on the following
observations:

• MPICH2 packet headers are 32 bytes.
• Latency sensitive operations (like barriers) benefit from

dedicated buffers.
• Packets smaller than 48 bytes occur with high frequency

at the channel.
The last was first observed empirically by using RCKMPI’s

channel statistics feature. Inspecting the MPICH2 device layer
reveals that preamble steps involving barriers and other col-
lective operations are common, when operating with larger
buffers; these preamble operations result in small point to point
traffic that is typically smaller than 16 bytes in payload. A
packet with 16 bytes of payload result in 48 bytes total at the
channel (32 header bytes plus 16 payload bytes).

The 16 bytes of metadata contain the following:
• Checksum: A checksum to improve consistency in case

of a hardware error.
• General purpose EWS control: Used to control access

to the general purpose EWS (gEWS) used by the ex-
tended protocol (described in detail in II-B).

• Message size: Bytes of payload currently available in the
EWS. This size can exceed 48 bytes if part of the payload
is located at the gEWS.

• Packet size: This is the total size of the MPICH2 packet
in transit. This value is independent of the actual payload
available in the EWS.

• Receive sequence: This value is used to indicate that a
message was received at the remote core that owns the
EWS.

• Send sequence: Sequence number of the message that is
currently in the payload area of the EWS.

The progress engine polls this metadata when receiving
messages. It determines if to use the base protocol together
with the extended protocol, based on the gEWS control data.

B. Extended Protocol

The extended protocol uses a 4KB EWS that is labeled
as the general purpose EWS (gEWS) internally. This buffer
differs from the original EWSs in that it is placed at the sender
and can be used to send messages to several receivers simul-
taneously. The gEWS can also be locked for its use in other
operations, like spawn operations or optimized collectives. The
size of 4KB was selected because it is the page size for the
P54C architecture and it can be controlled with a single 32 bit
field.

Together with the previously available metadata, a gEWS
control field (32 bits) is specified by the sender. Each bit
represents 128 bytes of the gEWS. All zeros indicate that the

General Purpose EWS

Fig. 2. Example gEWS state for 1536 bytes (bit field set to 0xFFF00000).

gEWS was not used for a particular message, while all ones
indicates that the full 4KBs were used. When a new message
is detected at the receiver, it reads the specified number of
bytes starting from the payload area of the base protocol and
then (if available) from the specified gEWS 128 byte slots.

Ring Buffer 0

Ring Buffer 1

General Purpose EWS

Fig. 3. Ring buffers on a fragmented general purpose EWS.

The extended protocol design can be used to serialize
messages by writing payload to the gEWS in 128 byte chunks
and then updating the relevant bits in the gEWS control entry.
The gEWS can also be treated as one or multiple ring buffers;
one ring buffer can be constructed per each remote core with
the use of the bit field. In case of fragmentation, the bit field
is used to specify which chunks are used to build a ring buffer
(as shown in figure 3).

C. Protocol Characterization

To see why the addition of the extended protocol results
in improved channel performance, an understanding of the
original channel’s behavior is necessary. When transmitting an
MPICH2 packet, the total round trip time is the aggregation of
the time required by several simpler operations. These times
can be approximated with the following equation:

Tx(B, b, n) = [tsp(n) + tw + trp(n) + tr + phth]

⌈
B

b

⌉
(1)

where B is the size of the MPICH2 packet to send, b is the
size of the EWS (in bytes) and n is the number of processes
of the MPI job. The terms in the left factor represent the time
required for writing, reading, polling and handling. The sender
needs to poll the receive flag for the target process; this time
is represented by tsp. After the target EWS is available for
writing, the bytes are written in tw seconds. At the receiver,
the progress engine polls the metadata to detect new messages;
trp seconds are spent in doing this and then tr seconds of
CPU time are used reading the available payload. Polling times
depend on the number of processes n. If the MPICH2 packet is
complete with the last read payload, then th seconds are spent
handling it; handling of a packet occurs with an application
dependent probability of ph.

These operations are done for each round trip of the
communication protocol. The number of round trips required
is the ceiling of the size of the packet divided by the size of

2

the EWS (the
⌈
B
b

⌉
factor in formula 1). The time required

to write at the sender and to read at the receiver are the
same: tr = tw = trw. These are memcpy operations and their
aggregated time tarw depends on the total number of bytes
to transfer, independently of the number of round trips. The
time required for polling at the sender and receiver can be
represented by a single variable for their combined worst case
as twcp. Furthermore, packet handling is done with a much
lower frequency; packets are only handled when they are done
after several protocol round trips and can be ignored. With
these observations, 1 can be simplified as:

Tx(B, b, n) = 2tarw(B) + twcp(n)

⌈
B

b

⌉
(2)

Conclusions can more easily be drawn from 2. The 2tarw
term is a function of the total bytes B of the packet. The
polling overhead twcp depends on the process count and
increases linearly with it, since metadata is polled in a round
robin fashion. The number of round trips

⌈
B
b

⌉
depends on

the process count as well, since the size of b is determined at
initialization based on the MPI job size.

The new design can be modeled similarly to the original
one. The effect of the gEWS in the protocol, is that depending
of the probability of it being free, the round trips required to
transfer a packet are greatly reduced:

Tx(B, n) = 2tarw(B)+

twcp(n)

[
p

⌈
B

b4KB

⌉
+ [1− p]

⌈
B

b48B

⌉]
(3)

where p is the probability of the gEWS being free and is
application dependent. The number of round trips now depends
on the application alone (given that the EWS and gEWS are
now fixed with size b4KB and b48B), and not on the number
of processes. The worst case polling time still depends on
process count, and is therefore not improved with respect to
the original protocol.

From 3 it is easy to see that p ≈ 1 is desirable. Because of
the way MPICH2 collectives (with a logical ring topology and
other schemes) and most MPI applications (that send messages
to only a few processes at the same time) are implemented,
this is very often the case. Communication between a pair
or processes is never stopped if the gEWS is not available,
performance is just degraded by the limitation of 48 bytes of
payload per round trip of the static EWS.

III. SUPPORT FOR MPI-2 DYNAMIC PROCESSES

The dynamic processes functionality of MPI-2 is not used
with the same frequency as point to point, collectives or one
sided communication on current MPI applications. For this
reason, their exclusion was found to be acceptable in the
first release of RCKMPI. The spawn, connect and disconnect
operations are necessary to support dynamic processes. Con-
nect and accept are implemented at the channel, while spawn
involves the interaction of the process manager and several
parts of the library.

Start Accept

Get Context ID

Is root in
PG?

Write
local PG data

PG data read at
child PG?

Local PG size >
1?

Write child
root ID and

child PG size

Read child
PG data

Barrier

Barrier

Read child
PG data

Obtain local root
core ID

Barrier

Add remote PG to
local list of PGs

Build
intercommunicator

End

YesNo

Yes

Yes

No

No

Signal child root:
done reading PG data

Signal child:
PG data written

Read child
root ID and

child PG size

Is root in
PG?

Yes

No

Fig. 4. Flow diagram of the accept algorithm.

For the addition of connect and accept to the channel, the
gEWS was used. Since it is a shared resource, in this case
used by the point-to-point communication subsystem, there
are necessary steps before it can be used. The owner of the
gEWS is the local core; therefore, its global state is stored in
a local 32 bit field. If the gEWS is in use, the channel calls
the progress routines until the send queues are cleared; after
that, the gEWS is free to be used for any other purpose.

The spawn operation involves two process groups: the
parent group and the child group. At each of these groups,
one of the processes is the root process. The algorithm used
is similar to the default one found in MPICH2, but latency
optimized by the use of the gEWS directly, instead of relying
on the non blocking point to point functionality provided by
the channel implementation.

The parent group does an accept operation while the child
group does a connect operation (flow charts shown in figures 4
and 5). The root process of each group writes the core IDs and
other data required to build a process group structure, on its
own gEWS. Then, they contact each other, exchange minimal
but essential data: core ID where each is running, process
group ID and size of each remote process group. After this,
each root process shares this information with its peers, which
read the rest of the process group data directly from the gEWS

3

Start Connect

Get Context ID

Is root in
PG?

Write
local PG data

PG data written
by parent?

Local PG size >
1?

Write parent
root ID and

parent PG size

Barrier

Read parent
PG data

Barrier

Read parent
PG data

Obtain local root
core ID

Barrier

YesNo

Yes

Yes

No

No

Signal parent root:
done reading PG data

PG data read by
parent?

No

Read parent
root ID and

parent PG size

Is root in
PG?

No

Yes

Yes

Add remote PG to
local list of PGs

Build
intercommunicator

End

Fig. 5. Flow diagram of the connect algorithm.

of the remote root process.
Before this operation is possible, the process manager passes

the business card of the root parent to the root process at
the newly spawned child process group. The root process of
the parent group then waits for the child root to initialize
the communication, and this is where the connect and accept
operations start. The new process group generated by these
pair of operations, is added to the process group list of each
process. These groups are disjoint and can be reached through
an inter-communicator, as specified in the standard.

IV. PERFORMANCE EVALUATION

In this section, the original and new SCCMPB channels’
performance is evaluated with the use of the SKaMPI 5.0
benchmark suite and the NAS 3.3 LU and BT benchmarks.
The software, hardware and configuration are the same for
all tests in this section. The Rocky Lake SCC systems used
for testing were configured with maximum frequency settings:
800MHz for the cores, 1600Mhz for the tiles and routers and
1066Mhz for the DDR3 memory. A Linux 2.6.38 image was
loaded in all cores. The GCC compilers version 4.5 we used
to compile the kernel, libraries and applications. Both C and
Fortran MPI applications were compiled with the -O3 flag.

1

10

100

1000

10000

100000

1000000

4 32 180 1024 5792 32768

L
a
t
e
n
c
y

(
μ
S
)

Buffer Size (bytes)

ORIGINAL - 3 Processes
NEW - 3 Processes
ORIGINAL - 48 Processes
NEW - 48 Processes

Fig. 7. MPI Gather scaling with buffer size.

1

10

100

1000

10000

100000

1000000

4 32 180 1024 5792 32768

L
a
t
e
n
c
y

(
μ
S
)

Buffer Size (bytes)

ORIGINAL - 3 Processes
NEW - 3 Processes
ORIGINAL - 48 Processes
NEW - 48 Processes

Fig. 8. MPI Scatter scaling with buffer size.

A. SKaMPI 5

SKaMPI[12] is a benchmark suite that covers most of
the MPI-2 API. Results for point to point and collective
communication are presented here. Figure 6 shows point to
point latency scaling with MPI Sendrecv (round trip times)
for different message sizes. When running with 48 processes,
the new channel scales better than the original for buffers
greater than 128 bytes; at 16KB messages, their point to point
performance differs by a factor of 6.25.

MPI Gather scaling for different buffer sizes is presented
in figure 7. In the 48 process case and for 16KB buffers,
their latency differs by a factor of 2.6. Scaling results for
MPI Scatter are shown in figure 8. For the 48 process case,
the new channel outperforms the original by a factor of up to
4.6.

MPI Bcast scaling results, for 1KB and 256KB buffers,
are presented in figure 9. In the 1KB buffer case, scaling is
similar in both channels (as shown in 9(a)); however, absolute
performance is much better in the new channel. For 1KB
buffers, the latency differs by a factor of 3.5 in the 48 process
case. For 256KB buffers, the difference in latency does not
change much with process count (as presented in 9(b)). The
latency of the old and new channels differ by a factor of 3.2,
in this case.

4

1

10

100

1000

10000

T
i
m
e

(
μ
S
)

Message Size (bytes)

ORIGINAL - 3 Processes
NEW - 3 Processes
ORIGINAL - 48 Processes
NEW - 48 Processes

Fig. 6. MPI Sendrecv scaling with message size.

10

100

1000

3 6 12 24 48

L
a
t
e
n
c
y

(
μ
S
)

Processes

ORIGINAL - 48 Processes
NEW - 48 Processes

(a) 1KB buffers

1000

10000

100000

3 6 12 24 48

L
a
t
e
n
c
y

(
μ
S
)

Processes

ORIGINAL - 48 Processes
NEW - 48 Processes

(b) 256KB buffers

Fig. 9. MPI Bcast scaling with process count for 1K and 256K buffers.

Scaling results for MPI Barrier are presented in figure 10.
The latencies for this operation are very similar for both
channels. This is expected since for small payloads (16 bytes
and below) the same communication protocol is used by both
channels.

B. NAS Benchmarks

The NAS parallel benchmarks[13] are useful for evaluating
parallel computers. The algorithms used by it are found very

10

100

3 6 12 24 48

L
a
t
e
n
c
y

(
μ
S
)

Processes

ORIGINAL - 48 Processes
NEW - 48 Processes

Fig. 10. MPI Barrier scaling.

often in scientific applications. Results for the BT and LU
benchmarks, at sizes W and A, are presented in this section.

Both channels perform nearly the same when running the
BT benchmarks (shown in figure 11) with 4 to 16 processes.
For the BT benchmark, the new channel shows a performance
improvement over the original one when running with 25 and
36 processes (as shown in 11(a) and 11(b)). The improvement
is higher for the W size of the benchmark.

Results from the LU benchmark (figure 12) are very similar
to those in the BT one. Performance when running with 4 to 16
processes is nearly the same with both channels. When running
with 32 processes, the new channel shows better results (as
presented in 12(a) and 12(b)).

V. CONCLUSION AND FUTURE WORK

An improved design for the SCCMPB channel of RCKMPI
was presented. The design consists of a base and an extended
protocol that compliment each other. In contrast to the original
design, the use of these new protocols resulted in channel
bandwidth that is less dependent of process count; this was
a consequence of the use of large EWS placed at the sender,
that is shared for communication with several processes si-

5

0
200
400
600
800

1000
1200
1400

4 9 16 25 36

M
F
L
O
P
S

Processes

ORIGINAL
NEW

(a) Size W

0
200
400
600
800

1000
1200
1400
1600
1800

4 9 16 25 36

M
F
L
O
P
S

Processes

ORIGINAL
NEW

(b) Size A

Fig. 11. NAS BT scaling with process count.

0
200
400
600
800

1000
1200
1400
1600

4 8 16 32

M
F
L
O
P
S

Processes

ORIGINAL
NEW

(a) Size W

0
200
400
600
800

1000
1200
1400
1600
1800

4 8 16 32

M
F
L
O
P
S

Processes

ORIGINAL
NEW

(b) Size A

Fig. 12. NAS LU scaling with process count.

multaneously and reduces the number of round trips required
to complete a transfer.

Performance results from the SKaMPI and NAS parallel
benchmarks were presented. The new design of the SCCMPB
channel clearly outperformed the original one when running
MPI jobs that use the 48 cores of the SCC; the advantage
could be better observed in the SKaMPI point-to-point and
collective tests. Good results were also observed for the NPB
benchmarks for process counts larger than 25; the improve-
ments in these benchmarks are not as large, since they have
high computation areas and the improved channel performance
only affects MPI communication times.

The way the MPB is partitioned was also modified. The new
scheme allowed the MPB to be used by other subsystems of
the MPI library and for optimized operations. This flexibility
was used to add support for MPI-2 dynamic processes, by
the addition of accept and connect operations that use the
MPB directly. Future implementations of optimized collectives
and one sided operations were also made possible by this
new approach; these are good targets for future performance
improvements to the RCKMPI library.

REFERENCES

[1] Steffen Christgau, Simon Kiertscher, and Bettina Schnor. The benefit of
topology awareness of MPI applications on the SCC. In Diana Göhringer,
Michael Hübner, and Jürgen Becker, editors, MARC Symposium, pages
47–51. KIT Scientific Publishing, Karlsruhe, 2011.

[2] Jim Held. “Single-chip Cloud Computer” an IA tera-scale research
processor. Euro-Par Workshops, volume 6586 of Lecture Notes in
Computer Science, page 85. Springer, 2010.

[3] Timothy G. Mattson, Rob F. Van der Wijngaart, Michael Riepen, et al.
The 48-core SCC processor: The programmer’s view. Supercomputing
Conference. ACM/IEEE, New Orleans, LA, USA, November 2010.

[4] Carsten Clauss, Stefan Lankes, Jacek Galowicz, Thomas Bemmerl, iR-
CCE: A Non-blocking Communication Extension to the RCCE Commu-
nication Library for the Intel Single-Chip Cloud Computer December 17,
2010, Chair for Operating Systems, RWTH Aachen University

[5] Isaı́as A. Comprés Ureña, Michael Riepen, and Michael Konow. RCKMPI
- lightweight MPI implementation for intel’s single-chip cloud computer
(SCC). EuroMPI, volume 6960 of Lecture Notes in Computer Science,
pages 208–217. Springer, 2011.

[6] Rob F. van der Wijngaart, Timothy G. Mattson, and Werner Haas. Light-
weight communications on intel’s single-chip cloud computer processor.
SIGOPS Oper. Syst. Rev., 45:73–83, February 2011.

[7] William Gropp. MPICH2: A new start for MPI implementations. Lecture
Notes in Computer Science, 2474:7, 2002.

[8] Carsten Clauss, Stefan Lankes, and Thomas Bemmerl. Performance
tuning of SCC-MPICH by means of the proposed MPI-3.0 tool interface.
EuroMPI, volume 6960 of Lecture Notes in Computer Science, pages
318–320. Springer, 2011.

[9] Randolf Rotta. On efficient message passing on the intel SCC. In
Diana Göhringer, Michael Hübner, and Jürgen Becker, editors, MARC
Symposium, pages 53–58. KIT Scientific Publishing, Karlsruhe, 2011.

[10] Keith Chapman, Ahmed Hussein, and Antony Hosking. X10 on the scc.
Santa Clara, United States, March 2011. Presented at the Second MARC
Symposium.

[11] Rob F. van der Wijngaart, Timothy G. Mattson, and Werner Haas. Light-
weight communications on intel’s single-chip cloud computer processor.
SIGOPS Oper. Syst. Rev., 45:73–83, February 2011.

[12] R. Reussner, P. Sanders, L. Prechelt, and M. Mueller. SKaMPI: A
detailed, accurate MPI benchmark. Lecture Notes in Computer Science,
1497:52, 1998.

[13] D. Bailey et al. The NAS parallel benchmarks. Technical Report RNR-
91-002, NAS Systems Division, January 1991.

6

The Path to MetalSVM:
Shared Virtual Memory for the SCC

Stefan Lankes∗, Pablo Reble∗, Carsten Clauss∗ and Oliver Sinnen†
∗Chair for Operating Systems, RWTH Aachen University

Kopernikusstr. 16, 52056 Aachen, Germany
Email: {lankes,reble,clauss}@lfbs.rwth-aachen.de

†Department of Electrical and Computer Engineering, University of Auckland
Private Bag 92019, Auckland 1142, New Zealand

Email: o.sinnen@auckland.ac.nz

Abstract—In this paper, we present first successes with building
an SCC-related shared virtual memory management system,
called MetalSVM, that is implemented using a bare-metal hy-
pervisor, located within a virtualization layer between the SCC’s
hardware and the operating system. The basic concept is based
on a small kernel developed from scratch by the authors: A
separate kernel instance runs on each core and together they
build the virtualization layer. High performance is reached
by the realization of a scalable inter-kernel communication
layer for MetalSVM. In this paper we present the employed
concepts and technologies. We briefly describe the current state
of the developed components and their interactions leading to
the realization of a Shared Virtual Memory system on top of
our kernels. First performance results of the SVM system are
presented in this work.

Index Terms—Many-Core, SCC, SVM, Non-Cache-Coherent
Shared-Memory

I. INTRODUCTION

Since the beginning of the multicore era, parallel processing
has become prevalent across-the-board. A further growth of
the number of cores per system implies an increasing chip
complexity on a traditional multicore system, especially with
respect to hardware-implemented cache coherence protocols.
Therefore, a very attractive alternative for future many-core
systems is to waive the hardware-based cache coherency and
to introduce a software-oriented approach instead: a so-called
Cluster-on-Chip architecture.

The Single-chip Cloud Computer (SCC) experimental pro-
cessor [1] is a concept vehicle created by Intel Labs as a
platform for many-core software research, which consists of 48
P54C cores. This architecture is a very recent example for such
a Cluster-on-Chip architecture. The SCC can be configured to
run one operating system instance per core by partitioning the
shared main memory in a strict manner. However, it is possible
to access the shared main memory in an unsplit and concurrent
manner, provided that the cache coherency is then ensured by
software.

A common way to use such an architecture is the utilization
of the message-passing programming model. However, many
applications show a strong benefit when using the shared
memory programming model. The project MetalSVM aims the
realization of a SCC-related shared virtual memory manage-

ment system that is implemented in terms of a bare-metal
hypervisor and located within a virtualization layer between
the SCC’s hardware and the current operating system. This
new hypervisor will undertake the crucial task of coherency
management by the utilization of special SCC-related features
such as its on-die Message-Passing Buffers (MPB). In order
to offer a maximum of flexibility with respect to resource
allocation and to an efficiency-adjusted degree of parallelism
a dynamic partitioning of the SCC’s computing resources into
several coherency domains will be enabled.

This paper focuses on the design of the MetalSVM kernel
and its drivers optimized for the SCC as well as the SVM
system. In Section II we refer to our previous work on the
SCC and summarize related work regarding SVM system.
We present a detailed insight in Section III to the design
of MetalSVM and our small self-developed operating system
kernel that builds the base of MetalSVM. The realization
of an SVM system prototype is presented in Section VI.
Important facts on the SCC supporting the path to MetalSVM
are mentioned in Section IV and V with a focus on the
memory system of the SCC followed by the implementation
of a communication layer for MetalSVM. Section VII contains
the knowledge on the port of a virtual IP interface to the SCC
and presents related benchmark results. In Section VIII we
describe first results for an exemplary parallel program using
the SVM system prototype.

II. PREVIOUS WORK

Referring to our previous work on the SCC we present
further development on the fast inter-kernel communication
layer as well as a closer look at the SVM system in this
paper. The motivation and concept of our MetalSVM has been
introduced at the 3rd MARC Symposium [2]. In addition to a
summary of previous work on cluster-based SVM systems we
first outline the potential of our approach. Other contributions
to this Symposium have also shown that the memory system
of the SCC is special and established methods hold a high
potential for optimization. [3]

In [4], we evaluated different programming models (es-
pecially shared-memory and message-passing) for the SCC
and we have shown how these models can be improved with

7

respect to the SCC’s many-core architecture. Our experiments
have shown that in particular the shared-memory programming
is very complex and involved if caches are enabled because
of the missing hardware cache coherency.

The Chair for Operating Systems (LfBS) at the RWTH
Aachen University developed since 1996 the Shared Memory
Interface (SMI) [5] as a programming interface that provides
a large function set such as allocation and management of
cluster-wide shared memory regions and its distribution and
synchronization services. SMI provides no virtual common
address space in contrast to an SVM system. However, shared
memory regions can be explicitly allocated and managed.
A small subset of its capabilities is used in this paper to
benchmark our prototype of MetalSVM.

Existing SVM solutions are mainly based on traditional
message-passing oriented networks. However, the SCC has the
capability to directly access memory. From a programmer’s
perspective this is comparable to the Scalable Coherent Inter-
face (SCI) standard [6] that belongs to the memory-mapped
networks. In addition to the offer of a transparent read/write
access to remote memory, SCI also defines a cache coherency
protocol. But, PCI-SCI adapter cards that are available on the
market do not support this feature. Several research projects
used SCI-based PC clusters, which possessed a similar char-
acteristic like SCC. Both systems consist of several processing
units which are able to communicate transparently over shared
memory regions without the support of cache-coherency.

At the LfBS, we have developed an SVM system for Intel
architecture based compute clusters, called SVMlib [7], [8],
which stores write notices and related changes in the global
memory to realize a Lazy Release Consistency [9] model.
Experiments have shown that the implementation of SVMlib
at user level decreases the usability.

Furthermore, SVM systems can be integrated into virtual
machines providing a simpler and more transparent access to
the shared memory for an easy application of common oper-
ating systems and development environments. The vSMP ar-
chitecture by ScaleMP1 enables a cluster-wide cache-coherent
memory sharing by implementing a virtualization layer un-
derneath the OS that handles distributed memory accesses
via InfiniBand-based communication on x86-based compute
clusters. A similar project is vNUMA [10], which used Eth-
ernet as interconnect. This project shares characteristics with
our hypervisor approach such that the implementation of the
SVM system takes an additional virtualization layer between
the hardware and the operating system.

In fact, we want to exploit the SVM system with SCC’s
distinguishing capabilities of transparent read/write access to
the global off-die shared memory.

III. DESIGN OF METALSVM

The concept of MetalSVM is to run a common Linux version
without SVM-related patches on the SCC in a multicore

1http://www.scalemp.com

manner. For a better understanding, the structured diagram of
Figure 1 illustrates the design approach of MetalSVM.

A major advantage of our approach, as introduced in [2],
is no binding of MetalSVM to a certain version of Linux,
because integrating would for example mean patching the
kernel. The light weight hypervisor is based upon the idea
of a small virtualization layer based on a monolithic-kernel
developed from the scratch by the authors. A well-established
interface to run Linux as para-virtualizated guest which is part
of the standard Linux kernel is used to realize our hypervisor.
Consequently, no modifications to the Linux kernel are needed.

Application

Para-virtualized Standard Linux

Hypervisor

Kernel Kernel

Core 0 Core n

Communication

Layer

SCC Hardware
M

et
al

S
V

M

Fig. 1: Concept and Design of MetalSVM

The aim of common processor virtualization is to provide
multiple virtual machines for separated OS instances. We want
to use processor virtualization that provides one logical but
parallel and cache coherent virtual machine for a single OS
instance, for instance Linux, on the SCC. Hence, the main
goal of this project is to develop a bare-metal hypervisor, that
implements the required SVM system (and thus the memory
coherency by applying appropriate consistency models) within
this hardware virtualization layer in such a way that an
operating system can run almost transparently across the entire
SCC system.

IV. MEMORY SYSTEM

In this section we first briefly recap the memory system of
the SCC and second outline the effects on the realization of
an SVM system.

The SCC possesses four memory controllers providing a
maximum capacity of 64 GByte of DDR3 memory. Each
core has logically assigned 8 kByte of a tile’s local memory
buffer, called message passing buffer (MPB). To close the gap
between register and main memory access time, the SCC cores
have a classical memory hierarchy consisting of a local Level 1
and Level 2 cache. In addition to a Level 1 data and instruction
cache size of each 8 kByte, all cores have a local Level 2 cache
size of 256 kByte. Caches are organized with a cache-line size
of 32 Byte in a non cache-coherent manner.

Intel Labs extended the P54C instruction set architecture
(ISA) by a new instruction CL1INVMB that is closely con-
nected to a new memory type (MPBT) indicated by a flag on

8

page granularity to support the use of the MPB. Accesses to
this new memory type bypass the Level 2 cache and by default
message-passing buffer entries are tagged.

Moreover, the flag that indicates MPBT can be used in a
more generic way. Generally speaking, information about a
special data type is tagged in hardware. However, this mapping
is not fixed and can be adapted to use the hardware support
that facilitates a coherent view on the MPB also for an SVM
system.

Another extension of the SCC cores to the P54C architecture
is a write combine buffer that holds one cache-line of 32 Byte.
In write through mode accesses touching the same cache-line
are wrapped together and written back en block from the
Level 1 cache to the next level in memory hierarchy. This
behavior may turn out to be useful for the SVM system. The
intention for adding this feature was to accelerate the message
transfer between the cores [1].

The P54C architecture uses an external Level 2 cache with-
out the possibility to flush contents using hardware support. A
flush routine has been developed that replaces all L2 contents
by reading invalid data but this turned out to be costly. [11]
We limit our first experiments to an SVM system prototype
that only enables L1 caching for a shared memory region.
To control write strategy of cached data a page table entry
contains a bit, that the memory management of MetalSVM
sets for shared pages to uses a write through strategy.

Obviously, a drawback of this solution is a significantly
smaller amount of cache in use for shared regions. But to
waive the use of Level 2 cache for shared memory regions
a major advantage arises that is the possibility to tag SVM
related data. Thus, a selective invalidate of cached data via
CL1INVMB is possible. Due to the fact that our current SVM
system uses write through, a method called fool write combine
buffer is sufficient to flush cached data. The method simply
touches an MPBT tagged cache-line that is only used for this
purpose. Thus, the off-die memory holds current data.

V. COMMUNICATION LAYER

The realization of the hypervisor needs a fast inter-core
communication layer, which will be used to manage resources
between the kernels. An important requirement to this commu-
nication layer is the support of asynchronous message-passing
because it is not predictable when a kernel needs an exclusive
access to a resource that is owned or managed by another
kernel instance. As a result, the synchronous communication
library RCCE [12] is not suitable for MetalSVM. An alternative
approach is to copy the message to the message-passing buffer
of the receiving core and afterwards to signalize the incoming
message with a remote interrupt.

Interrupt Handling

Realization of event based communication between the
SCC-cores needs either interrupts or events have to be checked
at defined points in time. We followed an interrupt driven
approach for our communication layer to enable a fast com-
munication. On the one hand the latency of signal passing is

important. On the other hand the time to process signals and its
scalability influences the performance of our communication
layer.

Previous versions of sccKit only supported the generation
of an Inter-Processor Interrupt (IPI) by writing directly to the
receiving core’s configuration register. Hence, the receiving
core can be interrupted this way but no information can
be obtained about the sender of a specific interrupt. Since
sccKit 1.4.0 the system FPGA holds a Global Interrupt Con-
troller (GIC) [13]. In addition to the direct method to generate
an IPI the possibility arises to indirectly generate an IPI using
the GIC. Consequently, this IPI can be used to obtain the
information by which core it has been raised.

Event processing of the mailbox system, described in the
following, is realized in the interrupt handler of MetalSVM.
With the focus on scalability the information on the sender
of an interrupt creates the option for a mailbox system to
selectively check mailboxes.

Mailbox System

A mailbox system has become part of MetalSVM’s com-
munication layer and extends iRCCE [14] to enable an event
driven and fast asynchronous communication path between
the SCC cores. For each communication path between two
cores a mailbox of one cache-line size is reserved at each
local MPB. Thus, the mailbox system takes 1.5 kByte of MPB
space per core assuming a maximum number of 48 cores.
RCCE provides a memory allocation scheme to manage the
remaining MPB space of 6.5 kByte.

Accesses to a specific mailbox of a target core are restricted
by only allowing the receiver to read data and toggle a send
flag that the mailbox contains. A sender with the intention to
pass a signal is allowed, in addition to toggle the send flag, to
write data to the mailbox. Whenever a receiver toggles the send
flag a signal has been processed and when a sender toggles
the send flag a new signal has been placed. As a result of
this communication method the generation of a single reader
single writer problem leads to a simplified synchronization
scheme that is enabled by the restriction of accesses to the
mailboxes.

Signals between the cores are passed in a remote write and
local read approach in contrast to the local write and remote
read approach of the RCCE library. The mailbox system
reverses the data flow compared to the RCCE send respective
receive methods because event processing is realized in the
interrupt handler.

VI. SVM SYSTEM

The SVM system manages pages located in shared memory.
A coherent view on the virtual common address space is
enabled by flushing cached data at defined points in time. For
a first prototype three functions are sufficient to enable the use
of the SVM system and thereby explore the capabilities of the
SCC for a software managed coherence scheme. Following
SMI like functions are provided under MetalSVM to a kernel
task of the current SVM version:

9

• svm_alloc
• svm_flush
• svm_invalidate

The function svm_alloc is used to allocate an amount
of bytes in a cached shared memory region. The function
svm_flush is used to implicitly write back modified data2,
and svm_invalidate to remove possibly outdated data
from the cache. This is either done within the interrupt handler
of the current page owner or within the page fault handler on
the core where the access violation occurs.

The SVM system of MetalSVM uses the mailbox system for
the crucial task to change access permissions of shared pages.
Therefore, a signal is sent to the page owner which can be
identified because the information of ownership is located in
a shared memory region and therefore accessible by all cores.
If the ownership has changed in the meantime, e. g. another
core has requested the page, the receiver of the signal has to
forward the message to its new destination. As a result, the
first sender of a signal in addition to the address of the target
shared page is necessarily encoded by a signal, so that the
owner vector entry can be updated.

. . .

page frames

Shared off-chip DRAM

. . . 47 . . .

owner vector

Private off-chip DRAM

Core 0 Core 47

entry

page tables

entry

page tables

Message Passing Buffer
2

1

3

4

Fig. 2: Concept and design of the SVM subsystem

A strong consistency model is supported by the prototype
implementation of our SVM system. At each point in time only
one owner of a page exists which is allowed to read or write to
it. This ownership is registered in an ownership vector, which
is also located in the off-die memory as exemplarily illustrated
by Figure 2. Each core possesses its private page tables.

Whenever a page is accessed without permission a kernel
enters the page fault handler and sends a request to the current

2In this scenario, flushing of the write combining buffers.

owner via the mailbox system. Regarding the strong consis-
tency model no parallel access to shared pages is allowed and
the ownership has to be exchanged. First, the current owner
of the page clears its access permission. Second, it flushes the
cache and third sets the new owner id to the ownership vector
as an acknowledgment. As a result the core that requested
access is registered as the new owner. After this procedure the
requesting core can continue its calculation. Obviously, the
performance of the mailbox system has a direct impact to the
performance of the SVM system.

Figure 2 shows an example where an SVM related page fault
occurs at Core 0 involving Core 47. Following steps have to
be performed:

1) A page fault occurs at Core 0
2) After sending a message to Core 47 requesting the page,

Core 0 is polling on the owner vector entry
3) Core 47 flushes its cache and changes the page table

entry
4) Core 47 changes the ownership

After this procedure Core 0 is the new owner and hereby has
full access permissions.

VII. IP STACK

In this section we present the realization of two IP devices,
one memory mapped virtual device for the realization of on-
die communication and one eMAC device for the off-die
communication. For this purpose the light-weight IP (lwIP)
stack [15] has been integrated into the MetalSVM kernel. As a
result, established BSD sockets are supported to enable an easy
integration of standard application. In addition, we analyze a
variant that interacts with the IP driver using an overloaded
socket that bypasses the full IP stack. For further performance
optimizations the developed devices are fully configurable
having options to choose the MPB or off-chip DRAM for
communication and to enable L1 caching. Applications for
the described devices can be a monitoring the SVM system or
providing an IP service to the guest operating system. Here,
the guest can use a tunnel device to hand down IP packets to
MetalSVM.

In principle, the first driver is a porting of Linux’s eMAC
device driver to lwIP and builds an interface to the Ethernet
ports that are connected to the SCC. We used the driver
of SCC Linux from sccKit 1.4.1 within the scope of Linux
kernel 2.6.38.3-jbrummer as a reference, which uses
non-cachable memory for the communication between kernel
and hardware device. Again, the SCC offers the possibility
to invalidate in one cycle the cache entries for MPBT tagged
pages. The option to enable the L1 cache for the receive buffers
of the eMAC device generates the possibility to visualize the
benefit of this hardware support for communication. Here,
specific cache entries have to be invalidated before the receiver
reads data from its receiver buffer. When compared to the
Linux driver that holds the L1 cache disabled for the receive
buffers, a positive impact on performance is expected for
the MetalSVM driver that reads a whole cache-line from the
memory.

10

1 4 16 64 256 1 k 4 k 16 k
0

10

20

30

40

Packet Size [Byte]

T
hr

ou
gh

pu
t
[M

B
y
te
/
s]

Linux eMAC device
MetalSVM eMAC device
MetalSVM eMAC device L1 cache

(a) SCC→MCPC

1 4 16 64 256 1 k 4 k 16 k
0

10

20

30

40

Packet Size [Byte]

(b) MCPC→SCC

Fig. 3: Transfer Throughput between MCPC and SCC via eMAC

Obviously this method reduces the number of memory
accesses up to a factor of:

8 · tCM

tCM + 7 · tCH

Where, tCM is the time for a cache miss and tCH is the time
for a L1 cache hit.

The second driver uses an established standard and enables
a virtual IP interface to realize inter-kernel communication.
The support of standard interfaces for communication is not
in the focus of MetalSVM. However, a driver has been written
that realizes communication via memory mapped regions. For
this driver a configuration exists to use either the off-die or
the on-die memory (MPB).

The first configuration uses the off-die shared memory for
communication and therefore generates no load to the MPB.
An application might be to monitor the SVM system. The
use of the second configuration is preferred to reach a higher
performance. However, using the MPB can generate noise to
the SVM system that runs in parallel.

In principle, each receiver optionally creates its own receive
buffer either in on-die or off-die memory. The senders copy
their data directly into the receive buffer and wake up the
receiver via an inter processor interrupt. To allow parallel
access between the receiver and senders, the receive buffer
is managed as heap. The maximum transfer size is:

1

2
· sizeof(buffer)− sizeof(cacheline)

The result of the split of larger messages into smaller sub-
messages is that the receiver is able to process sub-messages
that are present during the next transfer operation of the sender.

The data structure to manage the heap is located at the
off-die memory to increase the size of the receiver buffer. In
contrast to the presented mailbox system the lwIP drivers use

only one receive buffer per core. This is because the incoming
messages are clearly larger than a mail of the mailbox system.
Accesses to the receive buffers have to be synchronized.
Therefore, the current version uses RCCE locks which enable
an access to the hardware implemented Test-And-Set registers.
Many features of the IP stack are needless for the inter-core
communication. For instance, on the SCC it is not possible
to receive corrupt data. To benefit from this behavior, we
have developed a prototype, which emulates the BSD socket
interface, bypasses the IP stack and forwards the messages
directly to the receivers. In our approach, a parallel using of
the IP stack and the bypassing approach is possible.

A. Benchmark Results

All diagrams of this section show the throughput average
by different package size from small packages of 1 Byte up
to large packages of 32 kByte. The test platform has been
configured with a core frequency of 533MHz, a memory and
mesh frequency of 800MHz. The driver uses as receive buffer
size either 8 kByte for the off-die or 7 kByte for the on-die
memory. For the evaluation of the performance of MetalSVM’s
IP stack the established benchmark netio3 has been used.

First of all, we present the results of our eMAC driver in
comparison to the driver of SCC Linux. We used a standard
configured SCC and MCPC from the MARC Data Center.
Figure 3b shows the throughput from MCPC to SCC and Fig-
ure 3a illustrates the inverse direction. By enabling the cache
for the receiving buffer of the SCC, the sending throughput of
MCPC is increased by factor 5. These results document the
huge impact of the MBPT flag.

Figure 4a shows the performance of the inter-core commu-
nication using the full IP stack. The performance of the current
Linux driver is added as a reference.

3http://www.ars.de/ars/ars.nsf/docs/netio

11

1 4 16 64 256 1 k 4 k 16 k
0

20

40

60

80

Packet Size [Byte]

T
hr

ou
gh

pu
t
[M

B
y
te
/
s]

Linux MPB device
MetalSVM MM device
MetalSVM MM device L1 cache
MetalSVM MM device via MPB

(a) Full lwIP version

1 4 16 64 256 1 k 4 k 16 k
0

20

40

60

80

Packet Size [Byte]

(b) Bypassing version

Fig. 4: Sending Throughput from Tile 0 to Tile 1

It can be noticed that the current Linux driver shows a
poor performance and should be improved. All versions of
our driver, which optionally use the off-die memory , the
off-die memory with enabled L1 cache or the message
passing buffers perform clearly better than the standard
Linux driver, which also uses the message passing buffer as
transport medium.

Figure 4b shows the results of bypassing the IP stack. When
the throughput of the bypassing version is compared with
the throughput of the lwIP versions it can be noticed that
bypassing the IP stack results in a higher peak performance.
However, regarding small packets below a size of 256 Bytes
the lwIP version benefits from the usage of Nagle’s algorithm
that combines small packages. [16] The maximum of the
throughput is reached at a package size of 2 kByte.
Here, the package size is the largest size to the power of two
that fits twice into the message passing buffer regarding the
requirements of the RCCE library.

VIII. APPLICATION

For the demonstration of our SVM system we have chosen
a classical synchronous iteration program example. The heat
distribution of square metal sheet with known temperatures
at its edges represents a two-dimensional Laplace problem.
Figure 5 illustrates the further described method.

The resulting partial differential equation can be solved
with the common Jacobi Over Relaxation (JOR) algorithm
standing for a simple parallel program example using a shared
memory approach. The Jacobi iterations can be described by
the following formula:

uk+1
i,j =

1

4
· [uk

i−1,j + uk
i+1,j + uk

i,j−1 + uk
i,j+1]

An analysis of the capabilities offered by the MetalSVM
layer is reached by executing kernel threads in the MetalSVM

kernel. Therefore, the function svm_alloc is used in a
collective way to allocate a shared memory region with Level
1 cache enabled.

Allocated memory is used as follows: The simulation data
of 1024×512 double values are stored in two arrays namely
old and new. After each iteration the values from new are
moved to old by exchanging the references. A barrier follows
to ensure that iterations are processed synchronously. We used
the linear barrier implementation of the RCCE library. A static
distribution to n cores of the squared problem size is used.
Each core iterates over N/n lines. The shared memory ap-
plication assumes a synchronous behavior after each iteration
which creates the requirements for an SVM system to provide
correct data. Enabled caches have to be flushed and invalidated
implicitly, regarding a strong release consistency model, or
explicitly, regarding a lazy release consistency. The current
version of MetalSVM supports both as described in Section VI.

ui−1,j

ui+1,j

ui,j−1

ui,j+1

N

N

Fig. 5: Heat Distribution Problem

12

Figure 6 shows benchmark results of the previously de-
scribed application with a different core count on the SCC plat-
form 4. Curve depicts terms of a message passing laplace
variant based on iRCCE [14], which uses a non-blocking
behavior to exchange rows after each iteration. Curves
and represent the performance measurements of a strong
consistency model. The first setup is the usage of only one
memory controller (MC) holding the entire matrix. Here, the
well known memory wall problem occurs. The consequence is
a reduction of the scalability. As a second setup the matrix is
statically partitioned to all four MC’s to distribute the memory
load. The result is a better scalability up to 8 cores. The
scalability has to be improved for the use of more than 8 cores.
As a third setup a lazy release memory model has been applied
to the given problem. Here, the caches are flushed after each
iteration without the generation of an interrupt or an exception.
Measurements of this setup show a nearly optimal result.

1 2 4 8 16 32 48
0

100

200

300

400

Cores

Ti
m

e
[s
]

strong consistency
strong and all MC’s
lazy release
message passing via iRCCE

Fig. 6: Laplace Runtimes

Nevertheless, it has to be considered that the JOR algorithm
is an extremely stressful example for an SVM system. Here,
the barrier after each iteration leads to a synchronized access
of all cores to their neighbors’ data. In the case of a lazy
consistency, the majority of cores send a request mail and IPI
to its neighbor just after the synchronization point. Certainly,
for such an extremely stressful example the results are ex-
cellent. The linear runtime of the shared memory application
is approximately half of the linear runtime of the message
passing application. What shows the impact of the write
combining buffer. In this experiment the message passing
application reaches a super-linear speedup in a region of 32 to
48 cores by using the L2 Cache. Here, the problem size fits
into the L2 Cache.

4core/mesh/memory frequency of 533/800/800 MHz

IX. CONCLUSIONS AND OUTLOOK

In this paper, we have presented our first steps to design
and implement a strong memory model for the SVM system
that has been integrated into MetalSVM. The basic concept
is based on a mailbox system with a low-latency inter-
kernel communication layer. First benchmark results of our
SVM system prototype are promising. In fact, the overhead
of the Strong Release Consistency compared to the Lazy
Release Consistency Model is tolerable. Moreover, this paper
shows that the current drivers of SCC Linux’s IP stack have
potential for improvement. In the majority of the presented
benchmarks the IP stack of MetalSVM reaches a significantly
better performance.

In the future, we will investigate other, weaker memory
models, to achieve the best performance for our bare-metal
hypervisor. We plan to use experiences [17] from the design of
kernel extensions for NUMA systems to reach a more dynamic
memory distribution strategy like Affinity-on-Next-Touch [18].
In addition, improvements regarding the scalability of our
synchronization layer and the collective operations ,provided
by MetalSVM, are in progress.

We aim for the nearer future to increase of the usability
of MetalSVM to address a broader audience. Besides, we
recommend an integration of our improved IP solution back
to SCC Linux so that all MARC members can benefit from
this work.

ACKNOWLEDGMENT

The research and development is funded by Intel Corpo-
ration. The authors would like to thank especially Ulrich
Hoffmann, Michael Konow and Michael Riepen of Intel
Braunschweig for their help and guidance.

13

REFERENCES

[1] SCC External Architecture Specification (EAS), Intel Corporation,
November 2010, Revision 1.1.

[2] P. Reble, S. Lankes, C. Clauss, and T. Bemmerl, “A Fast Inter-
Kernel Communication and Synchronization layer for MetalSVM,” in
Proceedings of the 3rd MARC Symposium, KIT Scientific Publishing,
Ettlingen, Germany, July 2011.

[3] M. van Tol, R. Bakker, M. Verstraaten, C. Grelck, and C. Jesshope, “Ef-
ficient Memory Copy Operations on the 48-core Intel SCC Processor,”
in Proceedings of the 3rd MARC Symposium, KIT Scientific Publishing,
Ettlingen, Germany, July 2011.

[4] C. Clauss, S. Lankes, P. Reble, and T. Bemmerl, “Evaluation and
Improvements of Programming Models for the Intel SCC Many-core
Processor,” in Proceedings of the International Conference on High
Performance Computing and Simulation (HPCS2011), Workshop on New
Algorithms and Programming Models for the Manycore Era (APMM),
Istanbul, Turkey, July 2011.

[5] M. Dormanns, K. Scholtyssik, and T. Bemmerl, “A Shared-Memory
Programming Interface for SCI Clusters,” in SCI: Scalable Coherent
Interface, H. Hellwagner and A. Reinefeld, Eds. Springer Verlag, 1999,
pp. 281–290.

[6] IEEE, Ed., Standard for Scalable Coherent Interface (SCI), ser. IEEE
Standards. The Institute of Electrical and Electronics Engineers, Inc.,
1992, no. 1596.

[7] S. Paas, T. Bemmerl, and K. Scholtyssik, “Win32 API Emulation on
UNIX for Software DSM,” in Proceedings of the 2nd USENIX Windows
NT Symposium, Seattle, Washington, USA, August 1998, pp. 39–46.

[8] K. Scholtyssik and M. Dormanns, “Simplifying the use of SCI shared
memory by using software SVM techniques,” in Proceedings of 2.
Workshop Cluster Computing, Karlsruhe, Germany, March 1999.

[9] P. Keleher, A. L. Cox, and W. Zwaenepoel, “Lazy Release Consistency
for Software Distributed Shared Memory,” in Proceedings of the 19th
Annual International Symposium on Computer Architecture, 1992, pp.
13–21.

[10] M. Chapman and G. Heiser, “vNUMA: A virtual shared-memory
multiprocessor,” in Proceedings of the 2009 USENIX Annual Technical
Conference, San Diego, CA, USA, Jun 2009, pp. 349–362.

[11] M. van Tol, “SCC L2 flush routine,” http://marcbug.scc-dc.com/
bugzilla3/show bug.cgi?id=195.

[12] T. Mattson and R. van der Wijngaart, RCCE: a Small Library for
Many-Core Communication, Intel Corporation, May 2010, Software 1.0-
release.

[13] The sccKit 1.4.x User’s Guide, Intel Labs, October 2011.
[14] C. Clauss, S. Lankes, T. Bemmerl, J. Galowicz, and S. Pickartz, iRCCE:

A Non-blocking Communication Extension to the RCCE Communication
Library for the Intel Single-Chip Cloud Computer, Chair for Operating
Systems, RWTH Aachen University, July 2011, Users’ Guide and API
Manual.

[15] A. Dunkels, Design and Implementation of the lwIP TCP/IP Stack,
Swedish Institute of Computer Science, 2001.

[16] J. Nagle, “Congestion control in IP/TCP internetworks,” SIGCOMM
Computer Communication Review, vol. 14, no. 4, pp. 11–17, 1984.

[17] S. Lankes, B. Bierbaum, and T. Bemmerl, “Affinity-On-Next-Touch: An
Extension to the Linux Kernel for NUMA Architectures,” in Proceedings
of the 8th International Conference on Parallel Processing and Applied
Mathematics (PPAM 2009), Workshop on Memory Issues on Multi- and
Manycore Platforms, Springer Berlin / Heidelberg, Volume 6067/2010
of LNCS, Wroclaw, Poland, 2010, pp. 576–585.

[18] L. Noordergraaf and R. van der Pas, “Performance Experiences on Sun’s
WildFire Prototype,” in Proceedings of the 1999 ACM/IEEE conference
on Supercomputing, Portland, Oregon, USA, November 1999.

14

Parallel AI Planning on the SCC
Vincent Vidal, Simon Vernhes, and Guillaume Infantes

Abstract—We present in this paper a parallelized version of an
existing Artificial Intelligence automated planner, implemented
with standard programming models and tools (hybrid Open-
MP/MPI). We then evaluate this planner with respect to its
sequential version through extensive experiments over a wide
range of academic benchmarks, on two different target architec-
tures: a small standard cluster and the research processor SCC
(“Single-chip Cloud Computer”) developed by Intel Labs and
made available to the research community through the MARC
program (“Many-core Applications Research Community”). We
obtain interesting speedups (super-linear in some cases) on both
architectures. Interestingly enough, these experiments also reveal
different behaviors between the cluster and the SCC.

I. INTRODUCTION

Automated Planning in Artificial Intelligence [1] is a general
problem solving framework which aims at finding solutions
to combinatorial problems formulated with concepts such as
actions, states of the world, and goals. For more than 50
years, research in Automated Planning has provided mathe-
matical models, description languages and algorithms to solve
this kind of problems. We focus in this paper on Classical
Planning, which is one of the simplest model but has seen
spectacular improvements in algorithm efficiency during the
last decade.

The sequential planning algorithm that will form the ba-
sis of our parallel algorithm has been implemented in the
YAHSP2 planner [2][3] which participated to the 4th and 7th

International Planning Competitions1 (IPC) in 2004 and 2011.
It uses a forward state-space heuristic search algorithm with
relaxed plan extraction inspired by the FF planner [4]. The
main differences with FF are that (1) the search algorithm is
a complete weighted-A* algorithm [5] (while FF first tries an
incomplete one), (2) the heuristic function is based on hadd

[6] instead the length of the relaxed plan length and (3) at each
node of the search, a lookahead strategy is performed before
classical node expansion in order to try to reach a node closer
to a goal state, in a computationally easy way by using actions
from the relaxed plan.

The parallelization scheme we propose is based on the
principle already used in TDS [7] and HDA* [8]: to distribute
search nodes among the processing units (PUs) based on a
hash key computed from planning states. In this way, the list
of nodes to be expanded (the open list) owned by each PU
are disjoint: computations made on a given state (applicable
actions, heuristic function, lookaheads, etc.) are performed
only once, by the PU the node belongs to. Another important

All authors are working at Onera, the French Aerospace Lab, in the DCSD
department, Toulouse center. Email addresses: first-name.last-name@onera.fr.

This work has been funded by the Onera research program PR-SCC and
supported by Intel Labs through a research proposal for working with Intel
SCC and the Many-core Applications Research Community (MARC).

1See http://ipc.icaps-conference.org/ for more information about the IPCs.

aspect is that communication between PUs can be performed
in an asynchronous way: a PU expands nodes from its open
list, sends sons to the PUs they belong to, and periodically
checks its incoming messages to incorporate new nodes into its
open list (between OpenMP threads, this last step is seamlessly
performed by writing to shared memory).

We evaluate the performance of the parallel algorithm with
respect to its sequential version over a wide range of academic
benchmarks issued from the IPCs, on two architectures: a
small standard cluster composed of four 12-core servers (48
cores in total), and the research processor SCC (“Single-chip
Cloud Computer”) embedding 48 cores on a single chip devel-
oped by Intel Labs. These experiments show that interesting
speedups, sometimes super-linear, are obtained thanks to the
parallelization. Unfortunately, some super-linear speed-downs
are also observed, which suggests some improvements to the
parallelized algorithm that could combine the advantages of
both. This behavior was not unexpected, as the parallelized
algorithm does not perform the same computations as the se-
quential version: the order of node evaluation being modified,
the search space is not explored the same way, which can help
or deserve the parallel algorithm.

The paper is outlined as follows. After introducing the
research domain of Classical Planning in Artificial Intelligence
and the mathematical STRIPS model of planning, we present
the sequential algorithm implemented into the YAHSP2 plan-
ner. We then briefly explain the principles of the parallelization
we propose, and the main modifications of the sequential
algorithm. After having described the experimental evaluation,
we conclude and draw some future works.

II. BACKGROUND ON CLASSICAL PLANNING IN AI

Classical Planning is about finding a sequence of actions
(possibly optimal) leading from an initial state towards a
defined goal. We make some assumptions about the world:

• finite number of possible states of the world,
• full observability: one always know the state of the world,
• determinism: the result of applying an action to a state s

is always a single state s′.
An example of an Automated Planning problem is described

in Figure 1. There, a robot arm can move a single block at
a time. It is able to unstack two blocks by taking the upper
one; stack a block on another; pick-up a block from the
table or put-down a block on the table. A planning algorithm
should find a plan (a sequence of defined actions) that the
robot can execute to reach the goal state from the initial one.

Planning is hard, in our case it has been shown to be
PSPACE-complete [9]. The major problem for planning al-
gorithms is to deal with the combinatorial explosion of the
number of states during search.

15

B A
C

Start State

C
B
A

Goal State

Fig. 1. An Automated Planning classic domain: BlocksWorld

a) PDDL (Planning Domain Definition Language):
PDDL [10] is a language commonly used to represent plan-
ning problems, as for instance in IPCs. It helps to compare
planners with well-established benchmarks2 (over 40 different
application domains and several thousand instances).

The operator stack of the previous domain (Figure 1)
written using PDDL syntax is shown below:

(: a c t i o n s t a c k
: p a r a m e t e r s (? ob ? underob)
: p r e c o n d i t i o n (and (c l e a r ? underob) (h o l d i n g ? ob))
: e f f e c t (and (arm−empty) (c l e a r ? ob)

(on ? ob ? underob) (not (c l e a r ? underob))
(not (h o l d i n g ? ob))))

After parsing a PDDL problem, planners transform the
PDDL first-order language into a set-theoretic representation
(sets of propositions) like STRIPS (see below). To do so,
PDDL operators, like (stack ?ob ?underob), are instanti-
ated into ground actions {(stack A B), (stack A C), . . . }.

b) The STRIPS model of Classical Planning: Planning
problems can be expressed into the STRIPS model defined as
follows. A state of the world is represented by a set of ground
atoms. A ground action a built from a set of atoms A is a
tuple 〈pre(a),add(a),del(a)〉 where pre(a) ⊆ A, add(a) ⊆
A and del(a) ⊆ A represent the preconditions, add effects
and del effects of a respectively. A planning problem can be
defined as a tuple Π = 〈A,O, I,G〉, where A is a finite set
of atoms, O is a finite set of ground actions built from A,
I ⊆ A represents the initial state, and G ⊆ A represents the
goal of the problem. The application of an action a to a state
s is possible if and only if pre(a) ⊆ s and the resulting state
is s′ = (s \ del(a)) ∪ add(a). A solution plan is a sequence
of actions 〈a1, . . . , an〉 such that for s0 = I and for all i ∈
{1, . . . , n}, the intermediate states si = (si−1 \ del(ai)) ∪
add(ai) are such that pre(ai) ⊆ si−1 and G ⊆ sn.

c) Prior work on Automated Planning: Different ap-
proaches exist [1]. One of the most successful for suboptimal
planning is state-space search where each node corresponds to
a state of the world and edges between nodes are applicable
actions which allow to move from a state s to a state s′ (state
transition). Finding a path from the initial state I (node) to
the goal state G provides a plan for a problem. Heuristic
search algorithms like A* are mainly used to find such a path.
Various domain-independent heuristics have been developed
to guide search. Many successful state-of-the-art sequential
planners are based on Fast Downward [11].

Several approaches to parallel planning have been proposed
in recent years. Most of them are modifications of the A*
algorithm, trying to transform sequential planning techniques

2The benchmark problems used in past planning competitions are all
available on the IPC webpages

Algorithm 1: plan-search
input : a planning problem Π = 〈A,O, I,G〉 and a weight ω for the

heuristic function
output : a plan if search succeeds, ⊥ otherwise

1 open ← closed ← ∅
2 create a new node n:
3 n.state ← I
4 n.parent ← ⊥
5 n.steps ← 〈〉
6 n.length ← 0
7 n′ ← compute-node(Π, ω, n, open, closed)
8 if n′ 	= ⊥ then return extract-plan(n′)
9 else

10 while open 	= ∅ do
11 n ← argminn∈open n.heuristic
12 open ← open \ {n}
13 foreach a ∈ n.applicable do
14 create a new node n′:
15 n′.state ← (n.state \ del(a)) ∪ add(a)
16 n′.parent ← n
17 n′.steps ← 〈a〉
18 n′.length ← n.length+ 1
19 n′′ ← compute-node(Π, ω, n′, open, closed)
20 if n′′ 	= ⊥ then return extract-plan(n′′)

21 return ⊥

into parallel ones. Some algorithms use a distributed hash
function to allocate generated states to a unique processing
unit and avoid unnecessary state duplications, like HDA* [8].
Parallel Frontier A* with Delayed Duplicate Detection [12]
uses a strategy based on intervals computed by sampling to
distribute the workload among several workstations, targeting
distributed-memory systems. The Adaptive K-Parallel Best-
First Search [13] algorithm presents an asynchronous parallel
search for multi-core architectures. This paper also provides
a recent bibliography about parallel planning. In the IPC
2011 competition, a multi-core track has been started. The
most efficient planners were the ones using a portfolio-based
approach, meaning they run different planners (or the same
planner with different configurations) on each processor (or
core) like ArvandHerd [14] and ay-Also-Plan Threaded [15].

III. THE SEQUENTIAL PLANNING ALGORITHM

Algorithm 1 (plan-search) constitutes the core of the
best-first search algorithm (a weighted-A* here). The first
call to compute-node may find a solution to the problem
without search, by recursive calls to the lookahead process. If
not, nodes are extracted from the open list following their
heuristic evaluation and are expanded with the applicable
actions (already computed and stored in nodes inserted into
the open list), and a solution plan is returned as soon as
possible. Search can be pursued in an anytime way, in order
to improve the solution, with pruning of partial plans whose
quality is lower than that of the best plan found so far. In our
experiments, the weight ω has been set to 3.

Algorithm 2 (compute-node) first performs duplicate state
detection. It then computes the heuristic, checks if the goal is
obtained or cannot be reached, and updates the node with the
heuristic and the applicable actions given by compute-hadd.
The node is then stored in the open list and a lookahead

16

Algorithm 2: compute-node
input : a planning problem Π = 〈A,O, I,G〉, a weight ω for the

heuristic function, a node n, the open and closed lists
output : a goal node if search succeeds, ⊥ otherwise; open and

closed are updated

1 if ∃n′ ∈ closed |n′.state = n.state then return ⊥
2 else
3 closed ← closed ∪ {n}
4 〈cost, app〉 ← compute-hadd(Π, n.state)
5 gcost ← Σg∈G cost[g]
6 if gcost = 0 then return n
7 else if gcost = ∞ then return ⊥
8 else
9 n.applicable ← app

10 n.heuristic ← n.length+ ω × gcost
11 open ← open ∪ {n}
12 〈state, plan〉 ← lookahead(Π, n.state, cost)
13 create a new node n′:
14 n′.state ← state
15 n′.parent ← n
16 n′.steps ← plan
17 n′.length ← n.length+ length(plan)
18 return compute-node(Π, ω, n′, open, closed)

state/plan is computed by a call to lookahead. A new node
corresponding to the lookahead state is then created and
compute-node is recursively called. Recursion is stopped
when a goal, duplicate or a dead-end state is reached.

The other algorithms are not shown here due to lack of
space (more details can be found in [3]), but their role can be
summarized as follows. Algorithm compute-hadd computes
hadd and returns a vector of costs for all atoms and actions,
as well as actions applicable in the state for which hadd is
computed obtained as a side-effect. Algorithm lookahead

computes a lookahead state/plan from a relaxed plan given
by a call to extract-relaxed-plan. Once a first applicable
action of the relaxed plan is encountered, it is appended to the
lookahead plan and the lookahead state is updated. A second
applicable action is then sought from the beginning of the
relaxed plan, and so on. When no applicable action is found,
a repair strategy tries to find an applicable action of minimum
cost from the whole set of actions, in order to replace an action
of the relaxed plan which produces an unsatisfied precondition
of another action of the relaxed plan, and the process loops.
Algorithm extract-relaxed-plan computes a relaxed plan
from a vector of action costs. A sequence of goals to produce
is maintained, starting from the goals of the problem. The
first one is extracted, and an action which produces it with
the lowest cost is selected and stored in the relaxed plan. Its
preconditions are appended to the sequence of goals, and the
process loops until the sequence of goals is empty. An atom
already satisfied, i.e. produced by an action of the relaxed
plan, is not considered twice. The relaxed plan is finally sorted
before being returned, by increasing costs first, and for equal
costs by trying to order first an action which does not delete
a precondition of the next action.

IV. AN HYBRID OPENMP/MPI PARALLEL PLANNING
ALGORITHM

The main idea for parallelizing YAHSP2 is based on the
same principle than in TDS [7] and HDA* [8]: to distribute

search nodes among the PUs based on a hash key computed
from planning states. A PU can either be an MPI process
running a single thread, or an OpenMP thread started with
several others by an MPI process.

One important consequence of the hash-based distribution
principle is that several occurrences of a given state, encoun-
tered in any PU, will be sent to the same PU that will either
discard it if it has already been encountered, or expand it in the
opposite case. Another consequence is that this communication
scheme can be performed in an asynchronous way: PUs send
nodes that do not belong to them (i.e. the state hash key
identifies another PU), and receive nodes from any other PUs,
while expanding nodes they currently own in their open list.

The main differences with respect to TDS and HDA* are
that (1) we focus on suboptimal planning, while TDS and
HDA* search optimal plans, (2) we have integrated the looka-
head strategy into this framework, and (3) we implemented
this principle as an hybrid OpenMP/MPI algorithm (while
TDS and HDA* only use MPI). The advantages of using
OpenMP are that problem parsing, instantiation, and all other
preprocessing tasks are performed only once (thus saving
memory), and communication between threads by shared
memory is much more efficient than communication between
MPI processes. The main drawback of using OpenMP is that
memory locks are sometimes necessary; but fortunately, this
does not happen often because the algorithm spends most of
its time in computing the hadd heuristic (Algorithm 2 line 4).

Each PU (either an MPI process running a single thread,
or an OpenMP thread inside an MPI process) runs the search
algorithm described in Algorithm 1, with its own open and
closed lists, with several modifications:
The first initial node (lines 2–6) is created only by the master
thread of the first MPI process.
The main loop condition (line 10) is modified in order
for the loop to be executed even if the PU has no node
yet (i.e., it is waiting for states sent by other PUs). This
loop is stopped when a PU finds a solution, which will be
handled by special messages. We have not yet implemented a
distributed termination algorithm in the case where the search
space is completely explored without finding a solution (which
happens extremely rarely on academic benchmarks). In HDA*,
a termination algorithm from [16] has been used.
Calls to compute-node (lines 7 and 20) are performed only
if the corresponding nodes belong to the current PU; in the
opposite case, they are sent to their associated PU. This
is performed by either sending a message to another MPI
process, or by incorporating the node into the open list of
another thread within the same MPI process. In the latter case,
it is required to lock the open list of the destination thread.
Before choosing the next node to be expanded (line 11),
incoming MPI messages are checked and all new nodes are
incorporated into the open list: either the open list of the
current PU, or into the open list of another thread of the same
MPI process –which requires once again a lock on this list.

In order to completely follow the hash-based distribution
principle, Algorithm 2 should also be modified in order to send
nodes to their appropriate PUs (as in the third point above):
line 18 should be executed only in the case where the obtained

17

node belongs to the current PU, and if not, this node should be
sent to its correct destination. However, after some preliminary
experiments, we observed that the strategy of performing full
lookaheads –i.e. the full recursive calls of compute-node

inside a single PU– was more efficient than distributing them.
One consequence is that a given node may appear in different
PUs, thus duplicating the work of expanding it. Many other
variations and strategies can be imagined, and the description
and comparison of various node distribution policies will be
the subject of a more extensive study.

The last main modification of the sequential algorithm is
about the reconstruction of the solution, which is distributed
among the different PUs. Indeed, when nodes are communi-
cated between PUs, the actions attached to it (which represent
the path from a node to its son) are kept in the PU they are
computed, in order to minimize the traffic. All messages thus
have the same size, as states are represented with bit arrays
whose size is the number of ground atoms of the problem,
which is determined during the planning problem instantiation.
When a PU finds a solution, it sends a special message to all
nodes meaning that a synchronization step is required. These
messages are checked in the same place than MPI incoming
messages are treated (before line 11 of algorithm 1). In the
case of synchronization, a function is called by all PUs at this
place, into which they exchange messages to build the solution
plan and aggregate statistics on the current run (everything
being controlled and owned by the master thread of the first
MPI process). This procedure was a bit tricky to implement,
but do not deserves more details in this paper. One important
remark though is that all PUs play exactly the same role in the
algorithm, except in two minor cases where the master thread
of the first MPI process plays a special role: when search starts
(initial node of the problem) and when a solution is built.

V. EXPERIMENTAL EVALUATION

In order to evaluate the different parallel implementations
of the algorithm, we conducted a set of experiments with
1171 benchmarks from the 3rd to the 7th IPCs (all sequential
problems from these IPCs). The cluster is composed of 4
servers with two 6-core Intel Xeon X5670 running at 2.93GHz
and 24GB of RAM. The different configurations are:

• c1: 1 process with the sequential algorithm;
• c48: 48 MPI processes uniformly distributed;
• c4x12: 4 MPI processes, each one of them including 12

OpenMP threads, uniformly distributed (cluster only);
• c48-I and c4x12-I: 48 independent MPI processes or 4

MPI processes including 12 independent threads (cluster
only) executing the sequential algorithm in exactly the
same way with no communication (all PUs are equivalent
to configuration c1 and perform identical computations on
the same data), in order to assess the impact of memory
contention.

In the following, we compare absolute (wall-clock) time
used for finding a solution with a timeout of 600 sec., and the
ratio of search times used by compared versions. This will be
shown as speedup in the figures. Thus, the shown speedup will
be the amount of time used by the quickest implementation
divided by the amount of time used by the slowest one.

10-3

10-2

10-1

100

101

102

10-3 10-2 10-1 100 101 102

w
c-

tim
e

(c
lu

st
er

: c
4x

12
)

wc-time (cluster: c48)

100

101

102

103

104

 0 20 40 60 80 100 120

instances which require at least 1 sec. for one version

cluster: c48 faster (79 inst.)
cluster: c4x12 faster (127 inst.)

Fig. 2. Comparison of the wall-clock time in seconds between cluster
versions (either 48 MPI processes, or 4 MPI processes of 12 threads each)
and speedup of both versions (Blue curve –dotted lines– represent the speedup
of the 48 processes version when it is faster, while red curves –plain lines–
represent the speedup of the 4x12 version when it is faster.).

a) Cluster versions compared: Figure 2 compares c48
and c4x12 on the cluster. On the top figure, the solving time
is compared, problem by problem. As most of the points are
on the bottom right part, we can deduce that c48 performs
worse. While the number of threads is the same, the overhead
caused by the MPI message passing mechanism makes this
version generally worse than c4x12. In further experiments,
we then will only compare c4x12 to c48 on the SCC. The
bottom figure shows the speedup of both versions, for the
problems were the particular version performs better. Again,
it can be seen that c4x12 performs better in a larger number of
cases than c48. Interestingly, when problems become harder,
the speedup can become extremely large: one of the versions
typically go around 10000 times faster than the other one.

b) Parallel vs. sequential: On Figure 3 can be seen the
comparison between the sequential version and the parallel
implementation. Hopefully, the parallel version performs better
than the sequential one as soon as the problem is complex
enough to take more time to solve than the overhead induced
by communication mechanisms. Another reason for the par-
allel version not to always perform better is that the order
in which nodes are explored is not the same, and the aim
of the heuristic used is to make the sequential version use a
very good order, while in parallel version there is much more
variation around the order implied by the use of the heuristic
value. One can also remark a very large number of problems
unsolved before timeout for the sequential version, especially
on the SCC: they are the many points on the right frame.

c) Detailed speedup analysis: Figure 4 shows the com-
parison between c4x12 and c1 on the cluster. We show
different curves in order to emphasize the effect of the com-

18

10-3

10-2

10-1

100

101

102

10-3 10-2 10-1 100 101 102

w
c-

tim
e

(c
lu

st
er

: c
4x

12
)

wc-time (cluster: c1)

10-3

10-2

10-1

100

101

102

10-3 10-2 10-1 100 101 102

w
c-

tim
e

(s
cc

: c
48

)

wc-time (scc: c1)

Fig. 3. Comparison of the wall-clock time in second between parallel (4x12
on the cluster and 48 processes on the SCC) and sequential versions.

munication overhead, independently of the parallelism itself;
this because communication overhead has a large influence for
very simple problems, and becomes less important for larger
ones. So we show results for problems taking at least 0.001
second to solve for one of the version, 0.1 second to solve
and so on. As expected, the sequential version performs better
for problems that can be very quickly solved, but the parallel
version becomes generally better as soon as the problems need
at least 0.1 second to be solved. On the other hand, this trend
becomes less obvious when the problems are very complex
(more than 100 seconds to be solved for one version). We
think that this is because both versions get trapped into long
useless explorations that do not lead to find the goal.

We conducted the very same comparison on the SCC, as
shown on Figure 5. Interestingly, the trend observed on the
cluster for the larger problems (that the parallel version does
not perform better and better compared to the sequential one)
is not present here (even with comparable complexity obtained
by comparing 30 sec. of cluster time with 600 sec. of SCC
time –not shown here–). So the SCC parallel version performs
better and better with the problem complexity, whereas the
cluster version just performs better, but not better and better.

At this point, we are unsure why this occurs. One expla-
nation is that the amount of data exchanged increases super-
linearly with the problem complexity, thus the SCC imple-
mentation would be less sensitive to the problem complexity.
It may also be the case that all threads being trapped into bad
explorations may occur only for a larger timeout. . .

d) Influence of the amount of data exchanged: In order
to figure this out, we present Figure 6, where one can see
the speedups related to the amount of data exchanged. This
is performed on a selection of 5 problems in each planning
domain (210 instances in total), for anytime runs of 100
seconds (search continues after a solution is found, producing
solutions of increased quality). In the cluster version, there
is a clear trend of worse speedup when the amount of data
exchanged increases, whereas there is no correlation for the
SCC. Indeed on the cluster, for the instances where the
exchanges are about 10GB (nearly 800 Mb/sec) we seems to
reach the I/O capacities (1Gib/sec). This seems to be a good
explanation of the “less-sensitivity” to the problem complexity
of the SCC implementation compared to the 4x12 cluster one.

e) Influence of concurrent resources access: Finally, we
present as Figure 7 the speedups in node generation of parallel

 0

 10

 20

 30

 40

 50

 60

 70

103 104 105 106 107 108 109 1010 1011

w
c-

tim
e

sp
ee

du
p

bytes exchanged on the cluster (c4x12)

 0

 10

 20

 30

 40

 50

 60

 70

103 104 105 106 107 108 109 1010 1011

w
c-

tim
e

sp
ee

du
p

bytes exchanged on the SCC (c48)

Fig. 6. Wall-clock time speedup of parallel algorithms vs. the sequential
version in function of the total number of bytes exchanged between all
processes (between the 4 MPI processes) for anytime runs of 100 seconds.

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100 120 140 160 180

w
c-

tim
e

sp
ee

du
p

instances

scc: c48 vs c1
scc: c48 vs c48-I
cluster: c48 vs c1

cluster: c48 vs c48-I
cluster: c4x12 vs c1

cluster: c4x12 vs c4x12-I

Fig. 7. Wall-clock time speedup in node generation of parallel algorithms
vs. sequential versions for anytime runs of 100 seconds, on the cluster and
on the SCC. Curves labelled by “architecture: x vs y” compare on the given
architecture the speedup of running x processes versus running y processes
(single process or 48 non-communicating processes running the same instance
in the same way, or 4 non-communicating MPI processes of 12 OpenMP
threads each also running the same way).

implementations relative to one sequential process, but also to
the same number of sequential processes, in order to see the
speedup obtained with a comparable bottleneck for memory
access. This is performed in the same experimental conditions
as in the previous experiment (anytime search on 210 problems
during 100 seconds).

For small instances, the speedup can be small due to the
overhead of message passing, while for larger instances, the
complexity of problems causes the sequential algorithm to get
trapped into exploring non-interesting states for a very long
time, making very large speedups. This shows that for complex
problems the sequential algorithm would perform better sim-
ply by avoiding such traps. More interestingly, the “center”
part of the curves, for average instances show very large
differences between the SCC and the cluster implementations.
More precisely, there is a large difference between the “cluster:
c48 vs c1” and the “cluster: c48 vs c48-I” curves (same for
“c4x12” versions) meaning that on the cluster there is a lot of
memory contention (c48-I is a lot less efficient than c1: only
one process). This is less the case for the SCC versions: on
the SCC, the sequential non-communicating processes almost
do not slow down each other. Several conclusions can thus
be stated: on a cluster implementation, good cooperation is
mandatory in order to achieve large speedups, in order to
reduce memory usage of each core. On the other hand, our

19

100

101

102

103

104

 0 100 200 300 400 500 600 700

w
c-

tim
e

sp
ee

du
p

instances which require at least 0.001 sec. for one version

cluster: c1 faster (700 inst.)
cluster: c4x12 faster (361 inst.)

100

101

102

103

104

 0 50 100 150 200 250

w
c-

tim
e

sp
ee

du
p

instances which require at least 0.1 sec. for one version

cluster: c1 faster (177 inst.)
cluster: c4x12 faster (262 inst.)

100

101

102

103

104

 0 20 40 60 80 100

instances which require at least 10 sec. for one version

cluster: c1 faster (64 inst.)
cluster: c4x12 faster (104 inst.)

100

101

102

103

104

 0 10 20 30 40 50 60

instances which require at least 100 sec. for one version

cluster: c1 faster (51 inst.)
cluster: c4x12 faster (68 inst.)

Fig. 4. Wall-clock time speedup of the parallel algorithm with 4 MPI threads of 12 threads each vs. the sequential version running on the cluster, for all
instances which require at least a given number of seconds (see x-axis) for one version.

100

101

102

103

104

 0 100 200 300 400 500 600

w
c-

tim
e

sp
ee

du
p

instances which require at least 0.001 sec. for one version

scc: c1 faster (603 inst.)
scc: c48 faster (414 inst.)

100

101

102

103

104

 0 50 100 150 200 250 300 350

w
c-

tim
e

sp
ee

du
p

instances which require at least 0.1 sec. for one version

scc: c1 faster (241 inst.)
scc: c48 faster (391 inst.)

100

101

102

103

104

 0 50 100 150 200

instances which require at least 10 sec. for one version

scc: c1 faster (49 inst.)
scc: c48 faster (227 inst.)

100

101

102

103

104

 0 20 40 60 80 100 120

instances which require at least 100 sec. for one version

scc: c1 faster (21 inst.)
scc: c48 faster (128 inst.)

Fig. 5. Wall-clock time speedup of the parallel algorithm with 48 MPI threads vs. the sequential version running on the SCC, for all instances which require
at least a given number of seconds (see x-axis) for one version.

implementation achieves a good speedup between the “c48 vs
c48-I”, meaning that the main bottleneck for improving it is
the memory contention problem itself (which will be hard to
avoid for our algorithm). On the SCC, this is not a problem,
so we can either try to improve the communication scheme
for more complementarity, or try a very different “portfolio”
approach, where the cores are more independent, and try to
solve the problem in different ways.

VI. CONCLUSION

We described in this paper the parallelization of an auto-
mated planner based on forward heuristic search and looka-
heads for suboptimal sequential classical planning. It is based
on a hash-based node distribution, implemented in hybrid
OpenMP/MPI. Experiments show performance improvements
with respect to the sequential version, especially for difficult
problems. As the search space is not explored the same way
in the sequential and parallel versions, super-linear speedups
are observed, but also super-linear speed-downs. This suggests
trivial improvements of the parallel version, for example by
running the sequential version on a single processing unit
and the parallel algorithm on the remaining processing units.
More elaborate strategies can be imagined, that will make
the subject of further studies. The experiments also revealed
some differences in the behavior of the parallel algorithm
on a standard cluster and on the SCC. These differences
suggest that improvements of the parallel version may be more
beneficial to an execution on the SCC (which suffers less from
memory contention and benefits from faster communications),
but clearly more in-depth studies are needed to understand
these differences in order to better take advantage of the
capabilities of the SCC.

ACKNOWLEDGMENT

The authors would like to thank Intel Labs for providing
access to the SCC, and for their reactivity in solving all

problems that arose during the SCC exploitation. They also
thank Eric Noulard from Onera for insightful discussions.

REFERENCES

[1] M. Ghallab, D. Nau, and P. Traverso, Automated Planning, theory and
practice. Morgan-Kaufmann, 2004.

[2] V. Vidal, “A lookahead strategy for heuristic search planning,” in Proc.
ICAPS, 2004, pp. 150–159.

[3] ——, “YAHSP2: Keep it simple, stupid,” in Proc. of the 7th Interna-
tional Planning Competition (IPC’11), 2011.

[4] J. Hoffmann and B. Nebel, “The FF planning system: Fast plan gener-
ation through heuristic search,” JAIR, vol. 14, pp. 253–302, 2001.

[5] I. Pohl, “Heuristic search viewed as path finding in a graph,” Artificial
Intelligence, vol. 1, no. 3, pp. 193–204, 1970.

[6] B. Bonet, G. Loerincs, and H. Geffner, “A robust and fast action selection
mechanism for planning,” in Proc. AAAI, 1997, pp. 714–719.

[7] J. W. Romein, A. Plaat, H. E. Bal, and J. Schaeffer, “Transposition table
driven work scheduling in distributed search,” in Proc. AAAI, 1999.

[8] A. Kishimoto, A. S. Fukunaga, and A. Botea, “Scalable, parallel best-
first search for optimal sequential planning,” in Proc. ICAPS, 2009.

[9] T. Bylander, “The computational complexity of propositional strips
planning,” Artificial Intelligence, vol. 69, no. 1-2, pp. 165–204, 1994.

[10] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso,
D. Weld, and D. Wilkins, “PDDL – The Planning Domain Definition
Language,” Yale Center for Computational Vision and Control, New
Haven, CI, USA, Tech. Rep. CVC TR-98-003/DCS TR-1165, 1998.

[11] M. Helmert, “The fast downward planning system,” Journal of Artificial
Intelligence Research, vol. 26, no. 1, pp. 191–246, 2006.

[12] R. Niewiadomski, J. N. Amaral, and R. C. Holte, “Sequential and
parallel algorithms for frontier a* with delayed duplicate detection,” in
Proc. AAAI, 2006.

[13] V. Vidal, L. Bordeaux, and Y. Hamadi, “Adaptive k-parallel best-
first search: A simple but efficient algorithm for multi-core domain-
independent planning,” in Proc. 3rd Symposium on Combinatorial
Search (SOCS’10), 2010.

[14] R. Valenzano, H. Nakhost, M. Muller, and J. Schaeffer, “Arvandherd:
Parallel planning with a portfolio,” in Proc. 7th International Planning
Competition (IPC’11), 2011.

[15] J. Ernits, C. Gretton, and R. Dearden, “Ay also plan: Bitstate pruning for
state-based planning on massively parallel compute clusters,” in Proc.
7th International Planning Competition (IPC’11), 2011.

[16] F. Mattern, “Algorithms for distributed termination detection,” Dis-
tributed Computing, vol. 2, no. 3, pp. 161–175, 1987.

20

Performance modeling for power consumption
reduction on SCC

Bertrand Putigny12, Brice Goglin12, Denis Barthou2,
1 Inria

2 Univ. Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France

Abstract—As power is becoming one of the biggest challenge
in high performance computing, we are proposing a performance
model on the Single-chip Cloud Computer in order to predict
both power consumption and runtime of regular codes. This
model takes into account the frequency at which the cores of the
SCC chip operate. Thus, we can predict the execution time and
power needed to run the code for each available frequency. This
allows to choose the best frequency to optimize several metrics
such as power efficiency or minimizing power consumption, based
on the needs of the application. Our model only needs some
parameters that are code dependent. These parameters can be
found through static code analysis. We validated our model by
showing that it can predict performance and find the optimal
frequency divisor to optimize energy efficiency on several dense
linear algebra codes.

Index Terms—Intel SCC, performance model, performance
prediction, power, energy efficiency, optimization.

I. INTRODUCTION

Reducing power consumption is one of the main challenge
in the HPC community. Indeed power is the leading design
constraint for next generation of supercomputers [4]. Therefore
energy efficiency is becoming an important metric to evaluate
both hardware and software.

The Intel Single-chip Cloud Computer (SCC) is a good
example of next generation hardware with an easy way to
control power consumption. It provides a software API to
control core voltage and core frequency. This opens promising
opportunities to optimize power consumption and to explore
new trade-offs between power and performance.

This paper aims at exploring the opportunities offered by
SCC to reduce power consumption with a small impact on
performance. It is organized as follow: Section II describes
the model used to predict performance, the Section III demon-
strates the reliability of our model by applying it to several
basic linear codes, we will also explain how to choose the
frequency to optimize a given metric. Sections IV, V, and VI
present respectively the related work, future work and conclu-
sion.

II. PERFORMANCE MODEL

In this section we provide a performance model in order to
predict the impact of core frequency scaling on the execution
time of several basic linear algebra kernels on the SCC chip.

Project ProHMPT is funded by the French National Agency for Research
under the ANR-08-COSI-013 grant.

As we focus on dense linear algebra, we only need a few
data to predict a given code performance. The considered
datasets being too large to fit in cache, we need the execution
time of one iteration of the innermost loop of the kernel and
the memory latency.

A. Memory model

To build the memory model, we assume that the application
can exploit perfectly data reuse and therefore we assume that
each data is accessed only once. We do not take the number
of cache accesses into account in the prediction of the overall
memory access time because they are not actual memory
accesses since the request does not have to go all the way to
DRAM. Moreover the cache is not coherent. Therefore there
is no overhead due to the cache coherence protocol.

On SCC, a memory access takes 40 core cycles + 4×n×
2 mesh cycles + 46 memory cycles (DDR3 latency) where
n is the number of hops between the requesting core and
the memory controller [1]. In our case, we are only running
sequential code, therefore we are assuming that the memory
access time is 40×c+46×m cycles, where c is the number of
core cycles and m the number of memory cycles. Accessing
memory takes 40 core cycles plus 46 memory cycles.

Frequency scaling only affects core frequency, the memory
frequency is a constant, (in our case 800MHz). Therefore,
changing frequency mostly impacts the code performance if it
is computation bound. The number of core cycles to perform
one DDR3 access is: 40 + 46× core freq

800 .
As we can see from the formula dividing the core frequency

by 8 (from 800MHz to 100MHz) will only reduce the memory
performance by 46%

As the P54C core used in the SCC supports two pending
memory requests, we can assume that accessing x elements
will take x

2 (40 + 46× core freq
800) core cycles.

B. Computational model

In order to predict the number of cycles needed to perform
the computation itself we need the latency of each instruction.
Agner Fog measured the latency of each x86 and x87 instruc-
tion [7]. We used his work to predict the number of cycles to
perform one iteration of the innermost loops of each studied
kernel. The computation model is very simple, as most of the
instructions use the same execution port, there is almost no
instruction parallelism. A more complex performance model,
considering also measured latencies as a building block of the

21

Freq divisor Tile freq (MHz) Voltage (volts)
2 800 1.1
3 533 0.8
4 400 0.7
5 320 0.6
6 266 0.6
7 228 0.6
8 200 0.6
9 178 0.6

10 160 0.6
11 145 0.6
12 133 0.6
13 123 0.6
14 114 0.6
15 106 0.6
16 100 0.6

TABLE I: Relation between voltage and frequency.

model, is used in the performance tuning tool MAQAO [2]. We
use such tool to measure the execution time of one iteration
of the innermost loop. As most of the execution time of the
codes we consider is spent in inner loops, this performance
estimation is expected to be rather accurate.

From this computation model the impact of frequency
scaling on the computation performance is straightforward.
The number of cycles to perform the computation is not
affected by the frequency. Thus, reducing the core frequency
by a factor of x will multiply the running time by x.

C. Power model

We use a very simple power model to estimate the power
saved by reducing the core frequency. Table I shows the
voltage used by the tile for each frequency, these data are
provided by the SCC Programmer’s guide [1].

The power consumption model used in this paper is the
general model:

P = CV 2f

where C is a constant, V the voltage and f the frequency of
the core. As shown In Table I the voltage is a function of the
frequency, thus, we can express the power consumption as a
function of the core frequency only.

We choose not to introduce a power model for the memory
for two reasons: first we have no software control on the
memory frequency at runtime. We can change the memory fre-
quency by re-initializing the SCC platform but not at runtime.
Thus, the memory energy consumption is constant and we
have no control over it. Therefore it would be almost worthless
to complicate our model with such information. The other
reason is that until now we used models that can be transposed
to other architectures. As the memory architecture of the SCC
is very different from more general purpose architecture, its
energy model would not fit for those architectures. Thus, the
model described in this paper is completely general and can
be easily transposed to other architectures.

D. Overall model

In this section we describe how to use both the memory and
computational models to predict the performance of a given
code.

As the P54C core can execute instructions while some
memory requests are pending, we assume that the execution
time will be the maximum between the computation time and
the memory access time:

runtime(fc) = MAX

(
computation

fc
,mem access(fc)

)

with fc the core frequency.
With this runtime prediction, we estimate how a code

execution is affected by changing the core frequency. Taking
the decision to reduce the core frequency in order to save
energy can be done with a static code analysis.

As show in Section II-A the memory access performance is
almost not affected by reducing core frequency, while reducing
core frequency increases dramatically the computation time.
From this observation we see that reducing core frequency
for memory bound code is highly beneficial for power con-
sumption because it will almost not affect performance while
reducing dramatically energy consumption. However, reducing
core frequency for compute bound code will directly affect
performance.

III. MODEL EVALUATION

In this section we compare our model with the real runtime
of several regular codes in order to check its validity. We used
three computation kernels, one BLAS-1, one BLAS-2 and one
BLAS-3 kernels namely dot product, matrix-vector product
and matrix-matrix product.

First let us describe how we applied our model to these
three kernels: In the following formulas, fdiv denotes the
core frequency divisor (as shown in Table I) and power(fdiv)
the power used by the core when running at the frequency
corresponding to fdiv (see Table I). An important point is that
we used large data sets that do not fit in cache so as to measure
the execution time of the code. Thus, the kernel actually gets
data from DRAM and not from caches. However, the matrix-
matrix multiplication is tiled in order to benefit from data reuse
in cache.

A. Dot product multiplication

For the dot product kernel, the memory access time in cycles
is:

cyclesmem(fdiv) = size×
(
40 + 46× 2

fdiv

)

The computation time in cycles is given by:

cyclescomp(fdiv) = size×
(

body

unroll

)
,

with body the execution time (in cycles) of the innermost loop
body and unroll the unroll factor of the innermost loop. In
the case shown on Figure 1 body = 36 and unroll = 4. Then
the power efficiency is:

powereff (fdiv) =
flop

model(fdiv)
freq × power(fdiv)

,

22

with flop the number of floating point operations of the kernel,
model(fdiv) the number of cycles predicted by our model and
freq the actual core frequency (1600fdiv

). In the case shown on
Figure 1,

model(fdiv) = MAX

(
cyclesmem(fdiv), cyclescomp(fdiv)

)

= cyclesmem(fdiv)

Figure 1a shows that the number of cycles for both the
memory model and obtained through benchmark decreases
when frequency decreases. The reason is that frequency scal-
ing only affects core frequency. For memory bound codes such
as dot product, reducing the core frequency reduces the time
spent in waiting for memory requests. However, the code is
not executing faster, as shown in Figure 1b.

B. Matrix-vector product

Similarly the model for the matrix-vector product is:

cyclesmem(fdiv) =
matrix size

2
×

(
40 + 46× 2

fdiv

)

cyclescomp(fdiv) = matrix size×
(

body

unroll

)

With matrix size = 512×1024 elements, body = 64 cycles,
and unroll = 4 for the case shown on Figure 2.

powereff (fdiv) =
flop

model(fdiv)
freq × power(fdiv)

In this case, again, the memory access time is more im-
portant than the time for the computation, thus, the runtime
is given by the memory access time. (ie. model(fdiv) =
cyclesmem(fdiv))

Figure 2a shows that the number of cycles for both the
memory model and obtained through benchmark decreases
when frequency decreases. The reason is the same as for the
dot product.

C. Matrix-matrix product

The model for the matrix-matrix multiplication is:

cyclesmem(fdiv) = 3× matrix size2

2
×
(
40 + 46× 2

fdiv

)

cyclescomp(fdiv) = matrix size3 ×
(

body

unroll

)

powereff (fdiv) =
flop

model(fdiv)
freq × power(fdiv)

With matrix size = 160 elements (each matrix is 160 ×
160 elements big), body = 43 cycles, and unroll = 1 for the
case shown on Figure 3.

For this BLAS-3 kernel, as expected, the computation
time is bigger than accessing memory, thus, model(fdiv) =
cyclescomp(fdiv))

D. Power efficiency optimization

Our objective in this section is to show that thanks to
the performance model we built, the frequency scaling that
optimizes power efficiency can be selected. Then the higher
performance version is chosen among the most power efficient
versions.

We can see that the dot and matrix-vector products are
memory bound while the matrix-matrix product is compute
bound. Power efficiency is measured through the ratio of
GFlops/W. The best frequency optimizing power efficiency of
those two kind of code are different. For the case of memory
bound codes, the core frequency can be reduced by a large
divisor as performance is limited by memory bandwidth which
is not very sensitive to core frequency. On the contrary, for
computation bound codes, the performance in Gflops decreases
linearly with the frequency.

Figures 1c, 2c and 3c represent power efficiency in
GFlops/W for respectively dot, matrix-vector and matrix-
matrix products. They show that our performance model is
similar to the measured performance (from which we deducted
power efficiency). Power efficiency for matrix-matrix product
is optimal from a frequency divisor of 5, to 16. Among those
scalings, the best performance is obtained for the scaling of
5 according to Figure 3a. For the dot product 1c, codes are
more energy efficient using a frequency scaling of 5, and their
efficiency increases slowly as frequency is reduced. According
to our performance model, around 25% of Gflops/W is gained
from a frequency divisor of 5 to a frequency divisor of 16,
and for this change, the time to execute the kernel has been
multiplied by a factor 2.33 (according to our model). In reality,
these factors measured are higher than those predicted by the
model, but the frequency values for optimal energy efficiency,
or some tradeoff between efficiency and performance are the
same. Note that for divisor lower than 5, energy efficiency
changes more dramatically since the voltage also changes.

We have chosen to show how to optimize energy efficiency,
but as our model predicts both running time and power
consumption for each frequency, it is easy to build any other
metric depending on power and runtime and optimize it.
Indeed using this model allows to compute the metric to
optimize for each frequency divisor and then to choose the
one that fits the best the requirement. Even with a very simple
model as we presented, we can predict the running time of
simple computational kernels within an error of 38% in the
worst case.

Our energy efficiency model is interesting because it shows
exactly the same inflection points as the curve of the actual
execution. This point allows us to predict what is the best
core frequency in order to optimize the power efficiency of
the target kernel.

It is also interesting to see that even with a longer running
time all the kernels (even matrix multiplication which is
compute bound) benefits from frequency reduction. This is
caused by the following facts:

• The run time of such kernels is proportional to the
frequency;

• The power consumption is also proportional to the fre-

23

quency.
So the energy efficiency does not depend on the core fre-
quency. But the 3 firsts step of frequency reduction also reduce
the voltage which has an huge impact on power consumption.

IV. RELATED WORK

Power efficiency is a hot topic in the HPC community and
has been the subject of numerous studies, and the Green500
List is released twice a year. Studies carried out at Carnegie
Mellon University in collaboration with Intel [6] have already
shown that the SCC is an interesting platform for power
efficiency. Philipp Gschwandtner et al. also performed an
analysis of power efficiency of the Single-chip Cloud computer
in [11]. However, this work focuses on benchmarking, while
our contribution aims at predicting performance according to
a theoritical proposed model.

Performance prediction in the context of frequency and
voltage scaling has also been actively investigated [5], [10],
[12], and the model usually divides the execution time into
memory (or bus, or off-chip) [8], [9], instruction and core
instruction, as we did in this paper.

Our contribution is slightly different from usual approach
as we do not use any runtime information to predict the
impact of frequency and/or voltage scaling on performance.
As we use static code analysis to predict performance of a
kernel, this could be done at compile time it and does not
increase the complexity of runtime system. Static Performance
prediction has also been used in the context of autotuning.
Yotov et al. [13] have shown that performance models, even
when using cache hierarchy, could be used to select the
version of code with higher performance. Besides, In [3], the
authors have shown that a performance model, using measured
performance of small kernels, is accurate enough to generate
high performance library codes, competing with hand-tune
library codes. This demonstrates that performance models can
be used in order to compare different versions, at least for
regular codes (such as linear algebra codes).

V. FUTURE WORK

The next step for this study is to extend the performance
model presented in this paper to parallel kernels. This is much
easier on the SCC Chip than on more classical architectures as
the cache access time is constant because of its non-coherence.
Bandwidth taken by cache-coherency protocol and possible
contention are difficult to model in general. Moreover memory
contention on NUMA architecture is a difficult problem.
Indeed in such architectures, memory contention not only
depends on the memory access pattern but also on the process
placement. Philipp Gschwandtner et al. showed how memory
contention on a single memory controller when several cores
are accessing it [11]. We believe it would be very interesting to
lead the same experiments for several sets of core frequency.
Indeed reducing the core frequency could lead to reducing the
stress on the memory controller by spacing memory requests.

Also we would like to improve the model in order to take
into account that applications are usually composed of several
phases, some compute bound phases followed by others that

might be memory bound. Enlarging our model to predict what
would be the best frequency for each of those phases.

It would also be interesting to develop a framework, inside a
compiler or a performance tuning tool such as MAQAO [2], in
order to perform the code analysis automatically. This would
reduce the time to build the model for new codes, allowing us
to do it on a large number of codes.

VI. CONCLUSION

We have described a method to predict performance of some
linear algebra codes on the Single-chip Cloud Computing
architecture. This model can predict performance of a given
code for all available frequency divisor and using the known
relation between frequency scaling and voltage, it can also
predict power efficiency. Based on this prediction we can
choose what will be the best frequency to run the kernel. We
have shown that we can save energy through this method,
but it is actually even more powerful: using the running time
prediction and the power model we can choose the frequency
in order to optimize either the running time, or the power
consumption, or the energy efficiency.

REFERENCES

[1] The scc programmer’s guide, 2011.
[2] Denis Barthou, Andres Charif Rubial, William Jalby, Souad Koliai,

and Cdric Valensi. Performance tuning of x86 openmp codes with
maqao. In Matthias S. Mller, Michael M. Resch, Alexander Schulz,
and Wolfgang E. Nagel, editors, Tools for High Performance Computing
2009, pages 95–113. Springer Berlin Heidelberg, 2010.

[3] Denis Barthou, Sebastien Donadio, Alexandre Duchateau, Patrick Car-
ribault, and William Jalby. Loop optimization using adaptive compilation
and kernel decomposition. In ACM/IEEE Intl. Symp. on Code Optimiza-
tion and Generation, pages 170–184, San Jose, California, March 2007.
IEEE Computer Society.

[4] S. Borkar. The exascale challenge. In VLSI Design Automation and Test
(VLSI-DAT), 2010 International Symposium on, pages 2 –3, april 2010.

[5] Matthew Curtis-Maury, Filip Blagojevic, Christos D. Antonopoulos,
and Dimitrios S. Nikolopoulos. Prediction-based power-performance
adaptation of multithreaded scientific codes. IEEE Trans. Parallel
Distrib. Syst., 19:1396–1410, October 2008.

[6] R. David, P. Bogdan, R. Marculescu, and U. Ogras. Dynamic power
management of voltage-frequency island partitioned networks-on-chip
using intel’s single-chip cloud computer. In Networks on Chip (NoCS),
2011 Fifth IEEE/ACM International Symposium on, pages 257 –258,
may 2011.

[7] Agner Fog. Instruction tables lists of instruction latencies, through-
puts and micro-operation breakdowns for intel, amd and via cpus.
http://www.agner.org/optimize/, 2011.

[8] R. Ge and K.W. Cameron. Power-aware speedup. In Parallel and Dis-
tributed Processing Symposium, 2007. IPDPS 2007. IEEE International,
pages 1 –10, march 2007.

[9] Sang jeong Lee, Hae kag Lee, and Pen chung Yew. Runtime performance
projection model for dynamic power management. In Asia-Pacific
Computer Systems Architectures Conference, pages 186–197, 2007.

[10] Georgios Keramidas, Vasileios Spiliopoulos, and Stefanos Kaxiras.
Interval-based models for run-time dvfs orchestration in superscalar
processors. In Conf. Computing Frontiers, pages 287–296, 2010.

[11] Radu Prodan Philipp Gschwandtner, Thomas Fahringer. Performance
analysis and benchmarking of the intel scc. In Conference on Cluster
Computing, pages 139–149, 2011.

[12] B. Rountree, D.K. Lowenthal, M. Schulz, and B.R. de Supinski. Practical
performance prediction under dynamic voltage frequency scaling. In
Green Computing Conference and Workshops (IGCC), 2011 Interna-
tional, pages 1 –8, july 2011.

[13] K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong, M. Garzaran,
D. Padua, K. Pingali, P. Stodghill, and P. Wu. A comparison of
empirical and model-driven optimization. In ACM SIGPLAN Conf. on
Programming Language Design and Implementation (PLDI’03), pages
63–76, San Diego, CA, June 2003.

24

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 1.6e+08

 1.8e+08

 2e+08

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
im

e
(c

or
e

cy
cl

es
)

Freqency divisor

real runtime
memory

computation

(a) Dot product: the cycle count is shown according to the core frequency divisor

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
im

e
(m

ic
ro

se
co

nd
)

Freqency divisor

real runtime
memory

computation

(b) Dot product: runtime in microsecond depending on the core frequency divisor

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
ne

rg
y

ef
fic

ie
nc

y

Freqency divisor

model
Real code

(c) Dot product: power efficiency (in GFlops/W) depending on the core
frequency divisor

Fig. 1: Vector dot product model: sequential dot product with
2 vectors of 16 MB.

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
im

e
(c

or
e

cy
cl

es
)

Freqency divisor

real runtime
memory

computation

(a) Matrix-vector product: the cycle count is given according to the core
frequency divisor.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
im

e
(m

ic
ro

se
co

nd
)

Freqency divisor

real runtime
memory

computation

(b) Matrix-vector product: the execution time is given in microsecond depending
on the core frequency divisor

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
ne

rg
y

ef
fic

ie
nc

y

Freqency divisor

Model
Real code

(c) Matrix-vector product: power efficiency (in GFlops/W) depending on the
core frequency divisor

Fig. 2: Matrix-vector multiplication model: sequential code
with a 512 by 1024 element size matrix.

25

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
im

e
(c

or
e

cy
cl

es
)

Frequency divisor

real runtime
memory

computation

(a) Matrix-matrix product model: the cycle count is given according to the the
core frequency divisor

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
im

e
(m

ic
ro

se
co

nd
)

Frequency divisor

real runtime
memory

computation

(b) Matrix matrix product model: the time in microsecond depending on the
core frequency divisor

 0

 0.5

 1

 1.5

 2

 2.5

 3

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
ne

rg
y

ef
fic

ie
nc

y

Frequency divisor

Model
Real code

(c) Matrix-matrix product model: power efficiency (in GFlops/W) depending on
the core frequency divisor

Fig. 3: Matrix-matrix multiplication model: sequential code
with two matrices of 160 by 160 elements.

26

Performance and Power Analysis of RCCE Message Passing
on the Intel Single-Chip Cloud Computer

John-Nicholas Furst Ayse K. Coskun
Electrical and Computer Engineering Department, Boston University, Boston, MA 02215 USA

{jnfurst, acoskun}@bu.edu

Abstract— The number of cores integrated on a single chip
increases with each generation of computers. Traditionally, a
single operating system (OS) manages all the cores and resource
allocation on a multicore chip. Intel’s Single-chip Cloud Com-
puter (SCC), a manycore processor built for research use with 48
cores, is an implementation of a “cluster-on-chip” architecture.
That is, the SCC can be configured to run one OS instance
per core by partitioning shared main memory. As opposed to
the commonly used shared memory communication between the
cores, SCC cores use message passing. Intel provides a customized
programming library for the SCC, called RCCE, that allows for
fast message passing between the cores. RCCE operates as an
application programming interface (API) with techniques based
on the well-established message passing interface (MPI). The
use of MPI in a large manycore system is expected to change
the performance-power trends considerably compared to today’s
commercial multicore systems. This paper details our experiences
gained while developing the system monitoring software and
benchmarks specifically targeted at investigating the impact of
message passing on performance and power of the SCC. Our
experimental results quantify the overhead of logging messages,
the impact of local versus global communication patterns, and
the tradeoffs created by various levels of message passing and
memory access frequencies.

I. INTRODUCTION

Processor development has moved towards manycore archi-
tectures in recent years. The general trend is to utilize advances
in process technology to include higher numbers of simpler,
lower power cores on a single die compared to the previous
trend of integrating only a few cores of higher complexity.
This trend towards integrating a higher number of cores
can be seen in desktops, servers, embedded platforms, and
high performance computing (HPC) systems. Future manycore
chips are expected to contain dozens or hundreds of cores.

While integrating a high number of cores offers the po-
tential to dramatically increase system throughput per watt,
manycore systems bring new challenges, such as developing
efficient mechanisms for inter-core communication, creating
strategies to overcome the memory latency limitations, and
designing new performance/power management methods to
optimize manycore system execution. A significant difference
of manycore systems compared to current multicore chips
comes from the on-chip communication: manycore systems
are likely to incorporate a network-on-chip (NoC) instead of
a shared bus to avoid severe performance limitations. One
method of enabling inter-core communication on a NoC is
a message passing interface (MPI).

In order to enable new research in the area of manycore
design and programming, Intel Labs created a new exper-
imental processor. This processor, called the “Single-Chip
Cloud Computer” (SCC), has 48 cores with x86 architecture.
The SCC chip provides a mesh network to connect the
cores and four memory controllers to regulate access to the
main memory [5]. The SCC includes an on-chip message
passing application framework, named RCCE, that closely
resembles MPI. RCCE provides multiple levels of interfaces
for application programmers along with power management
and other additional management features for the SCC [9].

The objective of this paper is to investigate the on-die
message passing provided by RCCE with respect to perfor-
mance and power. To enable this study, we first develop
the monitoring tools and benchmarks. Our monitoring infras-
tructure is capable of logging messages, track performance
traces of applications at the core level, and measure chip
power simultaneously. We use this infrastructure in a set
of experiments quantifying the impact of message traffic on
performance and power. Significant findings of this paper
are: overhead of our message logging method is negligible;
execution times of applications increase with larger distances
between communicating cores; and observing both the mes-
sages and the memory access traffic is needed to predict
performance-power trends.

We present the monitoring infrastructure for the SCC in
Section II. Section III describes the applications we developed
for SCC. Section IV documents the experimental results on
message logging overhead, effects of various message/memory
access patterns, and energy efficiency. Section V discusses
related work. Section VI concludes the paper.

II. MONITORING INFRASTRUCTURE FOR THE SCC

Analyzing the message passing system on the SCC requires
monitoring performance and power consumption of the system
at runtime. As the SCC was designed as a research system it
includes special hardware and software features that are not
typically found in off-the-shelf multi-core processors. Addi-
tional infrastructure is required to enable accurate and low-
cost runtime monitoring. This section discusses the relevant
features in the SCC architecture and provides the details of
the novel monitoring framework we have developed.

Hardware and Software Architecture of the SCC:
The SCC has 24 dual-core tiles arranged in a 6x4 mesh.

27

Each core is a P54C CPU and runs an instance of Linux 2.6.38
kernel. Each instance of Linux executes independently and the
cores communicate through a network interface. Each core
has private L1 and L2 caches. Cache coherence is managed
through a software protocol as opposed to commonly used
hardware protocols. Each tile has a message passing buffer
(MPB), which controls the message exchange among the
cores. The SCC is connected by a PCI-Express cable to a
PC acting as the Management Console (MCPC).

The SCC system has a power sensor used for measuring
the full SCC chip power consumption. Power is measured by
polling this sensor during application execution.

Each P54C core has two performance counters. These coun-
ters can be programmed to track various architectural events,
such as number of instructions, cache misses or memory
accesses. Performance counters can be accessed from the core
in which they are located by reading dedicated registers.

The SCC software includes RCCE, which is a lightweight
message passing library developed by Intel and optimized
for SCC [9]. It uses the hardware MPB to send and receive
messages. At the lower layer, the library implements two
message passing primitives RCCE put and RCCE get. These
primitives move the data between a local core buffer to the
MPB of another core.

Our system setup includes the SCC, the MCPC, and the
monitoring framework we developed. On the SCC we imple-
mented utilities to track performance counters, collect power
measurements, and log message traffic. On the MCPC we
developed software to load desired benchmarks and experi-
mental configurations to the SCC. After running experiments,
we analyze the collected data using our automated software.

Software Modules Developed for the SCC:
Performance Counters: To implement performance counter

polling we added a patch to the Linux kernel that RCKOS
runs. RCKOS is the operating system the SCC cores run and
is provided by Intel. Our patch involves a device used for
polling and the ioctl infrastructure to communicate with the
device. The ioctl is a system call that is device-specific and
allows for user-land access to protected kernel functionality.
Once the kernel is patched, RCKOS is recompiled and a new
binary image is created and used to flash the cores.

Performance polling is performed by setting the Control
and Event Select Register (CESR). The P54C cores on the
SCC have two registers (0x12, 0x13) allotted for performance
counters. The CESR contains a 6-bit Event Select field (ES),
a Pin Control bit (PC) and a three bit control field (CC) for
each of the two counters. The CESR is located at 0x11 and
is visualized in Figure 1. Two independent events can can be
counted by setting the appropriate codes for each ES. The
Counter Control is used for enabling / disabling the counters.
The CESR is programmed through using the Model Specific
Registers (MSR) which are available on RCKOS through the
/dev/msr0 device.

To measure L1 cache misses and instructions, we wrote
0xD600CE to the MSR. For tracking memory access density,

Fig. 1. Control and Event Select Register

we poll the counter “non-cacheable memory reads.” We em-
pirically determined non-cacheable memory reads as a good
metric for quantifying memory access intensity through mea-
surements with a set of custom designed microbenchmarks that
vary in their memory access density [6]. To measure memory
accesses and instructions, we wrote 0xD600DE to the MSR.
We ran multiple experiments to collect all three parameters
(cache misses, memory accesses, number of instructions). It
is also possible to multiplex the register polling to increase the
number of parameters collected with little loss of accuracy.

Message Logger: We modified the lower level RCCE put
and RCCE get routines in the RCCE library to log the number
of messages sent and the source/destination of each message.
At the end of each parallel thread the library generates a log
containing the communication matrix. Each element in the
matrix {mi,j} corresponds to the number of messages that
corei has sent to corej . In addition, we program the RCCE
library to trigger the logging of the performance counters at
the beginning of each of the parallel threads and save the trace
at the end of execution.

Software Modules Developed for the MCPC:
• Stress files and app-loader: These files contain the bench-
mark sequences for the tests. For each benchmark, the stress
file provides the name, number of threads, and the cores to
allocate the benchmark. The app-loader loads the files on
the SCC to start the experiments. We wrote a set of python
scripts that run on the MCPC. These scripts load the stress
configuration files and start the RCCE benchmarks in SCC.

• Post-processing SW: We designed software for processing
the collected data. This script interfaces with the collected
data and the stress file. For each benchmark, the script
collects the logs and parses them to extract useful statistics.
The script then stores the parsed measurements in a MySQL
database stored on the MCPC. A custom web-based front
end to this database was created to display the results. The
data are available for access by Matlab or Excel allowing
the implementation of other complex analysis functions.
In this paper we use the monitoring infrastructure described

above for analyzing the message passing system on the SCC.
The framework can also be leveraged for enabling runtime
management policies on the SCC computer.

III. APPLICATION SPACE

We employ a set of benchmarks to evaluate the perfor-
mance of the SCC and explore a variety of configurations.
Two of these benchmarks are Block Tridiagonal (BT) and
Lower-Upper (LU) from the NAS parallel benchmarks (NPB)
suite [1]. BT and LU have been re-programmed for the Intel
SCC, and are available to the MARC community. We also

28

use other benchmarks provided by Intel for the SCC. We build
upon the existing benchmarks to create a wider set of operating
scenarios in terms of number of cores used and the message
traffic. We also design a broadcast benchmark to emulate one
to multiple core communication. The complete benchmark set
we run in our experiments is as follows.

Benchmarks provided by Intel:
• BT: Solves nonlinear Partial Differential Equations (PDE)

with the Block Tridiagonal method.
• LU: Solves nonlinear PDEs with the Lower-Upper sym-

metric Gauss-Seidel method.
• Share: Tests the off-chip shared memory access.
• Shift: Passes messages around a logical ring of cores.
• Stencil: Solves a simple PDE with a basic stencil code.
• Pingpong: Bounces messages between a pair of cores.

Custom-designed microbenchmark:
• Bcast: Sends messages from one core to multiple cores.
The broadcast benchmark, Bcast, sends messages from a

single core to multiple cores through RCCE. We created the
benchmark based on the Pingpong benchmark, which is used
for testing the communication latency between pairs of cores
using a variety of message sizes.

Table I categorizes the Intel benchmarks based on
instructions-per-cycle (IPC), Level 1 instruction (code) misses
(L1CM), number of messages (Msgs), execution time in
seconds, and memory access intensity. All parameters are
normalized with respect to 100 million instructions for a
fair comparison. Each benchmark in this categorization runs
on two neighbor cores on the SCC. The table shows that
the Share benchmark does not have messages and is an
example of a memory-bounded application. Shift models a
message intensive application and Stencil models an IPC heavy
application. Pingpong has low IPC but heavy L1 cache misses.
BT has a medium value for all performance values except for
the number of messages. LU is similar to BT except that it
has even higher number of messages and the lowest number
of L1 code cache misses.

We update the Stencil, Shift, Share, and Pingpong bench-
marks so that they can run on cores in configurations de-
termining which cores communicate and which cores are
utilized. Note that for all configurations of these benchmarks,
communication occurs within “pairs” of cores (i.e., a core only
communicates to a specific core and to no other cores). The
configurations we used in our experiments are as follows:
• Distance between the two threads in a “pair”:

• 0-hops: Cores on the same tile (e.g., cores 0 and 1)
• 1-hop: Cores on neighboring tiles (e.g., cores 0 and 2)
• 2-hops: Cores on tiles that are at 2-hops distance (e.g.,

cores 0 and 4)
• 3-hops: Cores on tiles that are at 3-hops distance (e.g.,

cores 0 and 6)
• 8-hops: Cores on corners (e.g., cores 0 and 47)

• Parallel execution settings:
• 1 pair: Two cores running, 46 cores idle

TABLE I. BENCHMARK CATEGORIZATION. VALUES ARE NORMALIZED

TO 100 MILLION INSTRUCTIONS.

Benchmark L1CM Time Msgs IPC Mem.Access
Share High High Low Low High
Shift High Low High Medium Low

Stencil Low Low Low High Medium
Pingpong High Medium Medium Low Low
BT.W.16 Medium Medium High Medium Medium
LU.W.16 Low Medium High Medium Medium

Benchmark Categorization (normalized to 100M inst)—Numerical
Benchmark L1CM Time Msgs IPC Mem.Access

Share 372361 3.3622 871 0.0558 0.05
Shift 307524 0.7784 147904 0.2410 0.001

Stencil 97715 0.5528 23283 0.3393 0.03
Pingpong 280112 2.1116 68407 0.0888 0.001
BT.W.16 251096 1.11 229411 0.1682 0.03
LU.W.16 94880 1.15 305988 0.1631 0.03

• 2 pairs: Four cores running, 44 cores idle
• 3 pairs: Six cores running, 42 cores idle
• 4 pairs: Eight cores running, 40 cores idle
• 5 pairs: Ten cores running, 38 cores idle
• 6 pairs: Twelve cores running, 36 cores idle
• 24 pairs: 48 cores running

The idle cores run SCC Linux but do not run any user
applications and they are not in sleep states.

• Broadcast: The Bcast benchmark is run with one core
communicating to N cores, where 1 ≤ N ≤ 47.
The applications were run 5 times and the collected data

have been averaged. An additional warmup run was conducted
before the experimental runs. All of the experiments were
conducted with the tiles at 533 MHz, the mesh at 800MHz
and the DDR’s at 800MHz. Our recent work also investigates
the impact of frequency scaling on the SCC power and
performance [2].

IV. EXPERIMENTAL EVALUATION

The purpose of the experiments is to quantify the perfor-
mance and power of the Intel SCC system while running
applications that differ in number of messages, message traf-
fic patterns, core IPC, and memory access patterns. In this
way, we hope to understand the performance-energy tradeoffs
imposed by using MPI on a large manycore chip.

A. Overhead of Message Logging

We first analyze the overhead caused by our message log-
ging and performance monitoring infrastructure. Figures 2 and
3 demonstrate the overhead measured in execution time caused
by different levels of measurement while running BT and LU.
We choose BT and LU to study message over logging overhead
as they are standard multicore MPI benchmarks. In the figures,
control represents the case without any logging, performance
counters results are for tracking performance counters only,
counting messages is for logging both counters and number
of messages, message target also logs the sender/receiver cores
for each message, and message size logs the size of each
message on top of all the other information.

We see in figures 2 and 3 respectively that while there is an
overhead associated with the message logging, it is very small.

29

1 4 9 16 25 36
Control 176.76 46.67 24.32 14.14 9.81 7.37
Performance�Counters 176.39 46.36 24.23 14.24 9.81 7.45
Counting�Messages 176.79 46.79 24.39 14.28 9.8 7.43
Message�Target 175.82 46.8 24.43 14.24 9.77 7.47
Message�Size 176.45 47.24 25.41 15.42 12.06 8.68

176.79�

47.24�

25.41�
15.42� 12.06� 8.68

0
20
40
60
80

100
120
140
160
180
200

Ex
ec
ut
io
n�
Ti
m
e�
(s
)�

�

Cores:�

Fig. 2. BT Class W Execution Time(s) vs. # of Cores vs. level of logging.
The execution time is shown for a varying number of cores. In each case the
the addition of logging shows very small overhead.

1 2 4 8 16 32
Control 884.43 427.94 168.24 80.87 38.72 21.48
Performance�Counters 883.98 427.32 166.81 81.85 39.27 21.54
Counting�Messages 884.04 428.18 167.92 81.51 39.37 21.3
Message�Target 880.37 426.68 164.96 81.99 39.12 21.55
Message�Size 884.42 430.31 170.93 88.75 48.21 38.6

880.37�

430.31�

170.93�
88.75�

48.21� 38.6
0

100

200

300

400

500

600

700

800

900

1000

Ex
ec
ut
io
n�
Ti
m
e�
(s
)�

�

Cores:�

Fig. 3. LU Class W Execution Time(s) vs. # of Cores vs. level of logging. The
execution time is shown for a varying number of cores. Again, the overhead
of message logging is very low.

We have seen similar low overhead when we measured the
overhead for the other benchmarks. For example, for message
target logging, we see only a 0.21% overhead in execution
time when running the Stencil benchmark.

When logging message size is added to the infrastructure
we see a significant increase in execution time, especially
when a large number of cores are active (see Figures 2-3).
For the Pingpong and Stencil benchmarks we have seen an
increase over 200%. For message intensive benchmarks such
as Shift, the execution time is over 600% longer compared to
the message target logging. These large overheads are due to
the large amount of data logged when the size of the messages
is considered. The message size distribution varies depending
on the benchmark. Some benchmarks such as Pingpong are
heterogeneous in their message sizes, as shown in Figure 4.
Benchmarks Stencil and Shift have fixed sized messages of 64
bytes and 128 bytes, respectively.

The rest of the experiments use the message target logging,
which logs the performance counters, number of messages,
and message sender/receiver information at a low overhead.

0

100000

200000

300000

400000

500000

600000

2 64 128 192 288 416 608 832 1216 1600 2048 2880 3200 3456 4864 5760 6880 8128

Fr
eq

ue
nc

y

Message Size (Bytes)

Frequency

Fig. 4. Pingpong message size histogram. The majority of Pingpong
messages are small; however, there are also a significant number large
messages. As the broadcast benchmark is derived from Pingpong it has the
same distribution of message sizes.

0.324

0.326

0.328

0.33

0.332

0.334

0.336

0.338

0.34

0.342

11.6

11.7

11.8

11.9

12

12.1

12.2

12.3

Stencil
0hop2

Stencil
1hop

Stencil
2hop

Stencil
3hop

Stencil
4hop

Stencil
5hop

Stencil
6hop

Stencil
7hop

Stencil
8hop

IP
C

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

Distance (Hops)

Average of time Average of IPC

Fig. 5. Stencil with one pair of cores. The distance between the cores
increases from local communication on the same router to the maximum
distance spanning 8 routers.

B. Impact of Communication Distance

Next, we analyze how the distance between communicating
cores affects performance. We look at the case of a single pair
of cores that are running on the SCC. Figure 5 demonstrates
that as the distance between the cores increases, the execution
time increases. In the figure, we plot the execution time of
Stencil as the distance between cores is increased from 0 hops
(local) to the maximum distance of 8 hops (cores 0-47). There
are clear linear trends for both the IPC and the execution time.
Stencil is chosen in this experiment as it demonstrates the
largest difference in execution time owing to its high IPC (as
outlined in Table I). Similar trends can be seen for Shift.

C. Impact of Memory Accesses

To measure the impact of memory accesses, we keep the
distance constant but increase the number of cores (i.e., num-
ber of pairs simultaneously running). In this way, we expect to
increase the accesses to the main memory. In this experiment,
we do not see any measurable difference in execution time for
Stencil or Shift, as their memory access intensity is low. The
Share benchmark, which has a high memory accesses density
at 0.05 (see Table I), is prone to significant delays when there
is memory contention. Figure 6 demonstrates this point. We
see significant delay when 24 pairs of cores are concurrently
executing a benchmark that is heavy in memory accesses. The
combined load of 24 pairs accessing memory is saturating
the memory access bandwidth and causing the delay. While
this effect is due to the uncached accesses to the DRAM and
specific to the SCC, the trend is observed in many multicore
applications which become memory bound.

30

0

0.01

0.02

0.03

0.04

0.05

0.06

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

IP
C�

Ex
ec
ut
io
n�
Ti
m
e�
(s
)�

Pairs�

Average�Time Average�IPC

Fig. 6. Execution time of Share with local communication, as a function of
the number of pairs executed concurrently.

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0

20

40

60

80

100

120

140

160

Share�3hop Share
24pair3hop

Shift�3hop Shift
24pair3hop

Stencil�3hop Stencil
24pair3hop

M
sg
/I
ns
t�

Ex
ec
ut
io
n�
Ti
m
e�
(s
)�

Benchmark�

Time Msg/Inst

Fig. 7. Share, Shift, and Stencil with 3 hops communication. One pair
compared to 24 pairs executed concurrently.

D. Impact of Network Contention

For exploring the impact of network contention, we compare
3-hop communication of a single pair of a benchmark versus
running 24 pairs. Shift, which has low memory accesses but
high message density, does not exhibit significant changes in
execution time when comparing one pair with 24 concurrent
pairs; this is visualized in Figure 7. When we look at Stencil,
which has both memory accesses and messages, we still do not
see significant differences in execution time as seen in Figure
7. In fact, the only major difference occurs for Share, owing
to its memory access intensity. We believe these benchmarks
have not been able to cause network contention; therefore, the
dominant effect on the execution time is the memory access
frequency in the figure.

E. Impact of Broadcast Messages

Next, we analyze performance for applications that heavily
utilize broadcast messages. We run our Bcast benchmark
for this experiment. The benchmark is an adaptation of the
Pingpong benchmark, so as in Pingpong, Bcast sends many
messages of different sizes. Instead of sending the messages
to a specific core, Bcast sends messages to all of the receiver
cores in a one to N broadcast system. Figure 8 demonstrates
that as the number of cores in the broadcast increases we have
significantly slower execution. It is particularly interesting that
there is a peak IPC at N = 8 cores. This peak suggests that
when N > 8 for the Bcast benchmark, the performance of the
sender core and the network become bottlenecks.

Figure 9 demonstrates how as the number of cores in the
broadcast increases, the messages per instruction increases

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0

50

100

150

200

250

300

350

400

Bcast
2

Bcast
3

Bcast
4

Bcast
6

Bcast
8

Bcast
10

Bcast
12

Bcast
16

Bcast
20

Bcast
24

Bcast
28

Bcast
32

Bcast
36

Bcast
40

Bcast
44

Bcast
48

IP
C

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

Number of Cores

Average of time Average of IPC

Fig. 8. Execution of Bcast with respect to number of cores. As the number
of cores increase we see the growth in execution time.

0

0.002

0.004

0.006

0.008

0.01

0.012

0

50

100

150

200

250

300

350

400

Bcast
2

Bcast
3

Bcast
4

Bcast
6

Bcast
8

Bcast
10

Bcast
12

Bcast
16

Bcast
20

Bcast
24

Bcast
28

Bcast
32

Bcast
36

Bcast
40

Bcast
44

Bcast
48

M
sg
/I
ns
tr
�

Ex
ec
ut
io
n�
Ti
m
e�
(s
)�

Cores�

Time Msg/Inst

Fig. 9. Broadcast with increasing number of cores. As the number of cores
increase we see a higher number of messages per instruction.

with it. Again we see that at N = 8 cores there is a local
inflection point. This helps confirm that for this particular
broadcast benchmark, broadcasting to a large number of cores
saturates the traffic from the sender core, which in turn causes
delays. This result highlights the importance of carefully
optimizing broadcasting to ensure desirable performance lev-
els. A potential optimization policy would be to allow for
broadcasting to a small number of cores at a given time
interval.

F. Power and Energy Evaluation

As part of our analysis, we also investigate the power and
energy consumption for each benchmark. Figure 10 compares
the Share, Shift, Stencil and Pingpong benchmarks in 24-
pair 0-hop (local communication) configuration. We see that
at full utilization of all 48 cores, a significant difference
exists in the amount of power drawn by each benchmark.
The Share benchmark, heavy in memory accesses and low in
messages (see Table I), has relatively low power consumption
compared to the Shift and Stencil benchmarks which have
significantly higher IPC and power consumption. Overall, IPC
is a reasonable indicator of the power consumption level.

Looking at power alone is often not sufficient to make an
assessment of energy efficiency. Figure 11 compares energy-
delay product (EDP) (delay normalized to 100 M instructions)
for Share, Shift, Stencil and Pingpong benchmarks in 24-pair
0-hop configuration. Again, significant differences exist in the
EDP across the benchmarks. The high EDP in Share is a result

31

45

47

49

51

53

55

57

59

61

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Share Shift Stencil Pingpong

Po
w

er
 (w

)

IP
C

Benchmark

IPC Power

Fig. 10. Comparing IPC vs power for the Share, Shift, Stencil and Pingpong
benchmarks. All benchmarks were executed with 24 pairs of cores, all with
local communication.

0
20000
40000
60000
80000
100000
120000
140000
160000

0

500

1000

1500

2000

2500

Share Shift Stencil Pingpong

M
sg

s

En
er

gy
-D

el
ay

 P
ro

du
ct

(J

*s
)

Benchmark

Energy-Delay Product Msgs

Fig. 11. Comparing EDP vs. number of messages for the Share, Shift, Stencil
and Pingpong benchmarks. All benchmarks were executed with 24 pairs of
cores, all with local communication.

of the high memory intensity and low IPC, which cause high
delay. Stencil has the highest IPC, a low number of messages,
and a medium level of memory accesses, which jointly explain
the low EDP. Shift and Pingpong both have a considerable
amount of messages. However, Pingpong misses a lot in the
L1 cache, resulting in lower performance. Thus, its EDP is
higher compared to Shift.

We have also compared running one pair of Share against 24
pairs. For one pair the power consumed is 31.616 Watts. When
24 pairs are run concurrently the power consumed jumps to
50.768 Watts. The power drawn follows linearly with the
number of active cores. Due to the offset and leakage power
consumption of the chip, running the system with a large
number of active cores when possible is significantly more
energy-efficient (up to 4X reduction in EDP per core among
the benchmark set).

V. RELATED WORK

There has been several projects relevant to the design,
development, and experimental exploration of the Intel SCC.
As part of Intel’s Tera-scale project, the Polaris 80-core chip
can be regarded as the predecessor of the SCC [8]. The main
purpose of the Polaris chip was to explore manycore archi-
tectures that use on-die mesh networks for communication.
However, unlike the SCC, it only supported a very small
instruction set and lacked corresponding software packages
that facilitate manycore application research [10].

Previous work describes low-level details of the SCC pro-
cessor hardware [4]. Special focus is given to topics regarding
L2 cache policies and the routing scheme of the mesh net-
work. Other recent research on the SCC looks at benchmark
performance in RCCE focusing on the effects of message sizes
[7]. The authors also provide detailed performance analysis of
message buffer availability in RCCE [7].

Another related area is the development of the message
passing support. The RCCE API is kept small and does not

implement all of the features of MPI. For example, RCCE only
provides blocking (synchronous) send and receive functions,
whereas the MPI standard also defines non-blocking communi-
cation functions. For this reason, some researchers have started
to extend RCCE with new communication capabilities, such
as the ability to pass messages asynchronously [3].

VI. CONCLUSION

Future manycore systems are expected to include on-chip
networks instead of the shared buses in current multicore
chips. MPI is one of the promising candidates to manage
the inter-core communication over the network on manycore
systems. This paper investigated the performance and power
impact of the message traffic on the SCC. We have first de-
scribed the monitoring infrastructure and the SW applications
we have developed for the experimental exploration. Using our
low-overhead monitoring infrastructure, we have demonstrated
results on the effects of the message traffic, core performance
characteristics, and memory access frequency on the system
performance. We have also contrasted the benchmarks based
on their power profiles and their energy delay product. Overall,
the paper provides valuable tools and insights to researchers in
the manycore systems research area. For future work, we plan
to analyze the traffic patterns in more detail, create various
local and global network contention scenarios, investigate
opportunities to track other performance metrics (such as
L2 cache misses), and utilize the experimental results for
designing energy-efficient workload management policies.

ACKNOWLEDGMENTS
The authors thank the Intel Many-Core Applications Research Commu-

nity. John-Nicholas Furst has been funded by the Undergraduate Research
Opportunities Program at Boston University.

REFERENCES

[1] D. Bailey et al. The NAS parallel benchmarks. Technical Report RNR-
94-007, March 1994.

[2] A. Bartolini, M. Sadri, J. N. Furst, A. K. Coskun, and L. Benini.
Quantifying the impact of frequency scaling on the energy efficiency
of the single-chip cloud computer. In Design, Automation, and Test in
Europe (DATE), 2012.

[3] C. Clauss, S. Lankes, P. Reble, and T. Bemmerl. Evaluation and
improvements of programming models for the intel SCC many-core
processor. In High Performance Computing and Simulation (HPCS),
pages 525 –532, July 2011.

[4] J. Howard et al. A 48-core IA-32 message-passing processor with DVFS
in 45nm CMOS. In Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), pages 108 –109, Feb. 2010.

[5] Intel. SCC external architecture specication (EAS).
http://techresearch.intel.com/spaw2/uploads/files//SCC EAS.pdf.

[6] M. A. Khan, C. Hankendi, A. K. Coskun, and M. C. Herbordt. Software
optimization for performance, energy, and thermal distribution: Initial
case studies. In IEEE International Workshop on Thermal Modeling
and Management: From Chips to Data Centers (TEMM), IGCC, 2012.

[7] T. G. Mattson et al. The 48-core SCC processor: the programmer’s view.
In High Performance Computing, Networking, Storage and Analysis
(SC), pages 1 –11, Nov. 2010.

[8] T. G. Mattson, R. Van der Wijngaart, and M. Frumkin. Programming
the Intel 80-core network-on-a-chip terascale processor. In High Per-
formance Computing, Networking, Storage and Analysis (SC), pages 1
–11, Nov. 2008.

[9] T. G. Mattson and R. F. van der Wijngaart. RCCE: a small library for
many-core communication. Intel Corporation.

[10] S. R. Vangal et al. An 80-tile sub-100-W teraFLOPS processor in 65-nm
CMOS. IEEE Journal of Solid-State Circuits, 43(1):29 –41, jan. 2008.

32

Ruby on SCC: Casually Programming SCC with
Ruby

Kouhei Ueno, and Koichi Sasada

Abstract—Ruby is a popular lightweight programming lan-
guage widely known for its high productivity. Intel single-
chip cloud (SCC) is a 48-way many-core CPU with integrated
message passing buffers. We explored Ruby as a tool for
casually developing distributed programs on SCC. In particular,
we have experimented with Distributed Ruby (DRb), a pure-
Ruby implementation of the distributed objects environment. We
developed a Ruby binding for RCCE, enabling Ruby to use the
communication hardware facilities of SCC. We also extended
RCCE to support more flexible message passing primitives as
required in DRb. In this paper, we share our early experiences
of using Ruby on SCC, discuss the implementation of a Ruby
binding for RCCE and the optimization for DRb implementation
using the RCCE binding, and present the performance evalua-
tions of these methods from the perspective of micro-benchmarks.

I. INTRODUCTION

INTEL single-chip cloud (SCC) is a 48-way many-core
CPU platform, which Intel has made available to the

research community. The SCC chip consists of a mesh of 24
tiles with 2 processors, a router, and a shared communication
buffer on each tile. Each processor is assigned an off-chip
private memory that is analogous to the main memory of
a conventional PC, and an on-chip communication buffer
(shared between 2 processors in a tile) for message passing
across cores. A Linux port is available for SCC and can be
configured such that each processor runs an instance of the
Linux operating system. Thus, SCC can be considered a 48-
node distributed memory cluster on a chip.

Distributed programming is difficult. In particular, it is a
tough task to write distributed programs that use the SCC’s
hardware facility. RCCE[1], [2] is a “C” library for utilizing
specialized hardware for inter-core communication on SCC.
RCCE provides an MPI-like API for messaging passing across
cores for SCC, but it still requires a programmer for system
programming such as memory management.

There have been efforts to reduce the programmer’s effort
in distributed programming on SCC. Welc et al.[3] success-
fully offloaded heavy JavaScript workloads from web browser
clients to SCC. X10 is a high-productivity distributed pro-
gramming language based on the PGAS model. Chapman et
al.[4] experimented running X10 on SCC and reported the
performance gain by porting RCCE.

Our focus is to use the Ruby programming language[5] to
casually write distributed programs for SCC. The design focus
of Ruby is the programmer’s productivity. Ruby programs
are short and concise. Ruby enables users to write code with

K. Ueno and K.Sasada is with the Graduate School of Information Science
and Technology, The University of Tokyo.

little effort. If the programmer does not find Ruby grammar
satisfactory, domain specific languages (DSLs) within Ruby
are supported by meta-programming features. As a dynamic
language, Ruby features object-oriented programming with
reflective features. Classes can be dynamically created while
running the code, and inexistent method calls can be dynam-
ically handled by a user.

A distributed object is a well-known distributed program-
ming primitive. A server exposes access to its objects to
a remote node, and a client can send messages (invoke its
methods) using the same syntax as that used for local objects.
The implementation of the distributed objects environment
transparently forwards the messages sent to the local proxy
object for remote node communication.

Distributed Ruby (DRb)[6] is a pure-Ruby implementation
of the distributed objects environment. It fully uses Ruby’s
dynamic nature to transparently provide distributed objects
without painful interface declarations. A DRb (proxy) object
behaves just like a regular Ruby object, automatically trans-
lating its method calls to remote method invocation.

In this paper, we share our early experiences with Ruby on
SCC. First, we built a Ruby interpreter executable for running
on SCC. Next, we developed a Ruby binding for RCCE to
access SCC’s message passing buffers (MPBs) from Ruby
programs. In this process, we extended RCCE to support the
communication primitives required for DRb. Last, using the
Ruby binding of RCCE, we added the optimization code to
DRb, a distributed object implementation for Ruby, to support
communication via RCCE. In the following sections, we will
discuss the above method and its performance evaluation from
the perspective of micro-benchmarks in detail.

II. RUBY ON SCC
To run Ruby programs on SCC, we have compiled a Ruby

interpreter binary for running on SCC. For our platform, we
used the SCC Linux binary available in sccKit 1.3.0.

We chose the original Ruby interpreter in C, also known
as CRuby, for the Ruby language implementation. Although
other Ruby language implementations are available, CRuby
was selected as it has high portability and requires only an
ANSI C compiler, a POSIX-compliant OS, and support for C
extensions that allow the Ruby library to be written in C.

We used the latest development branch of CRuby, revision
32047. We could build this version of Ruby using Intel C
Compiler 8.1 with no source code modification. To avoid
problems related to the shared library, we built a statically
linked single binary Ruby executable.

We verified that the executable could run Ruby programs
correctly. UDP and TCP/IP communication using the standard

33

“socket” module was functioning. Unmodified DRb functioned
via the TCP/IP transport.

III. RUBY BINDING OF RCCE LIBRARY

We developed a Ruby language binding of RCCE[1] to take
advantage of SCC’s inter-core communication hardware.

SCC has a unique hardware support for message passing.
SCC consists of 24 mesh tiles, and each of these tiles contains
two x86 processors, a router, and MPB. MPB is implemented
as a 16 KB SRAM in each tile, and its data can be accessed
from other tiles. Note that MPB is faster than private memory,
which is located off-chip and accessed via memory controllers
located at the edge of the mesh. For the synchronization prim-
itive, a special register called the test-and-set register, which
supports a well-known test-and-set operation, is available per
processor core.

RCCE[1], [2] is a lightweight message passing library that
uses the MPB attached to each tile. RCCE has two interfaces,
namely, the “basic” interface and the “gory” interface; we
kept within the “basic” interface for code simplicity. When the
“basic” interface was used, RCCE assigned an 8 KB region
from MPB to each processor core. The 8 KB region was
used for storing the message body and control flags. Message
transfer in RCCE is processed by using MPB. To send data
to a foreign core, RCCE first copies the message to the local
MPB. Then, it updates the “message is sent” flag on the target
core’s MPB. The receiver core waiting for data notices that the
flag is ready, and copies the message body from the remote
sender’s MPB to the receiver’s local private memory. After
the transfer is completed, the receiver core notifies the sender
core by setting the “next message ready” flag on the sender’s
MPB.

To use this MPB-based message transfer from Ruby,
we developed a Ruby binding of RCCE. The Ruby
binding was created as a C extension of the CRuby
interpreter; it provides access to the basic RCCE
functions RCCE_init, RCCE_finalize, RCCE_ue,
RCCE_barrier_world, RCCE_send, and RCCE_recv
from Ruby programs.

Although the original RCCE interface specifies a message
by passing a pointer to the message body as an argument,
Ruby by itself does not provide a way to handle raw pointers.
Our binding works around the problem by specifying string
values as the message body instead. The String value in Ruby
can hold an arbitrary byte sequence and is commonly used as
a general buffer.

IV. ADDING MESSAGE POLLING SUPPORT TO RCCE

As our goal is to create a distributed objects environment
over SCC, we needed a flexible message communication
system, which is out of the scope of the original RCCE library.

The original RCCE implementation assumes the program to
be in the single-program multiple-data (SPMD) style, which
is very similar to MPI. However, the implementation of a dis-
tributed objects environment needs relatively flexible message
communication primitives: unmatched send-and-receive and
variable-sized messages.

int RCCE_peek(char* pbuf, size_t sz, int src)
{

/* return if data is not ready */
if(! RCCE_probe(RCCE_sent_flag[src]))

return 1;

/* copy the content of remote MPB
to local private memory */

RCCE_get(
(t_vcharp)pbuf, RCCE_buff_ptr, sz, src);

return 0;
}

Fig. 1. RCCE_peek source code

First, we needed to support unmatched send-and-receive.
RCCE assumes that RCCE_send and RCCE_recv are writ-
ten in pairs. RCCE_recv, the message receive function in
RCCE, requires the sender core UE, a unique id given to every
participating core, which corresponds to“ rank” in MPI.

However, in the distributed objects environment, programs
do not have prior knowledge of where and when the message
is going to be sent or received. Nodes in the distributed
objects system are not required to have similar roles. A node
may only be responsible for a certain type of task, such
as providing a database or giving an access to an external
device. It is impossible to know the message flow beforehand.
Every node may send data to another random node at any
time. This random communication cannot be handled by the
existing RCCE communication primitives, RCCE_recv and
RCCE_send.

Next, we needed to support variable-sized messages.
Method invocations to remote objects are translated to remote
node communication in a distributed objects environment. As
all methods have different arguments and return values, it
is impossible to know the size of the messages beforehand.
RCCE requires the receiver to know the size of the incoming
message. The RCCE recv function takes the message size as
an argument.

To resolve the above issues with minimum modification,
we have added a function called RCCE_peek, named after
MSG_PEEK in the UNIX socket API. RCCE_peek checks the
message arrival from the specified core and retrieves the header
part without affecting a subsequent call to RCCE_recv. It is
defined as shown in Figure 1. The RCCE peek function first
checks the local flag to see if the remote core has a message
for a particular node. Then, if the flag indicates that the remote
core is attempting to send a message, it peeks at the message
body from the remote MPB and copies the first N bytes. The
RCCE_peek function does not set the “next message ready”
flag on the remote core MPB. Therefore, the same message
can be read again with a subsequent call to RCCE_recv.

The RCCE_peek function can be used for implementing
unmatched send-and-receive and variable-sized messages. We
set up a listener thread that periodically peeked into messages
from all possible sender cores. All messages were sent with
a header containing the message body size. The RCCE_peek
function is used for checking whether an incoming message

34

Fig. 2. Architecture overview of DRb on SCC. Light-gray parts are adopted
from the original DRb implementation. White parts are our implementation.

Fig. 3. The request/reply message header in RCCEProtocol

exists and read the message header containing the message
body size. If an incoming message exists, RCCE_recv is
called with the message body size specified in the message
header.

V. DRB ON SCC

Distributed Ruby (DRb)[6] is a distributed objects environ-
ment implementation for Ruby. By using Ruby’s reflective fea-
tures, DRb provides distributed objects without any interface
declarations.

We extended DRb to support transport over SCC commu-
nication hardware. DRb on SCC is achieved by replacing
DRb’s inter-node communication implementation (Figure 2).
By default, DRb uses its TCP-based protocol for remote
method invocation and will not use SCC-optimized transports.
As DRb’s inter-node communication implementation is ab-
stracted, a user can implement an original protocol for re-
mote method invocation by implementing the DRbProtocol
interface. We developed module called RCCEProtocol, an
RCCE-based implementation of DRbProtocol to support
message transfer using MPB.
DRbProtocol requires the methods recv_request/

send_request and recv_reply/send_reply for inter-
node messaging, but it assumes a stream-oriented transport,
which is open-ed and accept-ed beforehand. With a stream-
oriented transport, a reply is expected to come from the stream
in which the request is sent. However on RCCE, a message
is not associated with any stream; hence, a received reply
message cannot be associated with the sent request by itself.

To emulate this stream-oriented transport on RCCE, every
request is given a unique id, a reqid. Each message has
a header as shown on Figure 3. The reply message always
contains the reqid to match the request that the reply is
for. In the RCCE protocol implementation, all messages are
received in a dedicated receive thread. The recv_reply is
implemented as a function that blocks until the corresponding

TABLE I
BENCHMARK ENVIRONMENT

MCPC SCC
CPU Intel Core i7-950 3.07GHz x86 P54C 533MHz
Memory DDR3 12GB DDR3 256MB per core
Linux 2.6.32 2.6.16 (sccKit 1.3.0)
Mesh Clock N/A 800MHz

TABLE II
CRUBY PERFORMANCE ON MCPC AND SCC.
EXECUTION TIME (IN SECONDS) IS SHOWN.

benchmark MCPC SCC MCPC/SCC
ackerman 0.07 1.10 6.70%
erb 0.62 14.29 4.35%
factorial 0.12 10.04 1.16%
fib 0.85 10.79 7.88%
mandelbrot 0.21 5.69 3.76%
pentomino 21.01 409.33 5.13%
raise 0.66 21.11 3.15%
strconcat 0.70 11.57 6.08%
tak 1.24 15.11 8.21%
tarai 0.98 12.19 8.00%
uri 1.05 25.73 4.06%

reply message is received from the server. The receive thread
wakes the corresponding thread waiting for the recv_reply.

For method invocation serialization and deserialization, we
used DRbMessage from the original DRb. This allows the
RCCEProtocol to be called from InvokeMethod, which
initiates remote method invocation.

VI. PERFORMANCE EVALUTATION

First, we have measured CRuby interpreter performance on
SCC using benchmark programs included in CRuby distri-
bution (Table II). We chose benchmarks which depend on
performance of interpreter itself and not involving network or
filesystem IO. The benchmarks ackerman, factorial, fib, tak,
tarai, mandelblot compute the corresponding functions. The
benchmarks erb, strconcat, uri measures time for string ma-
nipulation. The raise benchmark measures exception handling
overhead. We run these benchmarks on SCC Linux using one
of its cores, and on host MCPC. The system configuration
details are shown on Table I. The same interpreter binary was
used in the measurement.

The results show that performance of CRuby on SCC is
around 5% that of modern PC. The memory access pattern of
the program affects its performance on SCC. The benchmarks
which access private memory intensively are slower. For
example, fib benchmark creates many temporary Bignum1

object for storing its result.
Next, we measured inter-core communication latency for

Ruby on SCC (Figure 4). We measured time of ping-pong
latency of TCP and UDP/IP using Ruby’s TCPSocket and
UDPSocket. The rckmb network interface[2] was config-
ured to use off-die shared memory instead of on-die SRAM.
The RCCE ping-pong latency was measured using the RCCE
Ruby binding we have developed. The latency was calculated
by taking fastest time of 3 trials, each consisting of 100 ping-
pong communications.

1Bignums hold large integers over 31-bit

35

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 32 64 128 256 512 1024

pi
ng

po
ng

 la
te

nc
y

(m
ill

is
ec

on
ds

)

message size (bytes)

TCP (core 0<=>1)
UDP (core 0<=>1)

RCCE (core 0<=>1)
TCP (core 0<=>47)
UDP (core 0<=>47)

RCCE (core 0<=>47)

 0

 100

 200

 300

 400

 500

 600

16 64 256 1024 4096 16384 65536 262144 1048576

pi
ng

po
ng

 la
te

nc
y

(m
ill

is
ec

on
ds

)

message size (bytes)

TCP (core 0<=>1)
RCCE (core 0<=>1)
TCP (core 0<=>47)

RCCE (core 0<=>47)

Fig. 4. Pingpong latency of TCP/UDP/RCCE communication on Ruby on
SCC

TABLE III
REMOTE METHOD INVOCATION OVERHEAD OF DRB OVER TCP AND

RCCE (IN MILLISECONDS)

Argument size (in bytes) TCP RCCE
0 3.52 3.44
64 3.65 3.62
256 4.02 4.33

The results show that communication over RCCE Ruby
binding is 2 times faster than communication over TCP or
UDP/IP. RCCE transfers small message effectively. Messages
below 256 bytes can be transferred 4 times faster than TCP or
UDP/IP. Sending large messages in RCCE are 2 times faster
than TCP/UDP. Large messages are sent by splitting into small
messages in both cases, but RCCE allows larger chunk to be
sent at once. RCCE can send message by 8160 byte chunks,
but rckmb is limited by 1500 byte MTU.

Then, we measured remove method invocation overhead of
DRb over TCP and RCCE (Table III). We measured time
calling a remote method 100 times from core 0 to core 1.
The remote method does nothing but return value 0. We also
measured on core 0 to core 47, but could not find difference
in result.

The results show that using RCCE speed up method calls
with argument size under 64 bytes speed up slightly by 2%,
but slows down on method calls with argument size 256 bytes.
Comparing these values with latency measurements (Figure
4), the overhead of DRb library is 10-20 times higher than

raw communication cost. The speed down on large arguments
come from overhead of RCCE protocol implementation added
to DRb, which performs more String operation on the
received message headers as described in Section V.

VII. CONCLUSION

We developed a Ruby-based distributed objects environment
for Intel single-chip cloud (SCC). A user could easily write
programs for SCC by using the highly productive Ruby
language and take advantage of the SCC communication
hardware transparently in a distributed objects manipulation.
We built a CRuby executable running on SCC Linux to
run DRb, a distributed objects environment implementation
in pure-Ruby. We developed the Ruby binding for RCCE
to use SCC’s inter-core messaging hardware. We extended
RCCE to support communication primitives required for DRb
and implemented an SCC-optimized DRb transport layer. The
performance evaluation using micro-benchmarks show that the
raw communication improved by 200% the remote method
invocation via DRb improved by 2%.

As our future work, we plan to develop an optimize dis-
tributed objects implementation with lower overhead. Eval-
uation showed that the overhead of DRb library is 10-20
times higher than raw communication cost. We found that
this is from high abstractions in the DRb implementation to
support customizations. We expect that lower overhead can
be achieved by creating minimal implementation that only
support RCCE communication.

Also, we plan to explore various Ruby-based distributed
applications on SCC. Examples are web applications and
natural language processing. There are various frameworks for
creating web applications on Ruby, such as Ruby on Rails[7].
The web common interface Rack[8] can be accelerated using
SSC hardware in a similar way as by using DRb. Natural
language processing is a region where implementation in a
low-level language such as C is difficult. Ruby has a rich
String class for manipulating text strings and has built-
in support and external frameworks for tools such as regular
expressions.

We expect that our alternative development environment
using Ruby will open up various unexplored uses of SCC.

REFERENCES

[1] R. van der Wijngaart and T. Mattson, “RCCE: A small library for
many-core communication.” [Online]. Available: http://techresearch.intel.
com/spaw2/uploads/files/RCCE Specification.pdf

[2] R. F. van der Wijngaart, T. G. Mattson, and W. Haas, “Light-weight com-
munications on intel’s single-chip cloud computer processor,” SIGOPS
Oper. Syst. Rev., vol. 45, pp. 73–83, February 2011.

[3] A. Welc and R. L. Hudson, “Javascript farm on scc.” [Online]. Available:
http://communities.intel.com/docs/DOC-5646

[4] A. H. Keith Chapman, Ahmed Hussein, “X10 on the SCC.” [Online].
Available: http://communities.intel.com/docs/DOC-6255

[5] Yukihiro Matsumoto, et al., “Ruby Programming Language.” [Online].
Available: http://www.ruby-lang.org

[6] M. Seki, “dRuby.” [Online]. Available: http://www.druby.org/ilikeruby/
druby.en.html

[7] Rails Core Team, “Ruby on Rails.” [Online]. Available: http:
//rubyonrails.org

[8] C. Neukirchen, “Rack: a ruby webserver interface.” [Online]. Available:
http://rack.rubyforge.org/

36

Characterization and analysis of pipelined
applications on the Intel SCC

Tommaso Cucinotta,Vivek Subramanian
Real-Time Systems(ReTiS) Lab

Scuola Superiore Sant’Anna
Pisa, Italy.

cucinotta@sssup.it, vivek@retis.sssup.it

Abstract—Many-core computing platforms can be used to
parallelize computations by dividing the data to be processed into
smaller chunks and processing them simultaneously on different
cores. One possible approach in such parallelization is to set up
a pipeline such that each smaller chunk of data passes in turn
through all the processors involved. In this paper we examine
some approaches to set up such a pipeline on the Intel SCC. We
use a combination of the message passing and the shared memory
capability of the SCC hardware through the interfaces provided
by the RCCE library for our implementation. We build a model
to analyze and compare the performance of such pipelines by
measuring the total time for computation. This model is used to
illustrate the effects of type of memory scheme used, ordering of
cores in the pipeline and caching.

Index Terms—pipeline, real-time streaming, message passing,
shared memory, SCC

I. INTRODUCTION

THE parallelization of a computing task is a well-studied
problem. There are several approaches and methods to

achieve parallelization depending on the nature of the com-
puting task. One of them is the pipeline approach that may
be applicable in situations where input data may be divided
into smaller fragments, each of which must have a certain
set of operations carried out in a specified order. This is
particularly effective whenever the data to be processed is
available progressively, for example, in multimedia streaming
applications, where pipelining the application results in a
higher sustainable throughput.

In several instances the current operation to be carried
out on a certain fragment is not dependent on either the
result of the previous or the subsequent fragment. Also, the
computing task maybe divided to be carried out at different
processing elements. As an example; an audio-processing
application that processes an input audio file for streaming,
or DES encoding of an input file. The operations carried out
at each processing element could be different (e.g the audio-
processing application, where a different filter is used each
time) or identical (e.g the cryptographic application). Setting
up a pipeline for processing such tasks serves to reduce the
amount of computing that a single processing element needs
to perform before switching to the next data chunk, thus
increasing the possible throughput, or reducing the computing
requirements on a single processing element.

There are several factors that affect the performance of a
pipeline such as the latency in memory accesses and the over-

heads involved in moving data between processing elements.
If the processing elements communicate over an interconnect
network, then simultaneous use of the network, by more than
one processing elements results in contention for bandwidth
which affects the performance of the pipeline.

In this work, we introduce a set of variables and equations
to describe the pipeline. We use experimental implementations
to help validate these models of the pipeline. The aim of these
experiments is to have a method to build models of the various
building blocks of the pipeline and of the pipeline itself.
These may then be used to gauge the expected performance
of pipeline and this, in turn, be used to guide the process of
actual implementation and deployment that leads to gains in
throughput and processing times.

II. RELATED WORK

The availability of the fast message passing buffers on the
SCC allow for using these for inter-core communications.
The RCCE library [2] provides a framework to implement
message-passing on the SCC, however a number of authors
addressed the problem of efficient inter-core communications
on the SCC. For example, Rotta [8] presents design options for
message passing protocols and discusses them. Villa et al. [11]
study the efficiency and scalability of barrier synchronization
in NoC-based many-core systems. The NoC-based architecture
of the SCC that uses the mesh-network to access the off-chip
RAM presents challenges introduced by this additional latency.
Verstraaten et al. [4] presents methods to implement memory
copy mechanisms aimed at increasing the throughput. Abts et
al. [1] explores issues in placement of memory-controllers and
the effect on latency. Petrot et al. [6] present a software-based
solution for cache coherency and memory consistency in NoC-
based multiprocessors. Prell and Rauber [7] address methods
for achieving task parallelism on the Intel SCC using runtime
task schedulers. Kierstscher et al. [10] present the effects of
MPI applications having knowledge of the topology, while Tol
et al. [3] discuss the mapping of a distributed implementation
of the S-Net on the SCC. Bo et al. [9] discusses the opti-
mization of data-parallel operations in the context of many-
core platforms. Papagiannis and Nikoloppoulos [5] examines
bottlenecks in scalability of the MapReduce algorithm and
presents an implementation of the same for the SCC.

37

III. PRELIMINARIES

A. Modeling memory access

Consider the Intel SCC which uses a tile-based architecture
with a mesh NoC that connects the tiles and the memory
controllers. Each tile has two cores, their caches and a small
local memory (the local memory buffer or the message passing
buffer).Each core on the SCC is assigned space in the message
passing buffer (MPB). The RCCE library uses this buffer to
implement message passing between the cores.

Let mpb(i, b) denote the time taken by a core i to write b
bytes of data into its own MPB. Let coord(i) be the coordi-
nates of the tile that contains core i, such that coord(i).x and
coord(i).y indicate, respectively, the x-coordinate and the y-
coordinate. Let dist(i, j) denote the routing distance between
elements i and j. Note that, the elements may be either cores
or memory-controllers. As the SCC uses dimension-ordered
routing, we may write dist(i, j)as:

dist(i, j) = |coord(i).x− coord(j).x|+
|coord(i).y − coord(j).y| (1)

If the data rate of the links of the NoC are denoted by μ,
then the time taken to transfer b bytes from i to j can be
expressed as tt:

tt(i, j, b) =
dist(i, j) · b

μ
(2)

The above expression assumes that only a single transfer is
happening over the set of links. We assume this simplistic way
to model the memory access and further assume that it would
be an upper bound on the time it takes to access memory in
the worst scenario in this simple case. This might not always
be the situation and there may be more than one core using
the same links of the NoC. In this case, the effective data rate
may be lower (see VII).

Define a function mem(i) similar to coord(i), but instead
of indicating the coordinates of i, mem(i), indicates the coor-
dinates of the memory controller that has the private memory
of i. Similarly define shmem(i) to indicate the coordinates
of the memory controller that has the shared memory that i is
using.

B. Modeling message passing

The RCCE library provides synchronous blocking send()
and receive() interfaces for transferring messages between
cores. The send() method accepts the rank of the core that
is the destination and the receive() method accepts the rank
of the core that it expects to receive a message from. These
calls have to be matched - for every send executed to j from
i, j must execute a matching receive from i.

RCCE implements this mechanism such that the sending
core writes the message from its private memory to the MPB,
and signals the destination core. The destination core reads
the message from the source’s MPB (via the lookup table
entries) and stores into its own private memory. Thus, a send
and receive operation consists of one off-chip memory read

Figure 1. Representation of the pipeline

by the source, one write by the source to its own MPB, one
read of the source’s MPB by the destination and one write to
the off-chip memory by the destination. For a message of size
b bytes, we may write this time taken as tm:

tm(i, j, b) = tt(i,mem(i), b) +

mpb(i, b) +

tt(i, j, b) + (3)
tt(j,mem(j), b)

IV. PIPELINE

The pipeline that we consider has several stages through
which each chunk of data must be processed. For the purpose
of this study, we have kept the operation performed at each
stage to be identical. Also, a single core is mapped to exactly
one stage in the pipeline. Each stage in the pipeline does the
following:

• receive a single chunk of data from the previous stage
• perform the operation on that chunk
• send the chunk to the next stage in the pipeline

Since we use the RCCE library for message passing and
synchronization, the send and receive steps are synchronous.
Thus, all the cores are almost simultaneously doing one of the
three steps described above. The first and the last stages of
the pipeline are slightly different from the other intermediate
stages - the first stage instead of receiving a chunk, reads
a chunk from the input buffer and, the last stage instead of
sending a chunk forward, writes to an output buffer. Figure 1
shows a representation of the pipeline.

The pipeline has a set of parameters associated with it:
• D is the total size of data (in bytes) to be processed by

the pipeline.
• C is the size of each chunk (in bytes)
• N = D/C is the number of chunks
• m is the number of stages in the pipeline
• Z is the size of a token
• tc(i, b) is the time take to compute b bytes at stage i -

each compute step is a read from memory (private or
shared), process and write to memory(private or shared).

38

• T pipeline(D,C,m)denotes the time taken by a pipeline
with m stages to process D bytes of input in chunks of
C bytes.

We have implemented the pipeline using two of the memory
types available on the Intel SCC. The following subsections
describe each of these approaches.

A. Private memory

The private memory of a core is visible and accessible only
to that core. In the implementation of the pipeline using private
memory all the buffers that each stage uses are allocated in the
private memory using the standard malloc(). The chunks are
sent from one stage to the next using the send() and receive()
methods of the RCCE library. Denote the time taken to process
the nth chunk of size C bytes at stage i by tp(i, C), as:

tp(i, C) = tm(i− 1, i, C) +

tc(i, C) + (4)
tm(i, i+ 1, C)

For the pipeline to proceed, one chunk at a time must be
processed and placed in the output buffer. For this to happen,
m − 1 messages have to be sent (or received) and since the
messaging is synchronous we need to consider only either the
time for sending or receiving - the time spent sending in at
stage i − 1 will be equal to the time spent in receiving at i.
When the chunk from the last stage is placed in the output
buffer, exactly one more new chunk may be admitted at the
first stage. Thus, the maximum time spent at each step of the
pipeline in processing is the time taken by the stage that has
the maximum tc(i, C). That is, if the pipeline were to be stalled
- some stage is in the processing step, while the stages before
this stalled stage are waiting to send and the ones after the
stalled stage are waiting to receive - then the pipeline would
progress only when the stalled stage finishes processing and
sends the chunk on to the next stage. In the time that this stage
took to process the current chunk, all the other stages would
have processed exactly only one chunk. Hence, we may write
the time taken for pipeline to complete as:

T pipeline(D,C,m) = N ·
[
m−1∑
i=1

tm(i, i+ 1, C)

]
+

(N +m) ·max {tc(i, C)}mi=1 (5)

≤ N · (m− 1) ·max {tm(i, i+ 1, C)}m−1
i=1 +

(N +m) ·max {tc(i, C)}mi=1 (6)

B. Shared memory

The SCC provides a shared memory area that can be
accessed by all cores on the platform. We use this shared
memory as one of the ways to implement the pipeline. In this
case,the first core allocates the space in shared memory for
the buffers and sends the offset from the start of the shared
memory region to the other cores. One of the buffers that is

created in the shared memory is a queue. Access to each slot
in the queue is managed using tokens (denoted a Z) which
the first stage initially generates. A stage may only access the
slot to which it holds the token. The first stage reads data
in chunks from the input buffer into the slots of the queue
and the last stage reads out data from the queue into the
output buffer. Unlike in the previous method where the entire
chunk was transferred over the NoC, here only the token is
transferred from stage to stage. Due to the synchronous nature
of communication, the number of slots in the queue has an
upper bound equal to m− 1.

tp(i, C) = tm(i− 1, i, Z) +

tc(i, C) +

tm(i, i+ 1, Z) (7)

As reasoned for the private memory case, in this imple-
mentation as well a similar reasoning can be applied. The
differences are that since the queue is of a circular nature
(due to a ring created by the passing of tokens among the
stages), the number of messages at each step of the pipeline
is m (the last stage sends the token to the first stage). Also,
the stages move along the queue of chunks as opposed to the
chunks moving from one stage to another.

T pipeline(D,C,m) = N ·
[
m−1∑
i=1

tm(i, i+ 1, Z)

]
+

N · tm(m, 1, Z) + (8)
(N +m) ·max {tc(i, C)}mi=1

≤ N ·m ·max
{
tm(i, i+ 1, Z)m−1

i=1 , tm(m, 1, Z)
}
+

(N +m) ·max {tc(i, C)}mi=1 (9)

1) Uncached and cached shared memory: Shared memory
on the Intel SCC can be made uncached - bypasses both the
L1 and L2 cache, or cached - cached in both L1 and L2, by
setting the relevant bits appropriately for the corresponding
page table entries. RCCE provides a mechanism to achieve
this at the time of compiling the library. The uncached and
the cached shared memory is exposed, respectively, through
the /dev/rckncm and /dev/rckdcm devices. Depending on how
the library was compiled the shared memory is mapped to one
of these devices. The RCCE interfaces to handle this memory
does not change significantly.

Although, using the cached shared memory has the ad-
vantage of reducing the number of memory accesses during
computation, it currently comes with the overhead of having to
flush the entire cache on the core to ensure consistency of the
shared memory. A core must flush caches before begining to
read from shared memory and must flush after modifying data
in shared memory. As a result, the number of flush operations
is proportional to the number of chunks that the input data is
split into times the number of cores participating.

39

C. Effects of ordering of cores

The trival method to order cores would be in order of their
physical core ID. Though on the average, the distance between
tiles is about as small as it can get, the distance is quite large at
certain points (for instance, from core 11 to core 12 and from
core 23 to core 24). Some advantage could be gained if the
ordering of cores and mapping of pipeline stages were done
in such a manner so as to keep the routing distances as small
as possible. One possible method is to start at some corner
(say tile (0, 0)) and then move in the direction of increasing
x-coordinate values, then step up to the next y-coordinate, and
move in the direction of decreasing x-coordinate, and follow
this method till the last core. The gains from following such
reordering is only significant if the time spent in message
passing itself is comparable to the time spent in processing,
and further if the differnce in latency in messaging cores with
different routing distances itself is significantly appreciable.
Nevertheless, some small gains are to be expected by reducing
the routing distances between stages of the pipeline.

V. EXPERIMENTAL RESULTS

All experiments were performed on the SCC with 32GB of
off-chip memory. The SCC system was configured with the
cores running at 533Mhz, the mesh at 800Mhz and the DDR
at 800Mhz. The RCCE library was compiled with the non-
gory interfaces and without the power-management options
enabled. The -DSHMADD flag was enabled to for increasing
the size of the available shared memory. The LUT entries
corresponding to the shared memory were re-arranged such
that the first 15 entries pointed to shared memory on the
memory bank connected to tile (0,0), the next 15 to the bank
connected to (5,0), the next 15 to the bank connected to (0,2)
and the last 15 to the bank connected to (5,3). The processing
done on each core was a placeholder operation that simply
incremented the value read in the input by 1 and wrote it back.
The applications on the core were run at real-time priority by
using SCHED_FIFO with a priority of 20.This section presents
sample results from the experiments we have performed on the
described setup.

Figure 2 plots the time taken to access (read and write)
4MB of shared memory from each of the cores against the
distance (in terms of dimension-ordered routing) of the core
from the memory controller. We see that the latency varies
almost linearly with increasing distance with respect to each
of the four controllers.

Figure 3 and Figure 4 are for the private memory based
implementation. We expect the time to process the input to be
linearly dependent on the size from (6). The bumps in Figure 2
are at C = 16KB are possibly due to interference from the
L1 cache - since we would expect the previous chunk’s data
(and marked ‘dirty’) to be residing in the cache when the
current chunk is being processed, thus accesses to the current
chunk’s data would cause evictions in the cache resulting in a
write-back of the evicted data into memory.

Figure 5 and Figure 6 are using an uncached shared memory
based model. As expected, there is a linear increase of total
processing times but is independent of chunk sizes, since every

Figure 2. Read and write access times to shared memory for 4MB

Figure 3. D vs T pipeline(D,C,m) with m = 48 for a private-memory
implementation and a trivial ordering of core by ascending physical ID

Figure 4. C vs T pipeline(D,C,m) with m = 48 for a private-memory
implementation and a trivial ordering of core by ascending physical ID

40

Figure 5. D vs T pipeline(D,C,m) with m = 48 for a uncached shared
memory implementation and a trivial ordering of core by ascending physical
ID

Figure 6. C vs T pipeline(D,C,m) with m = 48 for a uncached shared
memory implementation and a trivial ordering of core by ascending physical
ID

access is from the off-chip memory. Also, in Figure 6 we see
that the total time for processing doubles with doubling of
input data size.

Figure 7 and Figure 8 refer to the cached shared memory
based model. Here the nature of the plot is due to the additional
time taken in explicity flushing caches before reading from
shared memory to prevent reading stale data from the cache
and after writing to shared memory to ensure changes are
flushed from the cache to the memory. The flushing causes
the entire cache to be flushed. For every chunk that a core
processes, two flush operations are needed, hence, doubling
the chunk size (hence, halving the number of chunks) halves
the number of cache flushes needed.

Figure 9 and Figure 10 compare the performance of the three
approches. The current limitation in the cache flushing causes
the cached shared memory implementation to be somewhat
worse than the private memory implementation for smaller
chunk sizes, due to a large number of flushing operations.
But, for larger chunk size it performs better.

We compared the times for two orderings of the cores which
are:

1) A trival ordering in order of physical ID of cores -
0,1,2,3,4,....,45,46,47.

2) A reduced inter-core distance or-
dering denoted by min-routing -

Figure 7. D vs T pipeline(D,C,m) with m = 48 for a cached shared
memory implementation and a trivial ordering of core by ascending physical
ID

Figure 8. C vs T pipeline(D,C,m) with m = 48 for a cached shared
memory implementation and a trivial ordering of core by ascending physical
ID

0,1,2,...,9,10,11,23,22,21,...,14,13,12,24,25,26,...,33,34,
35,47,46,45,...,38,37,36

Table I lists the comparison of total processing time for the
three memory models based on the ordering of cores and
with C = 256KB. Though there are gains, the effect is
most noticeable in the case of the cached shared memory
implementation.

Figure 9. C vs T pipeline(D,C,m) with m = 48 and D = 4MB -
comparison

41

Figure 10. D vs T pipeline(D,C,m) with m = 48and C = 16KB -
comparison

D(MB) T pipeline(D, 256KB, 48)(sec)

Trivial ordering Min-routing ordering

Private memory
1 3.678 3.670
2 4.155 4.151
4 5.128 5.117
8 7.060 7.054

Shared uncached memory
1 6.635 6.553
2 12.200 12.118
4 24.031 23.948
8 47.693 47.611

Shared cached memory
1 0.920 0.868
2 1.256 1.143
4 2.252 2.042
8 4.745 4.313

Table I
COMPARISON OF TOTAL PROCESSING TIMES AGAINST ORDERING AND

MEMORY-MODEL

VI. CONCLUSIONS

From our experiments we concluded that in deploying
pipelined applications factors of memory access latencies need
to be accounted for improving the performance of computa-
tion. Further, it will help in improving performance by running
data-intensive stages on cores that are closer to memory.

The ordering of the cores also shows effect on the total
computation time. Ordering of the stages that such that stages
that have a bulk of inter-stage communication requirements
on cores that are close will lead to better computation times.
In this work, in our experimental pipeline the communication
pattern between stages is near-identical and quite predictable.

The simplistic assumptions we have used for memory and
communication give us some estimation as to the performance
of the pipeline, these need to be generalized further to improve
the capabilities (See VII).

Though using messaging to transfer data between stages of
the pipeline performs better than the shared memory (cached)
approach, a finer method of just flushing only modified lo-
cations from the cache to the memory will greatly improve
performance.

VII. FUTURE WORK

In the future we plan to investigate methods to dynamically
map stages of a pipeline to cores based on constraints such
as the maximum acceptable end-to-end delay or latency of
the application. We will also measure how using the on-die
TCP/IP communication affects the performance. Further we
will explore the effect of the degree of parallelization of stages
in the pipeline and methods to incorporate this factor into how
stages are mapped onto cores.

In this work we assume a very simple model of the memory
access, we plan to consider cases with concurrent accesses
by different cores and the load this imposes on the NoC to
be able to be more accurate in estimating performance. Also,
the communication pattern between stages currently is near-
identical and quite predictable. This is usually not the case in
a general deployment and we will explore ways to model such
general cases. This will enable us to create a more realistic
model which will help further in the task of dynamic mapping
of stages to cores.

VIII. ACKNOWLEDGEMENTS

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme under grant agreements n.248465, in the context of
the S(o)OS Projects.

REFERENCES

[1] Dennis Abts, Natalie D. Enright Jerger, John Kim, Dan Gibson, and
Mikko H. Lipasti. Achieving predictable performance through better
memory controller placement in many-core cmps. In Proceedings of the
36th annual international symposium on Computer architecture. ACM,
2009.

[2] Tim Mattson and Rob van der Wijngaart. RCCE: a Small Library for
Many-Core Communication. Intel Corporation.

[3] Michiel Van Tol Roy Bakker Merijn Verstraaten, Clemens Grelck and
Chris Jesshope. Mapping Distributed S-Net on the 48-core Intel SCC
processor. In 3rd Many-core Applications Research Community (MARC)
Symposium, 2011.

[4] Merijn Verstraaten Clemens Grelck Michiel W. Van Tol, Roy Bakker
and Chris R. Jesshope. Efficient Memory Copy Operations on the 48-
core Intel SCC Processor. In 3rd Many-core Applications Research
Community (MARC) Symposium, 2011.

[5] Anastasios Papagiannis and Dimitrios S. Nikolopoulos. Scalable Run-
time Support for Data-Intensive Applications on the Single-Chip Cloud
Computer. In 3rd Many-core Applications Research Community (MARC)
Symposium, 2011.

[6] F. Petrot, A. Greiner, and P. Gomez. On cache coherency and memory
consistency issues in noc based shared memory multiprocessor soc
architectures. In Digital System Design: Architectures, Methods and
Tools, 2006. DSD 2006. 9th EUROMICRO Conference on, 2006.

[7] Andreas Prell and Thomas Rauber. Task Parallelism on the SCC. In
3rd Many-core Applications Research Community (MARC) Symposium,
2011.

[8] Randolf Rotta. On Efficient Message Passing on the Intel SCC. In
3rd Many-core Applications Research Community (MARC) Symposium,
2011.

[9] Byoungro So, Anwar M. Ghuloum, and Youfeng Wu. Optimizing data
parallel operations on many-core platforms. Intel Corporation.

[10] Simon Kiertscher Steffen Christgau and Bettina Schnor. The Benefit
of Topology-Awareness of MPI Applications on the Intel SCC. In
3rd Many-core Applications Research Community (MARC) Symposium,
2011.

[11] Oreste Villa, Gianluca Palermo, and Cristina Silvano. Efficiency and
scalability of barrier synchronization on noc based many-core architec-
tures. In Proceedings of the 2008 international conference on Compilers,
architectures and synthesis for embedded systems. ACM, 2008.

42

Deterministic Execution on Many-Core Platforms:
application to the SCC

Bruno d’Ausbourg, Marc Boyer, Eric Noulard, and Claire Pagetti

Abstract—The last decade has seen the emergence of multicore
architectures, i.e. chips integrating several cores. The forth-
coming generation of hardware components will implement the
many-core architecture: numerous cores communicating over a
Network-on-Chip (NoC) technology.

The purpose of the paper is to overcome the main issues
of those hardware platforms for executing safety critical em-
bedded applications. Indeed, a many-core involves several non
predictable mechanisms which make it hard to determine the
worst case behaviors. We propose to use a programming model
which consists of a set of execution rules that reduce the non
predictable behaviors. We illustrate our solution on the Intel
SCC research processor.

Index Terms—many-core, multi-core, real-time scheduling,
deterministic execution, critical and embedded systems.

I. INTRODUCTION

FOR cost reasons and because of the high level of in-
tegration, embedded systems manufacturers widely rely

on commercial off-the-shelves hardware components (COTS).
The trend of future processors is the many-core technology
[1]: such chip includes numerous cores (more than 16) with
distributed memories and a complex communication network
based on a Network-on-Chip (NoC) technology. This promis-
ing emerging technology will be the next COTS hardware for
time critical systems as well. The purpose of the paper is to
examine the main issues and to propose adequate solutions
for embedding this kind of hardware platforms for executing
safety critical applications.

Many-core platform involves several non predictable mech-
anisms for managing the resource sharing which make it
hard to ensure time predictability. Most of the works in the
literature on many-core architectures are concerned with high
performance: the idea is to extend and adapt current operating
systems to the new architectural organisation [2], [3], [4]. The
main concern of an embedded system designer is somehow
different: he/she wants to determine the worst case behaviors
in order to verify that the hard real-time requirements are
always met, rather than to study the average performance.

For our first work, we propose to implement a simple
execution model and verify that the system is analyzable,
meaning that the worst case execution time (WCET) for any
task is computable.

All authors are working at ONERA, the French Aerospace Labs, in
the DTIM departement – http://www.onera.fr/dtim, E-mail addresses: first-
name.lastname@onera.fr

This work has been funded by ONERA research program PR-SCC and
supported by Intel through a research proposal for working with Intel SCC
and the Many-core Applications Research Community (MARC).

A. Execution model

Our system model consists of a concurrent periodic tasks set
S = {τ1, . . . , τn} communicating via variables and subjected
to dependencies. The usage domain rules we propose are the
following:

1) a unique task is statically allocated on a unique core. A
global multi-threaded execution is not an alternative for
hard real-time applications [5], this is the reason why
we prefer a fully partitioned approach;

2) the periodicity of each task is handled by the local clock
of the core. Indeed, the cost for accessing the local clock
is much cheaper and conflict-less than the global clock
one. Moreover, on a single chip multi-core all local
clocks are derived from the same hardware clock and
should therefore be running synchronously,

3) tasks only communicate via message passing. In uni-
processor or multi-core cases, the implementation of
communications is usually done using global shared
variables. Thus, tasks read values from local caches
which should be maintained coherent with the RAM
using some cache snooping feature. Such an approach
implies unpredictable [5] time delay. Many-core ar-
chitectures often propose message passing mechanisms
between cores in order to overcome their distributed
memory nature. In our deterministic quest, an explicit
message is more suited because the user precisely knows
the number of messages and within which time inter-
val they occur. This leads to a reduction of the non
predictability at the cost of modifications of the code
in order to implement explicit communication using
messages.

B. Automatic message passing programming

For helping the real-time system designer to use the exe-
cution model, we propose to derive the message passing code
from a high-level specification. We should be able to do that
for example with the PRELUDE language and compiler [6].
As a proof of concept we will first manually implement an
example and then come up with the proper modification of the
PRELUDE compiler afterwards. For the first implementation,
we use point-to-point messages. So for instance, if τi produces
a variable v which is consumed either by τj and τk, the
resulting code sends two messages at each execution of τi: one
for τj and one for τk. In fact it is a little more complicated
than that because since the tasks are multi-periodic, a faster
producer task will only send part of those messages to a slower
consumer task.

43

Many-core architectures, like the SCC, are distributed mem-
ory architectures with sometimes hardware support for mes-
sage passing, like the SCC MPB [7] which seems well suited
for our message passing model. We will see in section III
that we will use the widespread single program multiple data
(SPMD) programming model because it can be easily used on
the SCC even if our genuine need is a pure message passing
model not its SPMD restriction.

C. Expected benefits: timing analysis

The final goal for using the execution model is to be able
to compute the WCET of any task taking into account the
memory accesses (for internal computation within a task) and
the message WCTT (worst case traversal time) required by the
task execution.

For our first work, we will not prove how to compute a
WCET on the restricted architecture (by restricted architecture
we mean a many-core compliant to the execution model
defined above). We will simply provide experimental results
and measures on the exchanged messages observed on the Intel
SCC. Nonetheless, the execution model design should lead to
easier and tighter WCET computation. In fact with our exe-
cution model the WCET computation is essentially equivalent
to a classical mono-core one with the extra simplification of
one task per core.

II. TARGET APPLICATION

We target a subset of time-critical control command embed-
ded applications such as the flight control of an aircraft, the
guidance and navigation system of a vehicle. At ONERA, we
use the formal language PRELUDE [8] designed for the specifi-
cation of the software architecture of critical embedded control
system. It belongs to the synchronous data-flow languages and
focuses on dealing with the functional and real-time aspects
of multi-periodic systems conjointly. PRELUDE enables the
modeling of control application as the one described on Fig. 1.

Navigation Law
(NL)

Navigation Filter
(NF)

Piloting Law
(PL)

Piloting Filter
(PF)

Feedback
Law
(FL)

Feedback
filter
(FF)

Acceleration
position
acquisition
(AP)

Observed
Position
(pos o)

Required
Position

(pos c)

Observed
Acceleration
(acc o)

Required
Acceleration

(acc c)

Observed
Angle

(angle o)

(acc i)

(pos i)

Required
Angle

(angle c)
order

angle

acceleration
(acc)

position

120 ms 40 ms 10 ms

Fig. 1. Flight control system

From a PRELUDE program the compiler generates a pe-
riodic dependent task set S = {τ1, . . . , τn} exchanging via
communication patterns C and subject to dependencies R:

• Each task τi is characterized by the classical real-time
parameters (Ti, Ci, Oi, Di): Ti is the period, Ci the
[worst case] execution time [estimation], Oi the release
date or offset and Di the relative deadline.

• The communication patterns C define precisely which val-
ues of an exchanged variable are consumed. For instance,
there is communication FF → FL and both tasks execute
at the same rate. In that case, the communication pattern
is simply that FL consumes each data produced by FF .
This is expressed in Fig. 2 by the fact that FF writes
every value of angle o as (1): it is a periodic word that
states for write.write. . . . In the same way, FL reads every
value which is expressed by (1). The communication
AP → PF is more complex since PF executes less often
than AP . In that case, PF consumes every four produced
values. This is expressed in Fig. 2 by the words (1000)
for Ap which means write.no.no.no.write.no.no.no. . . and
(1) for PF which means read.read. . . . PRELUDE involves
numerous operators for expressing highly complex com-
munication patterns.

• The dependencies R are the temporal translation of
the communication patterns between the different tasks.
Indeed, the task producing a data must be complete before
the consumer starts. So for instance, the communication
FF → FL imposes that FF must always end before FL.
The communication AP → PF imposes that four jobs of
AP must always end before a new PF jobs is started.
This is expressed in Fig. 2 by the notation AP

(0,0)−−−→ PF .

Example 1: A PRELUDE program for the example given
fig. 1 may generate the task set given Fig. 2.

Task T C O D
NL 120 20 0 120
NF 120 10 0 120
PL 40 5 0 40
PF 40 5 0 40
FL 10 2 0 10
FF 10 1 0 10
AP 10 1 0 10

R
FF → FL

AP
(0,0)−−−→ PF

. . .

C - write
FF : (1)
AP : (1000)
. . .
C - read
FL: (1)
PF : (1)
. . .

Fig. 2. Generated task set

We have developed at ONERA an end-to-end framework,
SCHEDMCORE [6], from the design in PRELUDE to the
implementation on a uni-processor or a symmetric multi-
core platform. The multi-threaded execution is ensured by
the SCHEDMCORE runner: the communications are made via
shared variables, the tasks can be scheduled by one of the four
on-line policies (Fixed-Priority/FP, global Earliest Deadline
First/gEDF, global Leats Laxity First/gLLF and Largest Local
Remaining Execution First/LLREF) or an off-line sequencer,
which sequences the task set from a static trace.

We want to extend the SCHEDMCORE tool set for the
SCC, this entails: generating an allocation of the tasks on
the cores and generating the message passing code between
tasks, instead of the buffer-based communication protocol in
the current version. Somehow this would transpose a real-time
scheduling problem into a mapping real-time communication
problem, i.e. we do not have classical multi-core scheduling
problem anymore because every task has a dedicated proces-
sor.

44

III. EXECUTION MODEL ON THE SCC
We illustrate the implementation of the execution model on

the SCC through an example. We first show a static allocation
of the example 1 on the SCC and we then detail how to enforce
the periodicity and the communication between tasks.

A. Static allocation
The execution model supposes to map statically a unique

task on a unique core. This entails that there must be less tasks
than cores. This hypothesis is not that restrictive since the
current SCC has 48 cores and future many-core will integrate
many more cores [1].

One may argue that this would be a waste of computing
resources but: hard real-time software designer are first con-
cerned with determinism and then with other constraints like
energy consumption. Moreover on a SCC-like processor we
may power off the unused processor(s) which would lower
the energy waste, our idea with Many-core for real-time is
than you do not necessarily want to use all the resource as
long as you do not pay too high price (energy, weight, . . .)
for the unused resource. Unused computing resource may be
used in order to implement software redundancy or considered
as evolution margin, but this are not our current concerns. For
now we just consider we would always have enough processor
cores.

The illustrative case study is composed of 7 tasks which is
much less than 48 cores. There are many possible allocations,
exactly A7

48 = 48×47×. . .×42, but there are not equivalent in
terms of worst case response times. For example, the task AP

regularly acquires sensor data from the outside world (position,
acceleration). This means that several communications with
external (to NoC) I/O system will take place. AP then sends
data either to PF and NF , therefore an allocation should take
into account the path length and bandwith of the message
flow. The criteria for defining a ”good” allocation is an
on-going work and the experimental results obtained from
several allocations will give us general rules to definition what
”good” means. An example allocation is shown in Fig. 3, this
allocation tries, in a simple manner, to minimise the network
traffic. We know that the SCC NoC uses X-Y routing, thus
in the mapping Ff is a direct neighbour of FL and AP is a
direct neighbour of PF and we know from figure 1 that thoses
tasks are linked by a data dependency.

Fig. 3. Example of a static allocation

B. Required features of the SCC
In order to ensure better predictability and more determin-

istic execution we want to use the SCC in bare metal mode.
That way we should be able to avoid any overhead and/or
concurrent activities usually impaired by an operating system.
Moreover since our execution is essentially to have a single
core dedicated to a single task bare metal execution is the most
appealing way of use. General purpose program designers may
find shared memory programming model more easy to use
but time critical systems standard like ARINC653 [9] usually
enforce both temporal and spatial segregation/isolation so that
the distributed nature of Many-Core may be interesting in the
time critical domain. With the SCC the fact that each core may
decide which part of its memory is shared is a great advantage.
Our execution requires no sharing at all. Since every task has
its own core, we need very few usually OS-provide services.

In practice, we are currently beginning to use the ETI Bare
Metal Framework [10]. We will explain shortly that all the
basic features we need are not currently supported by this
framework but we think we should be able circumvent all
these shortcomings. In the future we are willing to work with
ETI and may be other SCC baremetal programming solution
providers in order to define and implement our basic feature
needs. Let us examine those needs:

1) Static allocation mapping: We have computed off-line a
static allocation, the implementation need would be to be able
to load each mapped function on a particular core as depicted
on Fig. 3.

Such configuration mapping is not currently possible with
current ETI bare metal framework. We can only launch a
SPMD program on n cores and the launcher will then load it
on core 0 to n. This does not strictly correspond to our need
because in fact we do not want SPMD programming. In fact,
we will emulate the 1 function on 1 core mapping by loading
an SPMD program which will check its rank before running
the appropriate function. Moreover if we want to do some
testing with less than 48 core and with a particular mapping,
e.g. our 7 tasks mapped on processor ID 0,2,4,14,28,36 and
38 we have no other choice than to load the SPMD program
on all cores and then enter a pause loop on cores which are
not supposed to be loaded.

2) Multi-periodicity management: We also have to imple-
ment the real-time behavior of each task: inputs must be
available at the beginning of the execution, the outputs must
be produced on-time (before the deadline) and the task repeats
periodically. This means that we must have a way to create
bare metal periodic program.

For that purpose, we use the TSC of each core which gives a
local time reference. Since the TSCs of different cores are not
synchronized, the cores do not have comparable time reference
and we must find a way to reconstruct a global vision. We
wanted to use the Global TSC introduced in recent sccKit
1.4.x [11] but this is not currently mapped into the memory
of the process when using ETI bare metal. In any case, we
do not want to generate unwanted traffic on the SCC NoC
and since the global TSC (GTSC) is hosted on the FPGA it
would not be wise to concurrently read the GTSC at high
frequency from possibly 48 cores. We imagine that we could,

45

during a startup phase, compute the offset between GTSC and
TSC of each core in order to use local TSC with a correction
offset during run-time in order to have a global time reference
with local (on core) access. An alternative would be to have
some very low latency global barrier primitive which would
makes it possible for each core to exchange their local counter
right after such a barrier. The validation of these scheme is
an on-going work. Another option would be to use the new
48 interrupt status registers. One core may be dedicated to
the schedule of other periodic cores. This scheduling core
would write into appropriate interrupt status registers in order
to trigger the new periodic cycle of the concerned cores. Again
we need to validate this scheme.

3) Communication management: We then must implement
the communication patterns C with explicit messages. There-
fore, our basic communication need is to have a send and
receive function (which ensures no loss of data). Ideally both
functions should be non-blocking in order to ensure that the
periodic tasks do not overrun their period and WCET. Those
send/receive function should be specified with a maximum
message size for which we are ensured that the message will
not be fragmented. This is necessary if we want to able to
precisely compute WCTT.

ETI framework and their streams API should match part
of this need, but the fact that send operation seems to be
blocking and we do not know yet the maximum message size
and how MPB and/or shared memory are used for messaging
(e.g. RCCE is exclusively using MPB for small size and shared
memory at some point).

We are currently thinking of directly using SCC MPB
(using -r option of the ETI launcher) in order to handle
raw communication ourselves. This way of work may be
interesting in order to better exploit the tight MPB space
knowing our static communication pattern. We can do that
because we statically know the communication pattern so that
we do not necessarily want to divided MPB evenly among the
cores. We are currently studying RCCE implementation as an
inspiring source of knowledge for that purpose.

4) Current limits and drawbacks: We are currently imple-
menting some test drive programs in order to evaluate the
execution model. We did send our feature request to ETI and
are willing to work with other MARC people interested in bare
metal solutions in order to have this minimal set of features
for bare metal:

1) non SPMD bare metal execution with selected cores
2) globally comparable timestamp with local access
3) clean multi-periodic execution.
4) non-blocking send/receive functions with identified non

fragmentation maximum message size.

IV. ROAD-MAP

Our road-map for the current work is the following.
a) Minimal hard real-time bare metal API: Our execu-

tion will lead us to the specification of a minimal bare metal
API usable for the implementation of hard real-time multi-
periodic application on many-core architecture. We should
come up with such a specification shortly and work on
implementation for SCC with SCC bare metal providers.

b) WCTT computation: Predictable communication is a
common need of distributed real-time systems. In civil Air-
craft like Airbus A380 or Boeing Dreamliner the ARINC664
(a.k.a. AFDX) is used in order to interconnect the generic
computing modules. AFDX is a modified version of ethernet
switched network tailored for the deterministic needs of the
aerospace industry. Even if the network has been designed
for determinism some off-line computation (sometimes huge)
[12] must be done in order to compute a tight and secure
WCTT. Various mathematical techniques, one of them being
the network calculus, are used to compute such bound. In the
NoC domain, there are very few available works [13].

We will define a possibly new mathematical model in order
to be able to compute the WCTT we need in our application.
Beside the reading of Intel SCC documents [7, §6 SCC Mesh]
and other network performance related work [14] concerning
the SCC NoC which will help us to define this model, we
began to develop some [bare metal] test program in order
to empirically evaluate some WCTT in the multi-periodic
configuration we are interested in.

c) Integrate with PRELUDE-SCHEDMCORE tool set :
Our first experiment will validate the proof of concept on
hand-written example we will then pursue our work in order
to integrate the work into our PRELUDE-SCHEDMCORE tool
set. The overall goal would be to program hard real-time
multi-periodic system using PRELUDE which would finally be
mapped onto the SCC.

d) WCET computation: The SCC uses relatively old
processor cores which may be more predictable w.r.t. to
WCET. P54C is a in-order processor with relatively simple 2
level caches with on core L1 (16KB data, 16KB instruction)
and unified 256KB L2. Every caches level are private to one
core so that there is no concurrent access to the cache between
cores. In fact, OTAWA [15] the research tool we usually use for
WCET analysis does not currently support Intel processor. In a
first raw approximation we will consider that each SCC core
does not suffer too much execution time variation provided
that we use it in bare metal mode. Moreover, it has distributed
memory architecture with thus limited resource sharing, we
can either assume that each core has a private memory (private
memory ensures the spatial partitioning real-time systems
usually requires) whose usage does not interfere with other
core activities or that the local memory access is bounded
in time, provided that we precisely know each core memory
activities and RAM access performance model [14]. We will
probably add cache miss instrumentation in our test drive code
using Pentium hardware counter programmed with MSR.

V. PRELIMINARY RESULTS: WCTT EXPERIMENTS

We did some preliminary experiment on our Worst Case
Traversal Time roadmap. We implemented a test drive SPMD
C program using ETI baremetal framework. The program
implements two main features:

• a rough time synchronization algorithm which makes it
possible to use local TSC as a global clock

• a multi-periodic communicating tasks set with a config-
urable communication pattern which mimics an AFDX

46

network communication. The main purpose here is to
measure the communication latency on each emulated
AFDX Virtual Link.

Our main purpose in this test is to measure a one way
communication latency between any core, the receiving core
should be able to measure communication latency on his own
using local time and a comparable time which has been put
inside the packet by the sending core. A globally [to the SCC]
accessible reference time like GTSC would have been nice
but we want to avoid NoC traffic when measuring network
latency moreover GTSC is not available with ETI baremetal.
Therefore, we designed a simple synchronization protocol.

A. Time synchronization protocol

We have implemented a basic synchronization protocol
which uses the TSC local to each P54C processor core. First
we assume that every TSC in an SCC system is running
synchronously; this should be true at the hardware level by-
design as stated in SCC External Architecture Document [7,
§7.1]: The clock distribution is a fast synchronous global
grid that gets divided down inside each tile inside the GCU.
Needless to say that in our case we assume that we do not play
with the dynamic frequency feature of the SCC. Now even if
all TSCs are running synchronously they may have varying
offset values depending on the boot/reset time order of each
core. Under the previous assumption we know that every TSC
are running synchronously with varying offset. The purpose of
our synchronization protocol is to find the best approximation
of each core TSC offset with respect to master core. Note that
this “synchronization protocol” has the property of being one
shot. As soon as the local synchronization offset are computed,
we do not need to communicate for synchronization purpose
any-more.

Our current algorithm is the following, first we decide that
some core is the master (we use core #0). Then, for each
node, the Round-Trip Time (RTT) with the master is computed
and the master send a sync message containing its local clock
value. The correction is done such that the local reception
instant (measured with the local clock of the receiving core)
is equal to the master sending instant, plus half the RTT.

This procedure is run at the very beginning of our program,
it is run several time in order to filter out possible cache effect.
After that we have a global clock whose value may be obtained
by each core by reading the TSC and adding it local offset
which is a purely local operation. Using this procedure we
obtain a global clock with a 20 micro-second precision.

B. Communicating task set description

Our test drive program aims at being similar to Avionics
applications which communicates using AFDX network. The
AFDX standard (a.k.a. ARINC664) defines the notion of
Virtual Link (VL) which is a logical communication link
with one source and one or more destinations. Each VL has
a specification/configuration which says who is the source
and who are the destinations plus temporal and bandwidth
attributes. The attributes defines the amount of data conveyed
by the VL and its so-called BAG which stands for Bandwidth

Allocation Gap. This is the maximum rate data can be sent, and
it is guaranteed to be sent at that interval. Our VL configuration
on 48 cores is described on figure 4. On this figure each VL is
represented by a set of arrows from source core to destination
cores. The thickness of each arrow is proportional to the
bandwidth. This configuration has an aggregate bandwidth
consumption of 960 MBytes/s.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Fig. 4. Communication patterns

Our WCTT test drive program does just that. It loads a VL
configuration and naively map all ends of VLs (source and
destination) to an SCC core using basic modulo, i.e. V Li

is mapped to core i modulo 48. Notice that each message
is less than 1.5Kb, which is quite small [16]. After the
synchronization step described in previous paragraph each core
uses its global clock to send time-stamped data through its
VLs at instant corresponding to its specification. The receiver
core finally measures the communication latency by reading
its global clock right upon reception and then computes the
difference with the time found in the received data.

The figure 5 shows the min, max and mean latency values
on each receiving core for the nominal configuration. As we
can see the maximum latency is just twice the mean latency
and stays below 500 micro-seconds which is very low.

We then show at figure 6 the same configuration for
which the bandwidth consumption has been scaled by 10.
This scaling is reasonable since the AFDX configuration
only models current computer to computer communications,
ignoring memory accesses, and communication increase in
next generations. As we can see some maximum latency pikes
appear on some nodes, while the mean values remain quite
the same. In a real-time context, the worst case is more
important characteristic. It suggests that our naive mapping is
not appropriate since we theoretically consume 9.6GBytes/s
of bandwidth which is far less than the theoretical 2 TBytes/s
network bandwidth.

VI. CONCLUSION

We want to evaluate the usage of Many-Core architecture
for time critical software. We propose a simple one task to

47

�
�

�
�

�
�

�
	

� ��

��
��

��
��

��
��

�	
�

��
��

��
��

��
��

��
��

�	
�

��
��

��
��

��
��

��
��

�	
�

��
��

��
��

��
��

��
��

�	

�

���

���

���

���

���

���

	��

�
������� ��������� ��������

���������������

�

�

��
!"

��
��

�"

Fig. 5. Results

�
�

�
�

�
�

�
	

� ��

��
��

��
��

��
��

�	
�

��
��

��
��

��
��

��
��

�	
�

��
��

��
��

��
��

��
��

�	
�

��
��

��
��

��
��

��
��

�	

�

����

����

����

���

�����

�����

�����

�����

�
������� ��������� ��������

���������������

�

�

��
!"

��
��

�"

Fig. 6. Results

one core execution model and are currently developing the
necessary test drive programs for the SCC. We encounter
some limitation on the SCC current bare metal programming
framework and suggest some improvements. We developed a
test drive program which mimics the behavior of an avionic
application using ETI baremetal in order to evaluate the SCC
NoC latency performance which is central to our WCTT prob-
lem. For this experiment we proposed a simple global clock
design which makes it possible to use the TSC as a global
clock reference. We will continue to walk on our roadmap in
order to map multi-periodic time-critical applications specified
with the PRELUDE language on to the SCC using the proposed
execution model.

ACKNOWLEDGMENT

The authors would like to thank ET International, Inc. for
providing their bare metal framework for our experiment and
Intel Labs for providing access to the SCC. This work has
been funded by ONERA internal PR-SCC grant.

REFERENCES

[1] S. Borkar and A. A. Chien, “The future of microprocessors,” Commun.
ACM, vol. 54, no. 5, pp. 67–77, 2011.

[2] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek, R. Morris,
A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang, and Z. Zhang, “Corey:
An operating system for many cores,” in 8th Symposium on Operating
Systems Design and Implementation, December 2008, http://pdos.csail.
mit.edu/corey/.

[3] D. Wentzlaff, C. G. III, N. Beckmann, K. Modzelewski, A. Belay,
L. Youseff, J. Miller, and A. Agarwal, “A unified operating system
for clouds and manycore: fos,” in 1st Workshop on Computer Ar-
chitecture and Operating System co-design (CAOS),, January 2010,
http://groups.csail.mit.edu/carbon/docs/caos\ final.pdf.

[4] S. Peter, A. Schpbach, D. Menzi, and T. Roscoe, “Early experience with
the barrelfish os and the single-chip cloud computer,” in Proceedings of
the 3rd Intel Multicore Applications Research Community Symposium
(MARC), Ettlingen, Germany, July 2011.

[5] C. Rochange, “An overview of approaches towards the timing analysabil-
ity of parallel architecture,” in PPES, ser. OASICS, P. Lucas, L. Thiele,
B. Triquet, T. Ungerer, and R. Wilhelm, Eds., vol. 18. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, Germany, 2011, pp. 32–41.

[6] M. Cordovilla, F. Boniol, J. Forget, E. Noulard, and C. Pagetti,
“Developing critical embedded systems on multicore architectures:
the prelude-schedmcore toolset,” in 19th International Conference on
Real-Time and Network Systems (RTNS 2011), IRCCyN lab. Nantes,
France: IRCCyN lab, September 29-30 2011. [Online]. Available:
http://rtns2011.irccyn.ec-nantes.fr/

[7] I. Labs, “SCC External Architecture Specification (EAS),” Intels, Tech.
Rep. version 1.1, November 2010.

[8] C. Pagetti, J. Forget, F. Boniol, M. Cordovilla, and D. Lesens, “Multi-
task implementation of multi-periodic synchronous programs,” Discrete
Event Dynamic Systems, vol. 21, no. 3, pp. 307–338, 2011.

[9] ARINC, “ARINC 653 avionics application software standard interface
(part1, required services),” Aeronautical Radio Inc. (ARINC), Tech.
Rep., 2005.

[10] ETI SCC Bare Metal OS Development Framework, version 1.1.1 ed.,
ET International, Inc., August 2011.

[11] I. Labs, The SccKit 1.4.0 Users Guide, (parts 1-7) revision 0.92 ed.,
March 2011.

[12] M. Boyer, N. Navet, X. Olive, and E. Thierry, “The pegase project:
Precise and scalable temporal analysis for aerospace communication
systems with network calculus,” in ISoLA (1), ser. Lecture Notes
in Computer Science, T. Margaria and B. Steffen, Eds., vol. 6415.
Springer, 2010, pp. 122–136.

[13] M. Tagel, P. Ellervee, and G. Jervan, “Scheduling framework for real-
time dependable noc-based systems,” in System-on-Chip, 2009. SOC
2009. International Symposium on, oct. 2009, pp. 095 –099.

[14] P. Gschwandtner, T. Fahringer, and R. Prodan, “Performance analysis
and benchmarking of the intel scc,” in IEEE International Conference
on Cluster Computing, September 2011.

[15] C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat, “Otawa: An
open toolbox for adaptive wcet analysis,” in 8th International Work-
shop on Software Technologies for Embedded and Ubiquitous Systems
(SEUS’10), ser. LNCS, vol. 6399, 2010, pp. 35–46.

[16] M. W. van Tol, R. Bakker, M. Verstraaten, C. Grelck, and C. R. Jesshope,
“Efficient memory copy operations on the 48-core intel scc processor,”
in Proc. of the 3rd MARC Symposium.

48

The SCC and the SICSA Multi-core Challenge
Paul Cockshott and Alexandros Koliousis

Abstract—Two phases of the SICSA Multi-core Challenge have
gone past. The first challenge was to produce concordances of
books for sequences of words up to length N ; and the second
to simulate the motion of N celestial bodies under gravity. We
took both challenges on the SCC, using C and the Linux Shell.
This paper is an account of the experiences gained. It also gives
a shorter account of the performance of other systems on the
same set of problems, as they provide benchmarks against which
the SCC performance can be compared with.

I. INTRODUCTION

THE SICSA Multi-Core Challenge1 is an open competition
called by the Scottish Informatics and Computer Science

Alliance (SICSA) to develop multi-core implementations of
a set of predefined problems. Its aim is to learn about the
strengths and weaknesses of current systems for parallel
programming by comparing them on common grounds.

So far, two phases (viz. Phase I and II) of the Challenge
have been run, having attracted entries from teams across
Europe. Each phase was announced with a problem speci-
fication, together with a candidate serial implementation for
that problem. Participants then had to select a programming
language, a host architecture, and a paralellisation system with
the aim of achieving either the fastest implementation, or the
best acceleration, relative to the performance of the serial
implementation on that architecture. The results from Phase
I were reported at a workshop at the Heriot-Watt University,
on the 13th of December, 2010; results from Phase II were
reported at a workshop at the University of Glasgow, on the
27th of May, 2011.

We have implemented both of the challenges posed by
SICSA on the SCC. Our programming language of choice
was C, and the parallelisation system was the Linux Shell – in
particular, Lino, a process-algebra for chips like the SCC that
translates into Linux Shell commands. This paper describes
the problems, the SCC implementations, and then contrasts
these with other reported implementations, both in terms of
design and in terms of performance.

II. PHASE I

The first phase of the SICSA Multi-core Challenge was
to create concordances of books. The inputs to the problem
were a file containing English text in ASCII encoding; and
an integer N . The challenge was to find the number of
occurrences of all sequences of words up to length N , together
with a list of start indices. Optionally, sequences with only one
occurrence could be omitted.

School of Computing Science, University of Glasgow, G12 8QQ. E-mail:
{william.cockshott, alexandros.koliousis}@glasgow.ac.uk

With thanks to Intel’s Many-core Applications Research Community.
1www.macs.hw.ac.uk/sicsawiki/index.php/MultiCoreChallenge

TABLE I
SERIAL BENCHMARKS FOR PHASE I ON A TWIN-CORE 2.6GHZ INTEL

PLATFORM

Language OS Print File Size (bytes) Time (sec)
Haskell Windows yes 4792092 > 2h
Haskell Windows yes 3580 0.824
C Windows no 3580 0.028
C Windows yes 3580 0.029
C Windows yes 4792091 3.673
C Windows no 4792091 0.961
C Linux yes 4792091 2.680
C (-O3) Linux yes 4792091 2.250
C Linux no 4792091 1.040
C (-O3) Linux no 4792091 0.899

In addition to the problem specification, a reference im-
plementation in Haskell was provided, together with several
reference texts. In practice, most work was done with the
longest of texts, the World English Bible, which is approx-
imately 4.79MB in size; and with Elizabeth Gaskell’s The
Manchester Marriage, a short story that is 3.58KB in size.

A. An Improved Serial Implementation

Prior to doing any parallelisation, it is advisable to initially
set up a good sequential version. Intuitively, the concordance
problem is of either linear or, at worst, log-linear complexity,
and for such problems – especially ones involving text files
– the time taken to read the file and print out the results
can easily dominate the execution time. If a problem is I/O-
bound, then there is little advantage in expending effort to
run it on multiple cores. However, this hypothesis needed
to be verified by experiment. In order to obtain an efficient
and non-esoteric sequential implementation, C was chosen as
the implementation language. The algorithm performed the
following steps:2

1) read the entire text file into a buffer;
2) produce a tokenised version of the buffer;
3) build a hash table of phrases of up to N tokens and a

prefix tree;
4) if the concordance is to be printed out, perform a

traversal of the trees printing out the word sequences
in the format specified;

5) if the results are to be sorted, pipe them through Linux
sort command.

The complexity of this algorithm is dominated by the
final printing of the results since the volume of output is
proportional to the length of the input file, L, times N . The
task of constructing prefix trees is of order L [1]. In practice,
the printing takes longer than the tree construction.

2Available at www.dcs.gla.ac.uk/˜wpc/reports/SICSA/concordance.c

49

TABLE II
PARALLEL BENCHMARKS FOR PHASE I

Programme Time (sec)
concordance2.c 2.257
l1concordance × 2 2.120

Table I shows that the performance of the C implementation
was very much faster than that obtained using the Haskell
reference code. Our results also seemed to indicate that there
was little practical benefit from parallelising the application
since the greatest part of its time was spent formatting and
printing the output.

B. The Parallel Implementation

The concordance problem is hard to parallelise efficiently.
For example, one can not just split a book into two halves,
prepare a concordance for each half, and then merge the
results together; a repeated word might be missed if it was
mentioned once in the first half and once in the second half.
Thus, a more complicated approach was needed. The problem
was parallelised by getting several threads to read the entire
book, since reading turns out to be relatively fast. The words
themselves are then divided into disjoint sets – one obvious
split would be into 26 sets based on the first letter. Then,
each thread could create the concordance for a disjoint subset
of the words. A large part of the time is also taken up with
output: the printed concordance can be 5 times as large as the
input file. If distinct cores are producing results, there is an
inevitable serial phase in which the outputs of the different
cores are merged into a single serial file.

As a first parallel experiment, a dual core version of the
C programme was produced using the Pthreads library (viz.
concordance2.c). The programme was tested on the same
dual-processor machine as the original serial version of the
algorithm, running Linux. Table II shows the results for
creating a concordance of the Bible (WEB.txt). There was
a small gain in performance due to multi-threading – about
17% faster in elapsed time using 2 cores. Since a large part of
the program execution is spent printing the results, this proved
a challenge to improve using multiple cores.

The first parallel version allowed each thread to write its
part of the results to a different file, which were later merged
and sorted. A second parallel version (l1concordance) was
similar, but used the Linux Shell, instead of Pthreads, to fork
parallel processes. This latter parallel version communicates
via files using the following set of commands:

./l1concordance WEB.txt 4 P 1 0 >WEB0.con &

./l1concordance WEB.txt 4 P 1 1 >WEB1.con

wait

sort WEB1.con WEB0.con

In this, N = 4 is the maximum number of words in a
phrase, P indicates that printing is enabled, 1 is the mask to
be applied to the hash-code of phrases, and 0 is the value
that must result from this masked hash if the phrase is to be
handled by this process. As shown in Table II, this version
had the best performance of the lot.

TABLE III
SCC PERFORMANCE ON THE CONCORDANCE PROBLEM

Implementation Time (sec)
1 core; full concordance 26.17
2 cores; 1/2 concordance each 49
8 cores; 1/8 concordance each 36
32 cores; 1/32 concordance each 34
1 core on host processor; full concordance 1.03
2 cores on host processor and the Shell; full concordance 0.685

C. SCC Experiments

The SCC is configured with a host processor (MARC),
a conventional modern Intel x86 chip. Attached to it is the
experimental 48-core SCC chip, each of whose cores runs a
discrete copy of Linux. A major worry here was the problem
of file I/O for the multiple cores. The source file and the output
files were placed (accessed) on (from) a shared NFS system.

Table III shows the results from the SCC experiments.
Looking at the time it took one SCC core to complete the
full concordance task, one can see that it is much slower than
a single core on the host doing the same task. This slowdown
is due to the slow access to files from the daughter copies of
Linux and the slow performance of the individual cores on the
SCC.

A model of the overall time taken on n cores, n > 1, is

t =
P

n
+Rn+W (1)

where P is the time taken on one of the cores to process the
file; R is the time taken to transmit the input file from disk to
one of the SCC cores; and W is the time taken to write the
results back to disk. Fitting this equation to lines 2, 3, and 4
of Table III, it is P = 35; R = 0.055; and W = 31 seconds.
This verifies that writing of the results to disk dominates the
total time in the case of 2, 8, and 32 SCC cores.

We dispatched the 32 tasks on the SCC cores using the
pssh command as follows.

rm /shared/stdout/*
pssh -t 800 -h hosts32 -o /shared/stdout \
/shared/sccConcordance32

cat /shared/stdout/* |sort > WEB.con

The first line simply removes any temporary output from
a previous run. We then use pssh to run the script
sccConcordance32 in a shared directory, sending the out-
put to the /shared/stdout directory. When all tasks have
finished, outputs are concatenated and sorted to yield the final
concordance file. The script sccConcordance32 invokes the
actual concordance task:

cd /shared

./l1concordance WEB.txt 4 P 31 $(hostname)

The hostname command (returning rck00, or rck01, and
so on) is used to derive a process ID, which is then used to
select which words will be handled by each task. The 4th

parameter to l1concordance is the mask that is applied to
give the number of significant bits in the process ID, 5 in this
case.

50

TABLE IV
BEST TIMES REPORTED FOR PHASE I

Implementation Tasks N Time (sec)
Java Fork/Join 1 4 134.5
Hadoop Map/Reduce 57 (Beowulf cluster) 10 36
Haskell 8 4 27
Groovy 12 4 61
Python 16 3 2
C on SCC at 0.533 Ghz 32 4 34
C on MARC Host 2 4 0.6

D. Other implementations

Phase I concluded with a workshop at the Heriot-Watt
University, were a number of other implementations were
presented. Singer reported on the use of Java Fork/Join
primitives to implement a parallel version of the concor-
dance problem [2]; Stewart reported on the use of Hadoop
Map/Reduce [3]; Al Jabri reported on the use of parallel
Haskell [4] and OpenMP [5]; Loidl reported on a parallel C#
implementation [6]; Kerridge reported on the use of the new
language Groovy in conjunction with JCSP [7]; and Sampson
on the use of Python [8]. Apart from the results reported for
the SCC, the other systems were run on 2.4GHz multi-core
Xeon machines. The results are summarised in Table IV.

One problem with the analysis of these results is that, whilst
a word sequence of length N = 4 is probably long enough to
pick out unique phrases in the Bible, some participants used
much longer word lengths, which must have made their output
more verbose; some also used different input files, which again
makes the results hard to interpret; and other participants
gave only relative timings of their parallel and sequential
implementations rather than absolute times. The summary of
the results in Table IV shows only those implementations that
are using the same text file (the Bible, i.e. WEB.txt). It was
not always clear whether the reported results included the time
to print the final concordance.

Nonetheless, the final conclusion with respect to the SCC is
clear. Its performance falls roughly in the middle of the range,
with its speed being of the same order as the Hadoop and
Haskell implementations. The most successful, highly-parallel
version was certainly the Python one, but by a small margin
the C version on the MARC host beat its time using only
2 processes. Since the SCC experiments were using exactly
the same C code as the version run on the host processor, it
should have been fast. The fact that, even with 32 cores, it took
approximately 50 times longer can be attributed to the cost of
performing input/output from several SCC cores at once.

III. PHASE II
The second phase of the challenge was an N -body gravita-

tional problem – a problem of predicting the motions of a large
group of N bodies under gravity. This is inherently a problem
of order N2 on a sequential machine, since each body interacts
with every other under gravity. As such, it makes a better
candidate for parallelisation than the concordance problem.3

There are many exemplar benchmark programmes that deal
with the N -body problem.

3Recall that the latter was of order N and tended to be I/O bound.

SICSA took a C programme from the Computer Languages
Benchmarks Game4 as a reference implementation and mod-
ified it slightly so that it handled 1024 bodies. The starting
positions, masses, and velocity vectors of bodies in three
dimensions were provided as a text file. There were thus seven
floating point numbers describing each body.

If we consider the general complexity of this problem
under parallelism, one component of the execution time should
shrink as the number of processors increases. During each
round of the simulation, the program has to accumulate the
gravitational forces imposed on each body by all other bodies.
Since these calculations are independent, they can in principle
be done using different processors in parallel. If p is the
number of processors, this stage should have a cost αN2

p , for
some constant α ∈ R. After this calculation has been done, all
of the processors would have to ensure that all other processors
have access to the same updated data on planetary positions.
For a uni-processor this is unproblematic – there is only a
single state vector in memory. For multi-processors, however,
depending on their design, this communications phase can
be an appreciable overhead. If the communications is done
naively, the data-transfer cost is β p2N

p , for β ∈ R, because
processor to processor messages will grow as p2 and each
message will have to send data on N/p planets. We can thus
model the overall time taken per simulation step as

t = α
N2

p
+ βNp+ γ (2)

where γ is the residual constant in the linear regression.
For a shared memory multi-processor, the communications
mechanism is effectively the memory bus in association with
the cache coherency mechanism, since each processor will
have updated its local cache copy of its own planets’ posi-
tions in phase space, and these local cache copies will have
to propagate to the other machines. But this work is also
proportional to Np, since each of the p caches has to read
a complete copy of the positions of each of the planets. Other
communications architectures, including the one used on the
SCC, have a similar cost structure.

A. Lino

The compiler group at the Glasgow University School of
Computing Science has performed evaluations of the Phase
II Challenge using a number of experimental parallelising
compilers [9], [10], [11]. This section gives a detailed account
of one of those, the Lino system.

Lino is a scripting language originally targeted at the SCC,
but it also runs on other Linux machines. It allows Unix Shell
commands to be placed on tiles, which represent individual
processors in an array of available processors. A tile in Lino
is represented as [cmd0; cmd1; ...] where cmd0, cmd1, etc.
is some Shell command.

Tiles can be named, and can be laid out in a rectilinear
grid using the ‘|’ and ‘ ’ operators. The ‘|’ operation can be
used to form a horizontal pipeline of processors; and the ‘ ’
operator can be used to form a vertical pipeline.

4Cf. http://shootout.alioth.debian.org/

51

Fig. 1. A Lino tile.

Fig. 2. On the SCC, channels pass via named pipes and RCCE relay
processes.

Shell commands communicate with those on adjacent pro-
cesses by using appropriately named channels, namely North,
West, South, and East (Figure 1). Thus, the sequence

[ls >East] | [sort <West >file]

will cause the ls command to run on one tile, sending its
output to the east, where it is read by the sort command
on a right-adjacent tile, whose output goes to a sorted file.
Geometric operations of 90◦ rotation and reflection are also
supported on tiles or rectangular tile blocks. Tiles can be
replicated horizontally or vertically. For more details on the
Lino algebra, see [12].

The Lino compiler translates into standard Bash Shell
scripts. In the case of the SCC, each tile is allocated a
processor core; on other machines, each tile becomes a Linux
process. In the latter case, the channels are mapped onto
appropriately named Linux FIFO file. On the SCC, however,
FIFO files do not work between cores so a five-stage commu-
nications process operates, as shown in Figure 2.

When data are passed down a FIFO, a RCCE relay process
on the same core reads and sends them as RCCE messages to
a corresponding relay process on another core, before being
finally piped to another Shell command. This approach allows
unmodified C and Shell programs to be linked up in the
SCC multi-core environment without the programs having to
know about the underlying communications mechanism. It
also allows us to benchmark parallel applications both on the
SCC and other Intel processors, using the same programmes
on both machines.

Without further ado, here is a simple Lino script to run a
potentially parallel version of the N -body problem:

controller = [./starter >East <East];

worker = [./nbody >West <West];

main = controller | worker;

The corresponding layout is shown in Figure 3. For the
N -body problem, consider two types of tiles, worker and
controller. Tiles are connected in a circle. The controller

Fig. 3. A 2-core Lino layout for the N -body problem, with one starter (tile
s) and one worker (tile w). See Algorithms 1 and 2.

communicates with p workers by messages. A message starts
with the character “D”, or “U”, or “S” to instruct the workers
to advance, or update, or terminate the celestial motion,
respectively; followed by the number of workers p; followed
by the current number of hops the messages has traversed;
followed by the positions, velocities, and masses of N bodies
– all in all, a 65KB message. A controller tile runs the
C programme starter which goes through the following
sequence:

1) read in the initial position of the planets from a file;
2) request from the worker(s) to perform one simulation

step on the data by:
a) writing the planet data, preceded by a “D” charac-

ter, on standard output, and
b) waiting for the corresponding “D” message to

arrive on standard input;
3) request the worker(s) to update the data by:

a) writing the planet data preceded by a “U” charac-
ter, on standard output; and

b) waiting for the corresponding “U” message to
arrive on standard input, and then storing the new
planet positions.

4) If the required number of simulation steps have finished,
send the worker(s) an “S” message on standard output
and terminate, otherwise go to step 2.

The N -body worker programme itself (referred to as
nbody) is a slightly modified version of the reference single
processor implementation in C, waiting (in a loop) to read
messages on standard input. The N -body programme branches
on the first character of the message as follows:

• if the header starts with a “D”, then increment the number
of hops and write the message to standard output. Then,
simulate the dynamics of N/p planets for one time-step,
and remember their new positions in phase space;

• if the header starts with a “U”, then increment the number
of hops, and copy into the message the updated positions
of the planets for which the worker is responsible for,
before writing the message to standard output;

• if the message starts with an “S”, terminate.
This approach allows us to vary the number of workers
associated with each controller without changing the C code.
For example to have 4 workers we use the Lino script:

nwcorner = [./nbody >East <South];

swcorner = [./nbody >North <East];

scorner = [./starter4.sh >South <West];

corner = [cat >West <North];

passright = [./nbody >East <West];

passleft = [./nbody >West <East];

top = [nwcorner | passright | scorner];

bottom = [swcorner | passleft | corner];

main = top _ bottom;

52

TABLE V
TIME/SIMULATION STEP OF THE N -BODY PROBLEM IN LINO ON THE SCC

AND ON AN 8-CORE INTEL XEON E5620 @ 2.4GHZ

N -body workers (cores) Time on Xeon (ms) Time on SCC (ms)
16 (20) 8.1 2032
8 (10) 7.8 1025
4 (6) 9.9 702
2 (4) 17.1 648
1 (2) 30.5 967

Fig. 4. A layout with 4 worker cores.

This gives the layout shown in Figure 4. We have tested
layouts for 1, 2, 4, 8, and 16 worker cores, both on the SCC
and on an 8-core 2.4GHz Xeon E5620. On both machines, the
same C and Lino code was used. Table V shows the results.

The SCC is almost two orders of magnitude slower than the
Xeon. Some of this may be attributed to the earlier version of
GCC used on the SCC, some to the slower clock used and
some of it to the earlied Pentium design used. But one might
have hoped that these disadvantages would have been offset by
the opportunity too use more parallelism. On the contrary, we
find that the SCC implementation peaks at 2 worker processes,
whilst the Xeon peaks at 8. That this slowdown is due to the
inter-core communication mechanism on the SCC, rather than
to the use of Linux FIFOs, is proven by the fact that the Xeon
Lino implementation which also used FIFOs but which did
not use RCCE was faster.

Fitting Equation 2 to the data in Table V, we obtain for
the Xeon α = 27ns and β = 223ns, whereas for the SCC
α = 677ns and β = 94μs. Recall that α is the time to
compute the interaction between two planets and β the time
taken to communicate one planet data between two workers.
The SCC is slower on both counts, but is much slower on
communications. This means that the level of parallelism that
can be supported before the costs of communications comes
to dominate is lower on the SCC.

B. Other Implementations

Similar to the first phase of the SICSA Multi-core Chal-
lenge, Phase II concluded with a workshop at the University
of Glasgow. The results are summarised in Table VI, ordered
by their overall performance. Where multiple results were
reported for a language/processor pair, the fastest time is given.

Thomas Horstmeyer [13] reported on an implementation
using Eden [14]. As Table VI shows, this had a relatively
poor performance, being slower than the single thread C
reference version, and about half the speed of Lino on the
same hardware. The C# implementation reported by Loidl had
similar performance [15]. Sampson, whose Phase I entry was
very fast, reported on an impressive implementation using SSE
vector intrinsics and Threading Building Blocks (TBB) [16].
This appears to have one of the fastest performances of all,

TABLE VI
BEST TIMES REPORTED FOR PHASE II ON 8-CORE XEON MACHINES

Implementation Threads Time (ms) Clock (Ghz)
Glasgow Pascal (SSE) (a) 16 1.75 2.4
C++ (SSE) (a) 12 2.05 2.27
Glasgow Pascal, AVX (b) 4 2.12 3.1
Lino on Xeon (a) 10 7.8 2.4
Go (a) 16 8 2.4
C sequential (a) 1 14 2.4
Eden (a) 8 16.6 2.5
C# (a) 12 18.2 2.33
Glasgow Fortran (E#) on Cell 12 23 3.2
GCC on Cell 1 45 3.2
Glasgow Pascal on Cell 4 48 3.2
Gnu Fortran on Cell 2 82 3.2
Lino on SCC 2 648 0.533

(a) 8-core Intel Xeon E5620; (b) 4-core Intel i5-2400

which is a credit to the efficiency of the TBB and the gains
to be had from SSE intrinsics.

The Glasgow results [17], [18], [19] are polarised according
to the processor and type of language used. Lino and Go
are slower than Pascal; the Cell is slower than conventional
Intel machines; and the SCC is slower than the Cell. This
ranking of machines is born out across all results reported at
the workshop, although the lower clock speed of the SCC is
clearly a factor that has to be taken into account here. Indeed,
if we normalise for clock speed, the Lino on the SCC falls
into the same range of performance as GNU Fortran on the
Cell.

IV. CONCLUSIONS

The SCC is described as a Single Chip Cloud. The per-
formances we have observed for it indicate that this may be
an accurate description. On the concordance application the
SCC performance most closely resembled that of Hadoop on
a Beowulf cluster – a more classic cloud configuration. Com-
pared, however, with other multi-core chips (e.g. Nehalem,
Sandybridge or the CellBE), the SCC performs poorly on
both applications. The SCC experiments, particularly those
for Phase II, indicate that the underlying cause for the un-
competitive performance of the SCC is the inefficiency of the
inter-core communications system. Unlike the CellBE which
performs inter-core communications using high speed DMA,
or the Nehalem which uses cache coherence hardware, the
SCC relies on software message passing in small shared
buffers. We conclude that if tessellation processors like the
SCC are to be viable, they will require high performance DMA
hardware.

A separate conclusion from our experiments is that the old
Unix Shell model of parallelism – C programmes communi-
cating via files and pipes – is still remarkably effective. It
gave the highest performance for the Phase I problem and for
Phase II, it was only beaten by compilers that made explicit
or implicit use of SIMD parallelism.

REFERENCES

[1] E. Ukkonen, “On-Line Construction of Suffix Trees,” Algorithmica,
vol. 14, no. 3, pp. 249–260, 1995.

53

Algorithm 1 The single worker N -body example compiled for the SCC.
#!/bin/sh
shift ‘expr $1 + 2‘
[! -d $1] && exit 1
cd $1
case ‘hostname‘ in
rck00)
mkfifo fifos/East0_0
mkfifo fifos/East0_0in
’hello’ is the RCCE relay process between cores 00 and 02
./apps/HELLO/hello 2 0.533 00 02 --from fifos/East0_0 --to /dev/null &
./apps/HELLO/hello 2 0.533 02 00 --from /dev/null --to fifos/East0_0in &
./starter.sh > fifos/East0_0 < fifos/East0_0in &
wait
rm fifos/East0_0
rm fifos/East0_0in
;;
rck02)
mkfifo fifos/West0_1
mkfifo fifos/West0_1in
./apps/HELLO/hello 2 0.533 02 00 --from fifos/West0_1 --to /dev/null &
./apps/HELLO/hello 2 0.533 00 02 --from /dev/null --to fifos/West0_1in &
./nbody > fifos/West0_1 < fifos/West0_1in &
wait
rm fifos/West0_1
rm fifos/West0_1in
;;
esac

Algorithm 2 The single worker N -body example compiled
for a shared memory Linux machine.
rm fifos/*
mkfifo fifos/East0_0
mkfifo fifos/West0_1
./starter1.sh >fifos/East0_0 <fifos/West0_1 &
./nbody <fifos/East0_0 >fifos/West0_1 &
wait

[2] J. Singer. (2010, December) Java Fork/Join Implementation.
SICSA Multi-core Challenge Phase I Workshop. Heriot Watt
University. [Online]. Available: http://www.dcs.gla.ac.uk/˜jsinger/
pdfs/sicsa concord 101213.pdf

[3] R. Stewart. (2010, December) Hadoop MapReduce Concordance.
SICSA Multi-core Challenge Phase I Workshop. Heriot Watt
University. [Online]. Available: http://www.macs.hw.ac.uk/˜rs46/
multicore challenge1/Hadoop concordance.pdf

[4] M. Aljabri. (2010, December) A Parallel Concordance Bench-
mark, Haskell Implementation. SICSA Multi-core Challenge
Phase I Workshop. Heriot Watt University. [Online].
Available: http://www.macs.hw.ac.uk/˜dsg/events/MultiCoreChallenge/
slides/aljabri mcc10.pdf

[5] ——. (2010, December) A Parallel Concordance Bench-
mark, OpenMP Implementation. SICSA Multi-core Challenge
Phase I Workshop. Heriot Watt University. [Online].
Available: http://www.macs.hw.ac.uk/˜dsg/events/MultiCoreChallenge/
slides/aljabri mcc10.pdf

[6] H.-W. Loidl. (2010, December) Parallel Concordance in C#. SICSA
Multi-core Challenge Phase I Workshop. Heriot Watt University.
[Online]. Available: http://www.macs.hw.ac.uk/˜dsg/events/MultiCore
Challenge/slides/hawo mcc10.pdf

[7] J. Kerridge. (2010, December) SICSA Concordance Challenge:
Using Groovy and the JCSP Library. SICSA Multi-
core Challenge Phase I Workshop. Heriot Watt University.
[Online]. Available: http://www.macs.hw.ac.uk/˜dsg/events/MultiCore
Challenge/slides/jon mcc10.pptx

[8] A. Sampson. (2010, December) ”This is a parallel parrot”. SICSA Multi-
core Challenge Phase I Workshop. Heriot Watt University. [Online].
Available: http://offog.org/publications/mcc201012-python-slides.pdf

[9] P. Keir, W. Cockshott, and A. Richards, “Mainstream parallel
array programming on cell,” in 5th Workshop on Highly Parallel
Processing on a Chip (HPPC 2011), 2011. [Online]. Available:
http://eprints.gla.ac.uk/54875/

[10] W. Cockshott and G. Michaelson, “Orthogonal parallel processing

in vector pascal,” Computer Languages, Systems and Structures.,
vol. 32, no. 1, pp. 2–41, April 2006. [Online]. Available:
http://eprints.gla.ac.uk/3451/

[11] Y. Gdura and W. Cockshott, “A virtual simd machine approach
for abstracting heterogeneous multi-core,” in ICT 2011 18th
International Conference on Telecommunications, 2011. [Online].
Available: http://eprints.gla.ac.uk/56324/

[12] P. Cockshott and G. Michaelson. (2010, April) Lino: a tiling
language for arrays of processors. University of Glasgow, School of
Computing Science. [Online]. Available: http://www.dcs.gla.ac.uk/˜wpc/
reports/linopaper.pdf

[13] T. Sauerwein, T. Horstmeyer, and M. Dieterle. (2011, May) N-Body
in Eden - A skeletal approach in a distributed memory setting.
SICSA Multi-core Challenge Phase II Workshop. Glasgow University.
[Online]. Available: http://www.mathematik.uni-marburg.de/˜horstmey/
sicsa/NBodyEdenSlides.pdf

[14] A. Black and U. of Washington. Dept. of Computer Science, The Eden
programming language. Dept. of Computer Science, University of
Washington, 1985.

[15] H.-W. Loidl. (2011, May) A C# implementation of the n-body
problem . SICSA Multi-core Challenge Phase II Workshop. Glasgow
University. [Online]. Available: http://www.macs.hw.ac.uk/˜dsg/events/
MultiCoreChallenge/slides/mcc11.pdf

[16] A. Sampson. (2011, May) Colliding Blobs with Threading
Building Blocks . SICSA Multi-core Challenge Phase II Workshop.
Glasgow University. [Online]. Available: http://www.mathematik.uni-
marburg.de/ horstmey/sicsa/NBodyEdenSlides.pdf

[17] Y. G. P. Cockshott. (2011, May) Vector Pascal implementations
running on Nehalem and Cell processors . SICSA Multi-core
Challenge Phase II Workshop. Glasgow University. [Online]. Available:
http://www.dcs.gla.ac.uk/˜jsinger/ pdfs/wpc multicore.pdf

[18] P. Keir. (2011, May) All-pairs n-body in Fortran for CellBE . SICSA
Multi-core Challenge Phase II Workshop. Glasgow University. [Online].
Available: http://www.dcs.gla.ac.uk/people/personal/pkeir/mcore2.pdf

[19] I. McGinniss. (2011, May) Naive approaches to n-body parallelism using
Google Go . SICSA Multi-core Challenge Phase II Workshop. Glasgow
University. [Online]. Available: http://prezi.com/qrgmjzexqvgp/naive-
approaches-to-n-body-parallelism-with-google-go/

54

Experiences in porting the SVP concurrency model
to the 48-core Intel SCC using dedicated copy cores

Roy Bakker and Michiel W. van Tol
Informatics Institute, University of Amsterdam

Sciencepark 904, 1098 XH Amsterdam, The Netherlands

Abstract—The Single-chip Cloud Computer (SCC) is a 48-core
experimental processor created by Intel Labs targeting the many-
core research community. It has hardware support for sending
short messages between cores, while large messages have to go
through off-chip shared memory. In this paper we discuss our
implementation of the SVP model of concurrency on this archi-
tecture, and how we deal with its distributed memory design and
communication bottlenecks. We employ our previously developed
copy core technique and show which approaches show scalable
performance against our original implementation.

I. INTRODUCTION

The Single-chip Cloud Computer (SCC) experimental pro-
cessor [1] is a 48-core concept vehicle created by Intel Labs
as a platform for many-core software research. It provides
an on-chip message passing network, a non cache-coherent
off-chip shared memory and dynamic frequency and voltage
scaling. In this paper we discuss our implementation of SVP
on this platform, a hierarchical concurrent execution model [2].
In future work, we will use this implementation and exploit
its dataflow-style execution to provide us with a handle for
adaptive power management.

The Self-adaptive Virtual Processor, or SVP, is an abstract
concurrent programming and machine model, which evolved
from the earlier work on the Microthread CMP architecture [3]
which implemented SVP in hardware [4]. The model can be
used to express concurrency at many levels of granularity
for multi- or manycore systems, and uses shared memory
semantics with a weak consistency model. As the SCC has
a distributed shared memory architecture without cache co-
herency, this suits the consistency model of SVP very well.
As SVP actions can be trivially translated into messages in
a distributed environment, this maps well onto the message
passing communication infrastructure of the SCC.

Effectively, the SCC is an on-chip distributed system, and
therefore we can already run the available distributed im-
plementation of SVP [5] without any modifications. As this
is based on the coarse grained communication primitives of
TCP/IP sockets, we experimented with different approaches
to more efficiently use the hardware messaging support on the
SCC. However, we have already shown in previous work [6]
that using the on-chip message passing buffers with RCCE [7]
or iRCCE [8] are not sufficient for such an implementation.
In this paper we will employ several of the techniques that we
investigated in our earlier work to efficiently copy memory on
the SCC, for example by using dedicated copy cores.

In this paper we will discuss our experiences with porting
the distributed SVP runtime to the SCC. We assume sufficient
knowledge of the SCC architecture and its memory system
as this is broadly covered by both related work [1], [9] as
well as our previous [6] work. First we will discuss the
SVP model of concurrency and its consistency model in
Section II, and discuss which approaches we considered for
the implementation on the SCC in Section III. In Section IV
we evaluate these different approaches and we conclude with
a discussion and future work in Section V.

II. SVP

SVP is a generic concurrent programming and machine
model which has a separation of concerns between the expres-
sion and management of concurrency. The SVP model defines
a set of actions to express concurrency on groups (families)
of indexed asynchronous activities (threads).

Each thread can execute a create action to start a new con-
current child family of threads, making the model hierarchical,
and later on use the sync action to wait for its termination. The
create action has a set of parameters to control the number
and sequence of created threads, as well as a reference to
the thread function that the threads will execute. This thread
function can have a set of communication channels defined
that are explained later on.

Besides these two basic constructs, there is the kill action
to asynchronously terminate an execution. Programs for SVP
based architectures or run-times are written in a dialect of the
C language which has extensions to explicitly support these
SVP actions and thread definitions.

A. Resources

While SVP code has no notion of what a resource physically
is or how code is scheduled, an abstract resource identifier,
a place, is provided. On a create action a place can be
specified where the new family should be created, binding the
execution onto a certain resource, similar to sending an Active
Message [10]. What this place physically maps to, is left up to
the SVP implementation; for example, on our implementation
on the SCC it will be a single core, but on the Microgrid
CMP [11], it is a group of cores. On other implementations
it could, for example, be a reserved piece of FPGA fabric,
an ASIC, or some time-sliced execution slot on a single- or
multi- processor system.

55

As long as the underlying implementation supports it, mul-
tiple places can be virtualized onto a single physical resource.
Mutual exclusion is supported through places; families dele-
gated to an exclusive place are guaranteed to be sequentialized
so that only one family can be executing on such a place at a
time.

B. Communication and Synchronization

Each family has a set of synchronized communication
channels that link up the threads and the parent context. There
are two types of unidirectional write-once channels; global
and shared of which multiple can be present. These channels
have non-blocking writes and blocking reads. A global channel
allows vertical communication from the parent thread to all
threads in the family. A shared channel allows horizontal
communication, as it daisy-chains through the sequence of
threads in the family, connecting the parent to the first thread
and the last thread back to the parent. These channels are
defined as arguments of a thread function and identify the
data dependencies between the threads.

Due to this restricted definition, and under restricted use
of exclusive places, we can guarantee that the model is
composable and free of communication deadlock [12], and that
there is always a well defined sequential schedule if parallel
execution is infeasible.

C. Memory Consistency

The model assumes a shared memory with a restricted
consistency model. It is seen as asynchronous and therefore it
is not suitable for synchronizations, and no explicit memory
barriers or atomic operations are provided. The consistency
model is described by the following three rules:

• A child family is guaranteed to see the same memory
state as the parent thread saw at the point of create.

• The parent thread is only guaranteed to see the memory
changed by a child after sync on the child has completed.

• A family on an exclusive place is guaranteed to see the
changes to memory by earlier families on that place.

The memory consistency relationship between parent and
child threads is similar to the well-known release consistency
model [13]. The create resembles an acquire, and sync re-
sembles the release. We should note that the third rule is
a very important property as it can be used to implement
communication between two arbitrary threads, but it can also
be used to implement a service; state is resident at the exclusive
place and instances of the functions implementing that service
are created on the place by its clients.

D. Distributed SVP

Distributed SVP, or DSVP, is an extension to SVP to handle
distributed memory [5]. The implementation of DSVP was
our starting point for an SVP implementation on the SCC.
The DSVP extension introduced the idea of a data description
function which tells the implementation which parts of mem-
ory need to be sent/received when a thread function is started
remotely with a create or completes with a sync, similar to how

thread f i b o n a c c i (shared i n t p1 , shared i n t p2 , i n t∗ r e s u l t)
{

index i ;
r e s u l t [i] = p1 + p2 ;
p2 = p1 ;
p1 = r e s u l t [i] ;

}
DISTRIBUTABLE_THREAD(f i b o n a c c i) (i n t p1 , i n t p2 , i n t∗ r e s u l t , i n t N)
{

INPUT (p1) ;
INPUT (p2) ;
ARRAY_SIZE(r e s u l t , N) ;
f o r (i n t i = 2 ; i < N; i ++)

OUTPUT(r e s u l t [i]) ;
}
main ()
{

f a m i l y f i d ;
i n t r e s u l t [N] ;
i n t a = r e s u l t [1] = 1 ;
i n t b = r e s u l t [0] = 0 ;

c r e a t e (f i d ; ; 2 ; N ; ;) f i b o n a c c i (a , b , r e s u l t) ;
sync (f i d) ;

}

Figure 1: Fibonacci code example

in- and outputs are annotated in CellSs [14] and Sequoia [15].
This is based on the premise that a thread needs to receive a
reference to any data it will access through its communication
channels, and therefore this identifies which data needs to be
communicated to adhere to the consistency model.

An example code is given in Figure 1, showing a program
that stores the Fibonacci sequence up to N into a result array.
Threads 2 to N are created for the corresponding iterations
and they communicate their dependent values through their
shared channels p1 and p2. The data description function takes
the two initial values for p1 and p2 as input, and returns
the resulting fibonacci array as output. Please note that some
parameters for create are omitted, for example one to set the
place where the computation is executed and others to control
more complexing indexing.

III. IMPLEMENTATION

The distributed SVP implementation that uses TCP/IP for
communication between places [5] runs on the SCC without
any modifications. However, it supports heterogeneous plat-
forms with different data representations, which adds addi-
tional overhead. All data that needs to be communicated (indi-
cated by a data description function) is serialized to a platform
independent representation using XDR [16] before it is sent
to the other place, where it needs to be deserialized again.
On the SCC we can avoid this step, as it is a homogeneous
system with the potential to use shared memory.

Our initial optimization was to skip the XDR step and
send each data element that is part of the data description
function directly through the socket. For scalar values this
causes a large communication overhead, since they are now
all pushed separately through the channel. For (large) arrays
this means a great reduction in the overhead of encoding and
copying, especially on the SCC where memory operations are
expensive. The data description function was altered to support
sending arrays in a single shot. To send arrays, we no longer
need to explicitly touch each single element of the array, but

56

just provide a pointer to the first element, and the number of
elements in that array.

A. Using (i)RCCE

Our first approach was to modify the communication layer
of the existing implementation to make use of the RCCE and
iRCCE libraries. We could easily replace all send and receive
calls with the appropriate iRCCE functions. For the connection
establishment we used an iRCCE waitlist with a receive
request for each possible sending core. However, the (i)RCCE
implementation only matches requests on core identifier. As a
result, we cannot have multiple outstanding receive requests
for a single sending core, and the first message that fits the
size will complete. Therefore, we cannot issue another receive
request in the connection establishment function while there is
already a connection active. The messages in the connection
establishment function are rather small, and therefore match
any other larger sized message. We see that messages sent
through a previously established connection now initiate a
new connection, and fail thereafter. iRCCE does not support
virtual channels, and therefore was not suitable for our SVP
implementation in its current form.

B. Memory Remapping

The SCC allows us to share memory from one core with an
other by using the programmable look-up tables (LUT), which
means that the communication of large data chunks through a
channel can be avoided. However, the virtual memory system
of Linux makes this difficult as the virtual addresses seen by a
process are not the same as the physical addresses. A function
in the special SCC Linux memory kernel driver provides a
virtual to physical address translation. The sccLinux virtual
memory system uses 4KB pages, and chunks of contiguous
virtual memory that span more than one page, therefore do
not necessarily map to contiguous core-physical memory.
However, as sccLinux does not support the use of swap space,
the virtual to physical address mapping of a page is stable.
Once the core-physical memory address is known, the real-
physical address can easily be obtained from the LUT.

To make effective use of the memory remapping approach,
we need to manage our own virtual to core-physical memory
mappings, avoiding the fragmentation induced by the sccLinux
virtual memory system. We use an sccLinux image that has
only 320MB of private memory configured, which leaves
about the same amount of memory for the application to
manage as there is 656MB of private memory reserved for
each core. We mmap() this region so that we have a contiguous
mapping of virtual to core-physical addresses, and within that
use our own memory allocator with a simple first-fit algorithm.

When using memory remapping, we can either use cached
memory or non-cached memory. Cached memory has the
downside that the L2 cache is write back and therefore needs
to be flushed, which is an expensive [6] operation, to make
sure all data will be in physical memory on the sending side.
We can avoid the L2 flush at the receiving side by mapping
the memory with the MPBT tag on, so that the L2 cache is
bypassed, but multiple accesses within the same cache line

will hit in the L1 cache. Then, it is enough to issue the cheap
CL1INVMB instruction that invalidates all data in the L1
cache with the MPBT tag. The alternative, the use of non-
cached memory, was not considered; it is too expensive as
every individual access needs to go to main memory.

In the memory remapping implementation, the sending core
will send the core-physical address through the socket to
the receiving core. The receiving core checks the LUT of
the sending core to obtain the real-physical address. It will
dynamically map this address range on free LUT pages and
start a memory copy operation to the receive buffer. As the
initial socket communication, lut writing procedure and cache
flushing will cause overhead, this approach is only efficient
when the message is large enough to compensate for this
overhead. To allow faster writing, the target area is remapped
with the MPBT flag on, which enables the WCB. As these
addresses are independent from the L2 cache perspective,
and MPBT bypasses the L2 cache, no additional flushes are
required in this approach.

The remapping approach is similar to the Privately Owned
Public Shared Memory (POPSHM) approach proposed by
Intel. However, POPSHM requires a copy of the data into
the shared memory region on the sending side, and a copy
out of the shared memory region on the receiving side. In
contrast, we map the memory locations directly on demand
at the receiving side, therefore only requiring a single copy
operation which uses specialized memory flags for the fastest
possible reading and writing.

C. Copy Cores

Instead of performing the memory copy operation at the
receiving core, we can also choose to use our earlier proposed
copy cores [6] to copy memory regions. Copy cores are
dedicated cores that run a memory copy service; when data
needs to be copied between cores, multiple copy cores can be
employed to copy the data, similar to DMA engines, which due
to the limited memory throughput of a single core should be
able to deliver a better performance. Copy cores use the same
approach to copy memory as the remapping implementation,
using specialized flags for reading and writing. In the current
implementation, all copy tasks are issued round robin to a set
of copy cores.

IV. EVALUATION

A. Benchmarks

1) Ping Pong: The first benchmark that we use is an SVP
based Ping-Pong application which creates a computation on
the remote node which terminates immediately, but using the
data description function sends chunks of data back and forth
with incremental size. We use this benchmark to measure the
latency and throughput achieved by our different approaches.
The sizes we measured range from 4 bytes up to 16MB, and
are transferred between cores 0 and 1.

2) Matrix Multiplication: A benchmark that fits the dis-
tributed implementation of SVP with the potential to copy lots
of data is matrix multiplication. We implemented a recursive
decomposition algorithm that splits a matrix in sub matrices

57

and performs the calculations on sub matrices only. Figure 2
shows the decomposition algorithm. We can apply the decom-
position recursively as long as the square matrix size is still
dividable by two. Each step splits the calculation in eight parts
that can execute concurrently, followed by four additions that
can also execute concurrently. Note that the addition can be
performed on the individual sub matrices, or on the combined
larger matrices. In this benchmark we perform the addition on
the sub matrices, since this exposes more concurrency without
changing the representation again. This implementation works
on square matrices and operates on double precision floating
point values.

A×B →
∣∣∣∣a1 a2
a3 a4

∣∣∣∣×
∣∣∣∣b1 b2
b3 b4

∣∣∣∣ =∣∣∣∣a1× b1 a1× b2
a3× b1 a3× b2

∣∣∣∣+
∣∣∣∣a2× b3 a2× b4
a4× b3 a4× b4

∣∣∣∣ =
∣∣∣∣c1 c2
c3 c4

∣∣∣∣ → C

Figure 2: Matrix decomposition: Matrices A and B (both
N ×N are split into four N

2 × N
2 matrices each. Eight matrix

multiplications and four matrix additions are performed on the
sub matrices.

In order to make the decomposition more time and space
efficient, the matrix representation in memory is a column
of pointers that all index a row in the matrix. All matrix
rows together form one contiguous block of memory, both
virtual and physical, guaranteed by our own memory allocator.
This representation is visualized in Figure 3. The normal lines
indicate a pointer to an element in memory, while the dashed
lines refer to the same element in the corresponding matrix. Pa,
Pb, Pc and Pd are pointers to arrays with pointers to sub matrix
rows. This allows us to do the decomposition by creating a
new array of pointers and assign the pointers to elements in
the original matrix rows, without the need of copying data.

��������	
�

��
�� ��
�� ��
��
��������
�
���

��
��

��
���	��		���������	
��	���

�� ��

����	�

�
 ��

Figure 3: Representation of the original and decomposed
matrices in memory

We have run two versions of the matrix multiplication
benchmark with different distribution strategies. The first has
only one master node that decomposes the matrices and sends

the sub matrices to worker nodes. Initial experiments have
shown that only a single master node can not keep the other
cores busy when we use two decomposition steps creating
8 × 8 = 64 concurrent multiplications on only 47 (or 48,
when the master is included) nodes. The overhead for the
decomposition and communication is too large compared to
the computation performed by the worker nodes. In the second
version the master node does a single recursion step, and then
delegates the work to eight nodes which in turn do the second
recursion step to create a total of 64 tasks. Using this method,
we divide the communication overhead over multiple nodes,
but the total amount of required communication is higher.

B. Results

1) Ping Pong: In Figure 4, the results of the Ping Pong
benchmark are visualized in two graphs. The first graph shows
the best achieved latency of creating a remote computation,
followed by a synchronization directly thereafter with different
data payloads. All results are the minimum over 10 mea-
surements, to compensate for outliers generated by TCP/IP
timeouts that would have a large impact on an average. We
show the results for the previously discussed implementations;
Direct is the same implementation as the original but without
the XDR encoding and decoding steps, Remap is the approach
that remaps and copies the memory on the receiving side,
and Copy core is spreading the copy operation over 4 or 16
dedicated copy cores.

The new approaches have a higher latency, around 6 ms in-
stead of 1 ms, for a small payload, due to the required L2 cache
flush, but have a much better latency when communication a
lot of data. This is further shown in the second graph, which
shows the corresponding throughput, note that this graph is
also on a log to log scale. As the initial communication of
the addresses still goes through TCP/IP, we set a threshold
for using remapping or copy cores to 128 bytes, however they
only become faster then the direct approach when transferring
more then 16 KB.

The direct communication approach reduces the execution
time by almost an order of magnitude compared to the original
implementation. The speedup peaks at a factor of 9 for
messages larger than 512KB. Remapping memory is about two
orders of magnitude faster than the original implementation.
The copy core approach clearly improves on the memory
remapping approach, as it can aggregate more bandwith by
using multiple cores, as described in [6]. It is three times as fast
as remapping when using 4 copy cores, and four times as fast
with 16 copy cores, where you start to notice the delegation
and synchronization overheads to send the Copy cores their
work requests.

2) Matrix multiply using one decomposition step: In this
benchmark we run our matrix multiplication application using
one decomposition step, resulting in eight remote creates. We
ran the benchmark for square matrix sizes of 128, 256, 512
and 1024 elements, resulting in sub matrices of half that square
size. The amount of communication is order O(n2) while the
computation is in the order O(n3), which results in better
scalability for larger matrices due to a better computation to

58

� �� �� ��� �� �� ��� ��� ���� �� �� ���

	
��

���������������

�

��

���

����

�����

������
�

��
��
��
��

��
������
���
 ��!
�"�#
 ���
��
��"�#
 ���
��
$��!��
�

(a) Latencies for the different implementations

� �� �� ��� �� �� ��� ��� ���� �� �� ���

	
��

���������������

�����

����

���

�

��

���

����

��
��

	

�
��

��

��
��

(b) Throughput for the different implementations

Figure 4: Results for the SVP based Ping Pong benchmark

communication ratio. The master node initializes the matrices,
performs the decomposition, and distributes the work over 1
to 8 remote places. The results averaged over three runs and
are shown in Figure 5. We benchmark again our four imple-
mentations; the original, the direct implementation, remapping
and copy cores with 4 or 16 copy cores which are placed at
the edges of the SCC chip around the memory controllers. All
speedups are measured against a baseline of a non-threaded
local matrix multiplication using the same computation kernel
but without distribution or decomposition.

For a small matrix size of 128× 128 elements (Figure 5a),
we see the impact of the large overhead of communication.
The original and direct implementation perform about the
same but do not scale at all. In this case, the messages
are rather small due to the memory layout of the matrices.
Every row of each matrix has to be sent separately, consisting
of 64 double precision floating point elements of 8 bytes
each, resulting in a message size of 512 bytes. Using the
original and direct implementations, each of these messages
will be sent separately, resulting in a lot of TCP/IP overhead.
The remapping and copy core implementations show some
scalability as they only receive a list of addresses that they
have to copy their data from. The L2 cache also does not have
to be flushed for every message, as it recognizes that all these
messages together are part of the same remote computation.

For size 256, (Figure 5b), we still do not see a lot of
speedup for the original and direct implementation. The data
size per message has increased to 1KB, which is a clear
advantage to the remapping and copy core approaches, where

the measurement with 4 copy cores manages to nearly gain
a perfect speedup of 8. For size 512, (Figure 5c), the direct
implementation starts to show some scalability for multiple
cores, scaling up to a speedup of 4. The remapping and copy
core approaches scale well and perform roughly the same,
though the latter shows some superlinear speedup for 4 cores,
probably as the data fits well into the L2 cache. The last graph
(Figure 5d) shows similar results, except that the remapping
implementation is now clearly outperformed by the copy
cores as they provide more communication bandwidth. The
original implementation again scales poorly, which is caused
by the different ratio between communication bandwidth and
computational power, compared to a cluster environment.

� � � � � � � �

	
�
�
��������
�������
��

����

����

����

����

����

��
��

�

�

��
���
���������
�"���� ��
�
��"���� ��
�
$
�����%

(a) Matrix size 128× 128.

� � � � � � � �

	
�
�
��������
�������
��

����

����

����

����

����

����

����

����

����

��
��

�

�

(b) Matrix size 256× 256.

� � � � � � � �

	
�
�
��������
�������
��

����

����

����

����

����

����

����

����

����

��
��

�

�

(c) Matrix size 512× 512.

� � � � � � � �

	
�
�
��������
�������
��

����

����

����

����

����

����

����

����

����

��
��

�

�

(d) Matrix size 1024× 1024.

Figure 5: Matrix multiply with 1 decomposition step

3) Matrix multiply using two decomposition steps: The ma-
trix multiplication benchmark exposes eight times the concur-
rency for each decomposition step that is performed. However,
the additional recursion step leads to more communication
overhead due to increased number of messages. We ran this
benchmark for sizes 1024 × 1024, and 2048 × 2048, but the
original implementation could not run on the latter size due
to memory constraints.

In Figure 6, we see no speedup for the original implemen-
tation when using additional cores. It fails to scale as the
master node is fully occupied with the distribution of tasks
while most of the workers are idle waiting for work. This
also limits the scalability of the direct approach to about a
factor of 5 at 20 cores, but this is not the case for remapping
or copy cores. As these two approaches fetch the memory,
more concurrency in the communication is exposed when the
number of workers is increased, resulting in more scalable
communication and corresponding speedups, peaking at 27
with the copy core approach. The master node only needs

59

to send a set of addresses which reduces the communication
time for the master so it can distribute tasks faster. The copy
core approach performs slightly better then remapping with
more clients as the master node still becomes a bottleneck
on receiving back the result of the computations. Note that
computations using the copy core approaches can not be run
on all 48 cores as some cores are reserved for the copy tasks.

� � �� �� �� �� �� �� �� �� �� ��

	
��
���������
��������
�

����

����

�����

�����

�����

�����

�����

��

�

�

���
��
�
�������
����������

������������

 ������!

(a) Matrix size 1024× 1024.

� � �� �� �� �� �� �� �� �� �� ��

	
��
���������
��������
�

����

����

�����

�����

�����

�����

�����

��

�

�

(b) Matrix size 2048× 2048.

Figure 6: Matrix multiply with 2 decomposition steps

4) Recursive decomposition over multiple nodes: A so-
lution that decreases the load of a single master node, is
to split the recursion steps over multiple nodes. The master
node performs one decomposition step and delegates the next
decomposition to other nodes. These nodes then perform the
second step and distribute the work over even more nodes,
using a round robin algorithm that guarantees an as much
even distribution as possible. This approach introduces a lot
of additional communication, but not much computational
overhead as the decomposition on a single node can be done
without additional copy operations due to the way we structure
our matrices in memory.

The benchmark results are shown in Figure 7, where again
the original implementation was unable to run the 2048 con-
figuration. The original and direct approaches clearly benefit
from the different communication pattern, while the remapping
and copy core approaches perform about the same as with the
other communication pattern, peaking at a factor 25 speedup.

� � �� �� �� �� �� �� �� �� �� ��

	
��
���������
��������
�

����

����

�����

�����

�����

�����

�����

��

�

�

���
��
�
�������
����������

������������

 ������!

(a) Matrix size 1024× 1024.

� � �� �� �� �� �� �� �� �� �� ��

	
��
���������
��������
�

����

����

�����

�����

�����

�����

�����

��

�

�

(b) Matrix size 2048× 2048.

Figure 7: Matrix multiply with distributed decomposition.

V. CONCLUSION

We have shown our initial results of porting our implemen-
tation of the SVP model of concurrency to the Intel SCC.
One of the biggest problems was the efficient communication
of data; it is difficult to keep all the cores busy and to find a
good communication to computation ratio.

We have discussed several approaches on how we improved
our communication bottleneck; removing XDR encoding,

remapping and copying data directly at the receiving core,
and employing our copy core techniques. The latter showed a
two orders of magnitude improvement in throughput, and has
the potential to scale up by employing multiple copy cores.
However, the matrix multiply benchmarks that we used were
not able to effectively use the large bandwidth provided by the
copy core techniques compared to the remapping approach.

REFERENCES

[1] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl,
D. Jenkins, H. Wilson, N. Borkar, G. Schrom, F. Pailet, S. Jain,
T. Jacob, S. Yada, S. Marella, P. Salihundam, V. Erraguntla, M. Konow,
M. Riepen, G. Droege, J. Lindemann, M. Gries, T. Apel, K. Henriss,
T. Lund-Larsen, S. Steibl, S. Borkar, V. De, R. V. D. Wijngaart, and
T. Mattson, “A 48-core IA-32 message-passing processor with DVFS
in 45nm CMOS,” Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), 2010 IEEE International, pp. 108–109, February 2010.

[2] C. R. Jesshope, “A model for the design and programming of multi-
cores,” Advances in Parallel Computing, vol. High Performance Com-
puting and Grids in Action, no. 16, pp. 37–55, 2008.

[3] K. Bousias, N. Hasasneh, and C. Jesshope, “Instruction level parallelism
through microthreading—a scalable approach to chip multiprocessors,”
Comput. J., vol. 49, pp. 211–233, March 2006.

[4] J. Sykora, L. Kafka, M. Danek, and L. Kohout, “Analysis of execution
efficiency in the microthreaded processor UTLEON3,” in Proceedings
of the 2011 Conference on Architecture of Computing Systems (ARCS
2011), vol. 6566 of Lecture Notes in Computer Science, pp. 110–121,
Springer, 2011.

[5] M. W. van Tol and J. Koivisto, “Extending and implementing the self-
adaptive virtual processor for distributed memory architectures,” CoRR,
vol. abs/1104.3876, April 2011.

[6] M. W. van Tol, R. Bakker, M. Verstraaten, C. Grelck, and C. R. Jesshope,
“Efficient memory copy operations on the 48-core intel scc processor,” in
3rd Many-core Applications Research Community (MARC) Symposium,
KIT Scientific Publishing, September 2011.

[7] R. F. van der Wijngaart, T. G. Mattson, and W. Haas, “Light-weight
communications on Intel’s Single-chip Cloud Computer processor,”
SIGOPS Oper. Syst. Rev., vol. 45, pp. 73–83, February 2011.

[8] C. Clauss, S. Lankes, P. Reble, and T. Bemmerl, “Evaluation and
improvements of programming models for the Intel SCC many-core
processor,” in Proceedings of the International Conference on High
Performance Computing and Simulation (HPCS2011) – to appear, Work-
shop on New Algorithms and Programming Models for the Manycore
Era (APMM), (Istanbul, Turkey), July 2011.

[9] Intel Labs, SCC External Architecture Specification, revision 1.1 ed.,
November 2010.

[10] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser,
“Active messages: a mechanism for integrated communication and
computation,” in ISCA ’92: Proc. of the 19th annual Int. Symp. on
Computer architecture, (New York, NY), pp. 256–266, ACM, 1992.

[11] C. R. Jesshope, M. Lankamp, and L. Zhang, “Evaluating CMPs and
their memory architecture,” in Proc. Architecture of Computing Systems
(M. Berekovic, C. Muller-Schoer, C. Hochberger, and S. Wong, eds.),
pp. 246–257, 2009.

[12] T. D. Vu and C. R. Jesshope, “Formalizing sane virtual processor in
thread algebra,” in ICFEM, pp. 345–365, 2007.

[13] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and
J. Hennessy, “Memory consistency and event ordering in scalable
shared-memory multiprocessors,” in ISCA ’90: Proceedings of the 17th
annual international symposium on Computer Architecture, (New York,
NY, USA), pp. 15–26, ACM, 1990.

[14] P. Bellens, J. M. Perez, R. M. Badia, and J. Labarta, “Cellss: a
programming model for the cell be architecture,” in SC ’06: Proceedings
of the 2006 ACM/IEEE conference on Supercomputing, (New York, NY,
USA), p. 86, ACM, 2006.

[15] K. Fatahalian, D. R. Horn, T. J. Knight, L. Leem, M. Houston, J. Y. Park,
M. Erez, M. Ren, A. Aiken, W. J. Dally, and P. Hanrahan, “Sequoia:
programming the memory hierarchy,” in SC ’06: Proceedings of the
2006 ACM/IEEE conference on Supercomputing, (New York, NY, USA),
p. 83, ACM, 2006.

[16] M. Eisler, “XDR: External Data Representation Standard.” RFC 4506
(Standard), May 2006.

60

Caching Strategies and Access Path Optimizations
for a Distributed Runtime System in SCC Clusters

Björn Saballus, Stephan-Alexander Posselt and Thomas Fuhrmann
Technische Universität München

Boltzmannstrasse 3, 85748 Garching/Munich, Germany
{bjoern.saballus|stephan.posselt|thomas.fuhrmann}@tum.de

Abstract—In the context of our J-Cell project, we propose
a novel approach for locating objects in a fully decentralized
system. In our system migrations are caused by processor nodes
modifying shared objects. Hence our system allows for a high
migration rate. Migrating objects leave behind a chain of proxies
that forward access requests until they eventually reach the
object.

In this paper, we study the effect of caching and a mechanism
to reduce the proxy chain length. We show that caching works
well with red-black trees, but not with AVL trees. We also show
that the benefits of caching are not degraded when the cache
size is increased beyond the required minimum. Furthermore,
we analytically derive a formula to determine the optimal
parameters for our proxy chain reduction algorithm; and we
demonstrate that our algorithm works as expected.

Index Terms—Distributed Runtime Environment, Cache Strat-
egy, Distributed Object Access, SCC Cluster

I. INTRODUCTION

The physical limits to sequential processing performance
force computer architectures to become increasingly paral-
lel. Well known examples include general purpose graphics
processing units such as Intel’s Larrabee, heterogeneous many-
core processors with explicit memory management such as
the IBM Cell BE, and homogeneous many-core processors
with non-coherent caches such as Intel’s Single-chip Cloud
Computer (SCC). This trend challenges software developers
who have to work with legacy code that was originally targeted
at uniprocessors. Also, most developers seem to be well
accustomed to sequential algorithms, but they have a hard
time programming with concurrency in mind, especially when
the algorithms need to scale to a vast number of cores.

We believe that concepts like distributed shared memory
(DSM) and transactional memory (TM) can help to alleviate
these problems: DSM keeps up the traditional system model
and is better suited for irregular applications than message
passing; TM [1], [2] better hides latency than locking, and it
is easier to implement correctly [3].

Our research project J-Cell1 follows this line of argumenta-
tion. The J-Cell runtime system provides a single system image
(SSI) [4] across all cores and all processors in a compute
cluster. Thereby, it hides the heterogeneous and distributed
nature of clusters of many-core processors from the software
developer.

1J-Cell is supported by the German Ministry of Education and Research
under grant number 01IH08011. We are also grateful to Intel for granting us
access to their SCC platform.

We described our system in more detail in [5], where the
focus is on the decentralized access to mobile objects on
SCC clusters. The SCC is an experimental 48-core processor
[6] that Intel Labs have created as a “concept vehicle” for
many-core software research. We have shown that the most
suitable approach for locating and retrieving mobile objects in
a decentralized scenario is the use of forwarding proxies, and
not the use of update messages that are sent to the referencing
objects.

This paper extends this work and gives an overview of our
current work on path optimization algorithms for long chains
of forwarding proxies. Moreover, we examine the influence of
object caching on distributed applications, which we examine
with regard to our TM algorithm. We simulate a distributed
environment where an application uses a tree data structure.
We compare an AVL and a Red-Black tree to study the effect
of different degrees of contention on the elements of a shared
data structure.

The remainder of the paper is organized as follows. Sec-
tion II briefly introduces our distributed runtime environment.
Section III describes our proxy forwarding approach and
our optimizations that speed up access to migrating objects.
Section IV illustrates our caching approach, and Section V
evaluates our approach with the help of simulations. Section VI
gives an overview over the related work, before we draw our
conclusion in Section VII.

II. RUNTIME ENVIRONMENT/SYSTEM OVERVIEW

The J-Cell runtime environment completely eliminates
all centralized components: Its memory access sub-system
references objects that can be scattered across all participating
nodes; a fully decentralized object location and retrieval
algorithm enables the location-transparent access to the objects
[7]; a multi-version software transactional memory system
(DecentSTM) handles parallel access to these objects with
the help of a fully decentralized consensus protocol [8]. To
deal with node failures, the runtime uses a fully decentralized
recovery mechanism, which uses outdated object versions
as implicit checkpoints [9]. Thereby, when a processor or
a memory chip fails, the runtime can automatically roll-back to
the most recent consistent version. On each core in a cluster of
many-core processors runs one instance of the runtime system;
and together, all instances collaborate to provide the SSI.

If the runtime system is used in form of our C/C++ library,
the application has to call the appropriate functions that create

61

and access objects. In particular, these function calls indicate
when pointers are de-referenced, so that the runtime can ensure
that a copy of the respective object is available in the respective
processor’s memory.

If the runtime system is used with Java applications, it
directly interfaces to our distributed virtual machine DecentVM
[10], so that applications do not need to be modified. The
VM automatically partitions programs into a sequence of
transactions during execution; it does so by taking accesses
to monitors and volatile variables as boundaries between the
transactions [11]. Optionally, the application programmer may
annotate the source code to indicate which code blocks shall
form transactions.

The memory model of the J-Cell runtime system is derived
from a non-uniform memory access (NUMA) architecture. It
distinguishes between logical (private or global) and physical
(private, local, or remote) memory. All objects that reside in
global memory are globally accessible from all nodes. All
objects that reside in private memory are either local variables,
or private copies of globally accessible objects. Logically, the
application operates on mutable objects, while for the runtime
system each object is represented by a list of immutable object
versions. Whenever a node writes to an object, a new object
version is created, and prepended to the corresponding list of
object versions during a successful commit. Thus, each object
consists of a current head version and a chain of multiple,
outdated versions (see Figure 1).

On each core, threads can only operate on object versions
that reside in that core’s private memory. Thus, all operations
on global objects require that the runtime environment first
retrieves a copy of the head version of the object. When the
transaction has finished, the DecentSTM algorithm propagates
all changes back into the global memory. Thus, the DecentSTM
algorithm mediates between private and global memory. We
describe this memory model in more detail in [5].

III. CHAINS OF FORWARDING PROXIES

With the reactive location update protocol presented in [5],
migrating objects leave behind a trail of proxies. In our system,
an object typically migrates when another thread creates a
new version of that object. In that case, DecentSTM implicitly
creates a forward and backward reference between the object’s
head version and its previous version.

A proxy does not know by itself if it is still referenced by
other objects and thus, can not be deleted. However, if it is
never deleted, the length of a proxy chain is unbounded. So,
a Distributed Garbage Collector (DGC) periodically removes
all proxies: It follows all references and all proxy forwarding
pointers to all reachable objects. When the DGC reaches the
referenced object, the DGC implicitly updates all outdated
object locations and marks all visited proxies as garbage.
Afterwards, all proxies are un-referenced and marked for
deletion, and the next DGC run can remove them.

The other mechanism that updates the object location of a
migrated object is an ordinary access operation to the migrated
object. The first access request message that is sent to an
outdated object location traverses the chain of proxies, and

eventually reaches the head version. The node where the head
version resides sends its response or acknowledgment directly
back to the requesting node. Because the response implicitly
contains the current location of the object, the requesting node
can cache this new location and use it for all subsequent
accesses.

Each proxy pi in a chain of proxies holds a forwarding
pointer to the next proxy pi+1 in the proxy chain. Additionally,
each proxy pi+1 also knows its predecessor, and thus the node
that stores proxy pi. The reactive location update protocol does
not need these backward pointers, but the DecentSTM protocol
has to be able to walk the history of an object.

The work presented in this paper uses these backward
pointers for a novel proxy chain optimization protocol that
propagates updated object location information backwards
along the reference chain, from the target to the sources.
Thereby, the update propagation depth k decreases the number
of hops along a proxy chain of length � from �+1 to
 �

k �+1,
cf. Figure 1.

Note that our proxy forwarding algorithm inherently cuts
out loops in a proxy chain whenever an object returns to a
previously visited node, because the next migration overwrites
the previous forwarding pointer with the new one.

The optimal propagation depth k depends on the access
characteristics of the corresponding object. Namely, on the
ratio of the number of read accesses R and the number of
write accesses W .

To update the forwarding information of all previous proxies,
the system needs to send � messages, one for each step along
the chain. If only k update messages are sent, each access
request for an object requires
 �

k � hops along the proxy chain.
Here, � is the average number of object migrations that took
place since the reference to the migrated object was created.
Therefore, � describes how deeply in the proxy chain the
accessing node begins its way up to the current location of the
object, cf. Figure 1. To optimize the costs of an object access,
the number of messages per write plus the number of messages
per read, or kW + �

kR, must be minimal, i. e.W −R�/k2 = 0
or

k =

√
R · �
W

(1)

As a result of the update propagation, each proxy pi holds k
forwarding pointers that point to the successive proxies pi+x,
with 1 ≤ x ≤ k, within the proxy chain, where the special case
of k = 1 represents a proxy chain with only 1-hop forwarding
pointers.

Figure 1 gives an example for an update message propagation
depth of k = 2. Note that the length of the proxy chain between
referencing object and referenced object depends on the entry
point into the proxy chain. From object 9 the total length � of
the proxy chain is � = 2, while from object 14 the total length
is � = 4. The propagation depth of k = 2 decreases the number
of message hops for object 9 and 14 from 3, respectively 5,
hops to 2, respectively 3 hops.

62

Fig. 1. Update propagation with depth k = 2

Besides decreasing the number of hops, these additional
forwarding pointers add additional paths along which the
referenced object can be accessed, and thus harden the proxy
chain against node failures. With a propagation depth of k,
a proxy chain can tolerate the loss of at least k − 1 proxies
without getting fragmented. When e. g. one of the proxies pi
between object 14 and 12 fails, one of the k − 1 remaining
forwarding pointers of the previous proxy pi−1 can be used.

In the same way, the system can harden object references,
and store not only the latest object location, but additionally
k − 1 previous locations. Then, the response message from
object 12 does not only contain the current location of the
home node, but also the locations of the last k − 1 proxies if
there are that many.

In the DecentSTM context, this additional information about
previous proxies (object versions) allows transactions to work
with older object versions. This information is also required by
the redundancy and recovery mechanism to restore all necessary
transactions that have been lost due to a node failure.

IV. OBJECT VERSION CACHING

DecentSTM can execute transactions optimistically without
first checking that a cached version actually is the most recent
version. If it is or if using an outdated version does not lead
to an inconsistency during the commit phase, the optimistic
approach speeds up execution. If however the transaction has
to roll back and restart using current versions, this approach
wastes time. Thus, we now explore the probability that the
optimistic approach succeeds. We assume a cache using the
least-recently-used (LRU) policy. We distinguish three cases
when accessing an object:

• cache miss: The accessed object is not cached, and the
thread has to stall until the object’s head version has been
retrieved.

• good cache hit: The accessed object is cached, and the
cached version is the current head version of the object.
The thread continues execution immediately (without
knowing that it works with the head version). It has a
good chance to succeed when committing.

• bad cache hit: The accessed object is cached, but the
cached version is outdated. The thread continues execution
immediately (because it cannot know that the version is
outdated). It is likely to fail when committing.

V. EVALUATION

We simulated the described system with two example
applications: a Red-Black (RB) tree and an AVL tree. The
AVL tree is a balanced binary search tree with the invariant

that the height of any two branches in the tree differ by at most
1. To guarantee this invariant, each insert or delete operation
may have to re-balance the whole tree, starting from the root.

In contrast to the AVL tree, a RB tree has weaker balancing
constraints. Among others, one invariant of the RB tree is that
the longest branch of the tree can be at most twice as long as
the shortest branch of the tree. Re-balancing operations start
at the node in the tree where the element has been inserted or
deleted, and continue towards the root until the tree invariants
are restored. As a result, the balancing operations of an RB
tree modify less objects than those of the AVL tree.

Our simulator consists of a given number of nodes, where
each node executes one thread that operates on the given data
structure. Each thread randomly inserts and deletes elements
into/from the tree. Each node is equipped with a local cache
of a given size that implements the least-recently-used (LRU)
policy.

A single simulation run executes one million transactions
that manipulate the given tree. Each transaction draws two
random numbers between 1 and 10 000, which are used as
object identifiers r1 and r2. Each transaction first inserts the
object r1 if the tree does not yet contain this element, and
re-balances the tree if necessary. Then, it searches for object
r2 in the tree, deletes it if it was present, and again re-balances
the tree.

Note that we are not concerned with an underlying routing
algorithm or a particular network topology. We only consider
proxy forwards.

We ran simulations with 1 000 nodes and various cache
sizes, ranging from 50 to 450 objects. The numbers shown
are averages over 100 runs each. Each simulation run made
in total 25 114 763 initial cache accesses for the AVL tree
and 23 998 597 initial cache accesses for the RB tree. Note
that the total number of initial cache accesses is equal for
all cache sizes. Here, “initial access” denotes the first access
to an object within a transaction. To prevent the transactions’
memory snapshot from becoming inconsistent, our TM system
requires that subsequent accesses use the same cached object
version.

Figure 2 shows the percentage of cache misses, good cache
hits, and bad cache hits for the different cache sizes. As
expected the good cache hit rate is higher for the RB tree
than the AVL tree. It is 12.8% for the AVL tree and 20.0%
for the RB tree with a cache size of 50 objects, and 17.6%
and 31.3% for a cache with 450 objects. Furthermore, the bad
cache hit rate is lower. It is 8.23% for the AVL tree and 0.26%
for the RB tree with a cache size of 50 objects, and 17.23%
and 2.36% for a cache with 450 objects. Compared to the total
cache hits, the AVL tree has 39.16% outdated objects and the
RB tree 1.28% outdated objects in a cache with 50 objects,
and 49.51% and 7.02% for a cache size of 450 objects. We
can see that for the AVL tree the good cache hit rates set in
at a cache size of 100, whereas for the RB tree the cache size
should be 150. Larger caches do not (significantly) increase
the system’s performance.

Figure 3 shows the probability that a cache hit is good as
a function of the number of intermediate transactions, i.e. the

63

0%

20%

40%

60%

80%

100%

50 100 150 200 250 300 350 400 450

Cache Size

Cache Misses
Good Cache Hits

Bad Cache Hits

(a) Cache Accesses for AVL Tree

0%

20%

40%

60%

80%

100%

50 100 150 200 250 300 350 400 450

Cache Size

Cache Misses
Good Cache Hits

Bad Cache Hits

(b) Cache Accesses for RB Tree

Fig. 2. RB and AVL Tree Cache Accesses in %.

number of transactions that the accessing node has processed
since the cache entry has been used previously. The smaller
the cache the more quickly the good cache hit rate drops. Just
before the probability reaches zero, the number of total hits is
so small that the probability becomes erratic. Therefore, we
removed those data points from the plots for which the number
of total hits is less than 0.3 hits on average.

Figure 3 confirms our finding from Figure 2 that large caches
are not worthwhile. Even though a large cache can increase the
overall number of cache hits, it also decreases the percentage
of good cache hits. (Since the number of total hits decreases
with the number of intermediate transactions, this effect is not
seen in Figure 2.)

Comparing the AVL tree with the RB tree, we again see
that the RB tree has a much better performance in our system.
In an AVL tree, the probability of a good cache hit, and
thus the probability that an object was not modified after two
intermediate transactions, is only about 60%. In an RB tree, the
probability of a good cache hit is 97.7% after two intermediate
transactions with a cache size of 50 objects. Overall, we
conclude that 100 objects is the optimal cache size for the
AVL tree, whereas it is 150 objects for the RB tree.

Upon a cache miss, the thread must stall until it has retrieved
the respective object. However, the proxy chain that leads to
the current version is the longer the more transactions have
created new versions of the object, and thus proxies. The longer

0%

20%

40%

60%

80%

100%

 0 5 10 15 20 25 30 35 40 45 50 55 60

Number of Intermediate Transactions

CacheSize 50
CacheSize 100
CacheSize 150
CacheSize 200
CacheSize 400

(a) AVL Tree: Good Hit/Total Hit probability.

0%

20%

40%

60%

80%

100%

 0 5 10 15 20 25 30 35 40 45 50 55 60

Number of Intermediate Transactions

CacheSize 50
CacheSize 100
CacheSize 150
CacheSize 200
CacheSize 400

(b) RB Tree: Good Hit/Total Hit probability.

Fig. 3. Probability of Good Hit/Total Hit after x intermediate Transactions.

the proxy chain that must be traversed, the longer a thread
has to stall before the request completes. Figure 4 shows the
number of proxy forwards that are needed to retrieve the head
version of an object. (Note that the figures are plotted with
a double-logarithmic scale for the two cache sizes of 50 and
450 objects.) To create the figure, we ran our simulation with
various update propagation depths k. (We only show k = 1, 3, 6
because the plots for k > 6 are not significantly different.) In
addition, Table I shows the length of the traversed proxy chain,
i.e. the probability that the object’s head version was reached
after the first, second, third, and fifth proxy forward.

Both AVL tree and RB tree have their maximum at a proxy
chain length of 2 hops, but for the AVL tree, this maximum
does not peak as highly as for the RB tree. Especially, the
AVL tree has a non-negligible probability to produce very long
proxy chains. For the RB tree, the maximal proxy chain length
we found varies between 5 (k = 6) and 23 (k = 1) for a cache
with 50 objects, and between 14 and 56 for a cache size of
450 objects. The increase in the proxy chain length is a result
of the increased number of outdated objects in the cache: The
larger the cache, the more objects are cached that remain in
the cache for a longer time period before they are evicted by
the LRU policy. And the longer the time an object stays in
the cache, the more new object versions are created on other
nodes and the longer the proxy chain grows.

For the AVL tree, the proxy chains in our simulations grow
to 78 hops (cache size 50) and 177 hops (cache size 450).

64

(a) AVL and RB Tree, Cache Size: 50.

(b) AVL and RB Tree, Cache Size: 450.

Fig. 4. Number of Proxy Forwards per Cache Miss.

Cache Size k 1-hop 2-hop 3-hop 5-hop

AV
L

50
1 0.49 28.38 16.28 3.22
3 0.96 45.99 8.73 0.85
6 1.24 49.64 6.47 1.31

450
1 0.53 26.22 19.76 7.42
3 1.29 46.13 18.90 3.47
6 2.00 54.86 16.91 1.79

R
B

50
1 6.43 71.13 14.08 1.92
3 10.83 84.56 3.95 0.09
6 11.99 86.01 1.87 0.01

450
1 2.74 49.18 17.40 5.88
3 6.98 69.70 13.25 2.47
6 10.79 77.15 9.31 0.50

TABLE I
PROXY FORWARDS FOR AVL AND RB TREE IN %.

The reason for these high values are the frequent tree rotations
that are necessary to balance the tree. Each such rotation
creates new object versions, and thereby increases the proxy
chain length. These frequent rotations also explain the quickly
decreasing good cache hit probability in Figure 3 and the
plateau at about 1% in the AVL plot. Only the finite number
of nodes in our simulated system keeps the proxy chains from
growing even larger. This is because the longer a chain, the
higher the probability that adding a proxy introduces a loop,
which our algorithm then cuts out automatically.

In Section III, we introduced the update propagation mech-

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
os

ts
 in

 M
ill

io
n

M
es

sa
ge

s

Update Propagation Depth k

Cache Size AVL: 50
Cache Size AVL: 150
Cache Size AVL: 300

Cache Size RB: 50
Cache Size RB: 300

Fig. 5. AVL Tree Message Costs depending on ksim, in Million Messages.

Cache Size W R lk=1 kopt

AVL 50 3 955 611 2 066 916 18.40 3.10
450 3 955 611 4 326 585 11.21 3.50

RB 50 3 004 185 62 151 2.31 0.22
450 3 004 185 566 184 3.59 0.82

TABLE II
THEORETICAL OPTIMAL PROPAGATION DEPTH kopt .

anism to reduce the number of proxy forwards. The optimal
propagation depth k is determined by the average number
of newly created head versions W and the number of cache
accesses R. Both values can be determined at run time. In our
simulation, we thereby arrive at an optimal propagation depth
ksim. Additionally, we also measured the average proxy chain
length �k. With these numbers we can compute the average
message cost c as

c = W · ksim +R · �k (2)

Figure 5 shows the results our simulations: The two linear
curves at the bottom show the results obtained from the RB
tree; the three U-shaped curves are from the AVL tree. With a
cache size of 300 objects, the message costs are already close
to the maximal message costs of both data structures. A larger
cache does not increase the message costs any more, because
a larger cache would only contain objects that will never be
used again. For the AVL tree, a smaller cache slightly reduces
the message cost, because it leads to shorter proxy chains. In
accordance with our analytical result in equation (1), we see
that the minima of the message costs are at k = 3 for the
AVL tree, and at k = 1 for the RB tree. Also, compare the
experimental results of the graphs with Table II, where we
computed kopt with Equation (1) for cache sizes of 50 and
450 objects.

VI. RELATED WORK

Fowler [12] was the first to introduce forwarding addresses
to locate mobile objects in distributed systems. By now, the
use of forwarding pointers is a common approach to ensure
the reachability of migrating objects, e. g. [13]–[17].

All these approaches leave a proxy behind whenever an
object or mobile agent moves from one node to another.

65

However, to our best knowledge, none of these approaches
deals with the removal of old proxies, and none updates the
forwarding pointers within the proxy chain.

Our approach uses multiple forwarding pointers and a
backwards pointer to update these forwarding pointers, and
is closest to the approaches of Moreau and Ribbens [18] and
Fowler [12].

Moreau and Ribbens developed a middleware for mobile
agents that uses chains of proxies as well. The authors describe
an Eager Acknowledgments mechanism that propagates the
new location of a mobile agent to all previous proxies. Thus,
their approach can be seen as a special case of our approach
with k = ∞. However, Moreau and Ribbens do not consider
the access characteristics of a mobile agent at all.

Unlike us, Fowler always update all proxies in the proxy
chain after each object access that traversed a chain of proxies.
This approach can be seen as a special case of our approach
with k = ∞, as well. Furthermore, Fowler updates the proxies
upon object access, whereas we update the proxies upon object
migration, i.e. as part of the DecentSTM commit protocol.
Thereby, we avoid that the first access after a number of
migrations has to traverse the whole chain of proxies, and we
avoid the case where multiple nodes traverse and try to update
the chain of proxies at the same time.

VII. CONCLUSION

The J-Cell runtime system stores application-level objects
in form of immutable object versions. A processor node that
modifies an object creates a new version; typically, the newly
created version resides on the node that has created that version.

In this paper, we have studied two problems that arise in this
system: Cached object versions might have become outdated,
and a referenced remote object version might not be the object’s
head version any more.

To study the effect that different cache sizes have on the
performance of our system, we simulated a 1 000 node cluster
where 1 000 threads concurrently access a shared data structure.
Using a Red-Black tree and an AVL tree as examples, we
showed that our speculative execution approach is viable when
there is not too much contention. In particular, we found that
with an RB tree, only 5% of the cached objects in a cache
with 150 objects are bad in the sense that the cached version
has become outdated and is thus likely to cause a roll-back
when used.

Our findings also show that the choice of data structure
has a large impact on the performance of the application. We
found the AVL tree to not be suited for our envisioned system,
because the tree balancing operations modify a large portion
of the tree. A node with 100 cached objects, for example, has
only a 60% chance that a cached object is still up to date.

Besides analyzing the cache efficiency, we also studied the
number of proxy forwards that our system requires. Such
proxies are created when a processor node creates a new object
version. Upon access, a referencing node must follow the proxy
chain to retrieve the object’s head version.

We found that with the RB tree, proxy chains are typically
short, whereas the AVL tree can lead to very long proxy

chains. For the latter case, we thus propose to use an update
propagation mechanism that creates shortcuts in the proxy chain.
Our simulations show that our analytically derived formula
for the recommended update depth minimizes the system’s
message overhead.

REFERENCES

[1] M. Herlihy and J. E. B. Moss, “Transactional memory: Architectural
support for lock-free data structures,” in Proc. of the 20th Annual Int’l
Symposium on Computer Architecture(ISCA’93), May 16 – 19, 1993, pp.
289–300.

[2] N. Shavit and D. Touitou, “Software transactional memory,” in Proc. of
the 14th Annual ACM Symposium on Principles of DistributedComputing
(PODC’95), Aug. 20 – 23, 1995, pp. 204–213.

[3] C. J. Rossbach, O. S. Hofmann, and E. Witchel, “Is transactional
programming actually easier?” ACM SIGPLAN Notices - PPoPP ’10,
vol. 45, pp. 47–56, Jan. 2010.

[4] R. Buyya, T. Cortes, and H. Jin, “Single system image,” International
Journal of High Performance Computing Applications, vol. 15, no. 2,
pp. 124–135, 2001.

[5] B. Saballus, S.-A. Posselt, and T. Fuhrmann, “A scalable and robust
runtime environment for SCC clusters,” in Proc. of the 3rd MARC
Symposium, Jul. 05 – 06, 2011.

[6] Intel Corporation, “The SCC platform overview, rev. 0.7,” May 2010.
[7] B. Saballus, S.-A. Posselt, and T. Fuhrmann, “Brief announcement: Fault-

tolerant object location in large compute clusters,” in Proc. of the 13th
Int’l Symp. on Stabilization, Safety, and Security of Distributed Systems
(SSS’11), Oct. 10 – 12, 2011.

[8] A. Bieniusa and T. Fuhrmann, “Consistency in hindsight, a fully
decentralized STM algorithm,” in Proc. of the IEEE Int. Symposium
on Parallel Distributed Processing (IPDPS’10), Atlanta, Georgia, USA,
Apr. 19 – 23, 2010.

[9] S.-A. Posselt, “Design of a reliable, fully decentralized software
transactional memory protocol,” Diploma thesis, Technische Universität
München, Munich, Germany, Aug. 2010.

[10] A. Bieniusa, J. Eickhold, and T. Fuhrmann, “The architecture of the
DecentVM – towards a decentralized virtual machine for many-core
computing,” in Proc. of the 4th Workshop on Virtual Machines and
Intermediate Languages (VMIL’10), Reno, Nevada, USA, Oct. 17, 2010.

[11] A. Bieniusa and T. Fuhrmann, “Lifting the barriers - reducing latencies
with transparent transactional memory,” in Proc. of the 13th Int’l Conf.
on Distributed Computing and Networking (ICDCN’12), Jan. 03 – 06,
2012.

[12] R. J. Fowler, “The complexity of using forwarding addresses for
decentralized object finding,” in Proc. of the 5th Annual ACM Symp. on
Principles of Distributed Computing (PODC’86), Aug. 11 – 13, 1986,
pp. 108–120.

[13] K. Li and P. Hudak, “Memory coherence in shared virtual memory
systems,” ACM Transactions on Computer Systems (TOCS), vol. 7, no. 4,
pp. 321–359, 1989.

[14] B. Steensgaard and E. Jul, “Object and native code thread mobility
among heterogeneous computers,” in Proc. of the 15th ACM Symp. on
Operating Systems Principles (SOSP’95), Dec. 3 – 6, 1995, pp. 68–77.

[15] M. Philippsen and M. Zenger, “JavaParty transparent remote objects
in Java,” Concurrency: Practice and Experience, vol. 9, no. 11, pp.
1225–1242, Nov. 1997.

[16] W. Fang, C.-L. Wang, and F. C. M. Lau, “On the design of global object
space for efficient multi-threading Java computing on clusters,” Parallel
Computing, vol. 29, no. 11-12, pp. 1563–1587, 2003.

[17] H. Liu, T. Roeder, K. Walsh, R. Barr, and E. G. Sirer, “Design and
implementation of a single system image operating system for ad hoc
networks,” in Proc. of the 3rd Int’l Conf. on Mobile Systems, Applications,
and Services (MobiSys’05), 2005, pp. 149–162.

[18] L. Moreau and D. Ribbens, “Mobile objects in Java,” Scientific Program-
ming, vol. 10, no. 1, pp. 91–100, 2002.

66

Flexible Sharing and Replication Mechanisms for
Hybrid Memory Architectures

Thomas Prescher, Randolf Rotta, Jörg Nolte
{tpresche,rrotta,jon}@informatik.tu-cottbus.de

Abstract—The SCC (Single-Chip Cloud Computer) is an
experimental 48-core concept vehicle created by Intel Labs
and does, deliberately, not provide hardware-implemented cache
coherence. It can be treated like a distributed memory system by
implementing data replication and consistency control based on
message passing. However, the SCC still is a shared memory
system with shared access to parts of the memory. Thus,
replicating data for every core wastes memory and is inefficient
as well, because most replica updates go from and to the same
memory device. This paper presents a framework for memory
efficient sharing on such distributed systems with shared memory
subsystems. It is adaptable in respect to the underlying memory
architecture (with and without hardware cache coherence) as well
as the employed sharing models (e.g. central instance, replicas
with various consistency models, and hybrids of both). This
is achieved by dividing the replica management into storage
containers (for shared data on each memory device) and control
containers (for consistency and cache control on each core). The
framework’s design shows that it is possible to combine different
sharing and communication paradigms to exploit hybrid many-
core architectures up to clusters of SCCs.

Index Terms—many-core, cache coherence, distributed shared
memory, C++

I. INTRODUCTION

SOME of the already existing many-core chips are the
100-core Tilera [1], the IBM Cyclops64 with 160 thread

engines [2], and the 48-core Intel Single-Chip Cloud Computer
(SCC) [3]. The SCC is an experimental concept vehicle created
by Intel Labs as a platform for many-core software research
and does, deliberately, not provide hardware-implemented
cache coherence [4]. Soon, it should be possible to integrate
even more cores into a processor [5], but cache coherent shared
memory across hundreds of cores faces significant scaling
issues compared to message passing approaches [6].

The SCC is a hybrid system that combines aspects of a
distributed memory system (low latency message passing for
small messages) with aspects of a shared memory system
(access to shared memory). Thus, replicating large amounts
of data for every core wastes memory: Most of the replicas
would be located on the same memory device, while several
cores could access a single shared replica on each memory
device. It is inefficient as well, because during updates the
data is passed from main memory through the caches of
the communicating cores and is written back to the very
same memory device where it originally resided, while large
portions of the involved caches are evicted. On the SCC, at
most one replica per memory controller is sufficient to achieve
optimal access bandwidth and the necessary cache control can

SCC

SCC

MCPC

Ethernet

M

MM

M

M

MM

M

MM

Fig. 1. A distributed system with hybrid memory consisting of two 48-core
SCCs with non-coherent and one 4-core management computer with cache-
coherent shared memory.

be achieved by extending the replica management code. This
approach works as well on other systems with hardware cache
coherence by just skipping the manual cache flushing. Further,
in the presence of shared caches, one replica per shared cache
reduces the competition for space in that cache.

Consider a system like in Figure 1 performing N-particle
force simulations based on the popular Barnes-Hut algo-
rithm [7]. In each simulation step a tree is created and then
traversed for each particle. The traversal phase can be easily
parallelized on a large number of worker cores. After the
forces on a particle are calculated, the result is written into
a force vector. Because the workers do not modify the tree,
its data can be shared by all workers. The force vector is never
read by the workers and, thus, the written data can be sent to
a central storage in the background.

This paper presents MESH, a framework for Memory
Efficient SHaring, to manage shared objects like the above-
mentioned Barnes-Hut trees and particle force vectors. Func-
tion shipping (based on small messages) is used as fundamen-
tal means of communication. On top of this, a Distributed
Shared Memory is implemented with configurable sharing
spaces behind a unified interface. Inside its implementation,
the concept of storage containers and control containers is
introduced. The proposed storage containers provide access
to the heterogeneous memory architecture through a homoge-
neous interface and are flexible enough to support even clusters
of multiple SCC processors mixed with cache-coherent multi-

67

Application

Global Object Space & RMI

Collective Op.

Control
Containers

Storage
Containers

Sharing Spaces

TACO

MESH

Fig. 2. Software architecture for the Memory Efficient SHaring.

TABLE I
REMOTE METHOD INVOCATION MECHANISMS

synchronous deferred synchronous asynchronous
w/o result call(f) call(f, future) apply(f)

with result invoke(f) apply(f, future) —

core processors as suggested in Figure 1. The control con-
tainers simplify the implementation of consistency protocols,
cache control, and critical sections.

Figure 2 summarizes the architecture of the MESH frame-
work. The next section summarizes briefly the Global Object
Space and Remote Method Invocation (RMI) mechanisms as
the most basic level of sharing, that is communication with
a resource by knowing where it is. Section III presents our
Sharing Spaces, describes their interface and some exemplary
sharing models. Furthermore, it provides implementation notes
on the new essential control and storage containers. The paper
concludes with preliminary performance estimates, a short
discussion of related work, and closing remarks.

II. THE GLOBAL OBJECT SPACE

Using the SCC as a distributed memory system usually
means running one process with private memory per core.
These processes communicate through a messaging system in
order to coordinate their work and transfer data between each
other. The basic way to share a resource in this setting is to
know on which core it is and how to address it on that core.

The Global Object Space is such an addressing scheme for
objects. Global pointers identify the destination core together
with the object’s address in the core’s logical memory—
a concept also known as Partitioned Global Address Space
(PGAS). The messaging system is used to remotely per-
form actions on these objects, for example invoking/applying
method calls on them. Basically any PGAS framework can
be used to implement a Global Object Space and advanced
sharing paradigms on top of it. We chose TACO [8], because
it provides global object pointers (ObjectPtr<T>) as well
as flexible remote method invocation mechanisms, without
requiring any special compiler support besides standard C++.
Like many PGAS frameworks, TACO also relies on one-sided
communication: Method invocations are explicitly sent, but
their execution is performed implicitly by the framework.

In TACO, new objects can be created in the local and in
remote memory and are made accessible from other cores
simply by sending an object pointer to them. For remote
method invocations, method calls are wrapped with m2f into

function objects and these are sent to the object’s location for
execution. The following example creates a remote object and
calls some methods on it. Table I summarizes the basic RMI
mechanism; more details can be found for instance in [8].

ObjectPtr<BHTree> p =
allocate<BHTree>(coreID)(init-args...);

Node n = p->invoke(m2f(&BHTree::newNode));
p->apply(m2f(&BHTree::setWeight, n, 5.0));

III. SHARING SPACES

For many applications the Global Object Space alone is
not sufficient. For example, all workers in the Barnes-Hut
algorithm have to traverse the tree nodes, which involves many
short method calls to the tree object. Thus, they would have to
communicate in every small traversal step with the one core
that created the data. In order to remove the communication
latencies the data should be accessed directly over the memory
without any remote communication, which implies to replicate
the data as sketched in Figure 3. At the same time for other
data, the access may be shared while the transmission costs
for replication are not worth the effort. For example, a vector
for collecting result values does not benefit from replication
because the contents are never read by the workers.

This section introduces Sharing Spaces to organize this
sharing and replication behind a unified interface. The pro-
grammer allocates objects in a Sharing Space and then can
pass access to this shared object to any core by special sharing
pointers. The space defines the sharing model for the objects
created inside it, for example a migration, replication, and
consistency strategy. Three basic sharing models are apparent:
In a migration space each shared object has just one central
instance and all cores communicate with it over RMI, but
this instance can be migrated to another core. In a replication
space every core has access to a replica of the shared object
directly in its memory—even if some cores share the replica
over shared memory. In this case the replicas are managed
by the sharing space according to a consistency model like,
for example, entry consistency [9]. Hybrid sharing spaces are
possible as well, where a shared object has just a few replicas
and cores communicate with the nearest replica over RMI.

The framework provides unified access objects to work
on shared objects and these implement three things: They
communicate with the object’s controller to trigger consistency
protocol actions, they acquire an object pointer to their replica,
and they can enforce exclusive access for critical sections.

The following subsections describe the programming inter-
face and introduce distributed containers as means to imple-
ment cache control and to exploit the sharing capabilities of
heterogeneous memory architectures. The last subsection pro-
vides implementation details of the aforementioned migration
and entry-consistent replication spaces.

A. User Interface

Pointers to shared objects are implemented by a special
pointer type and new shared objects are allocated inside a
sharing space in order to specify the sharing model. In the

68

MCPCSCC

M M M M

C C C C

4 non-coherent domains 4 non-coherent domains
SCC

M M M M

C C C C C C C C

Cache

M M

1 coherent domain

heterogeneous distributed system

R R R R R R R R R

C

M

R Replicas in a Storage Container

Memory device

Caches & Control Container

Cores

Fig. 3. Memory view to the heterogeneous system from Figure 1. On the SCC groups of 12 cores share a single replica in their nearest memory device.
Because the MCPC has a shared last level cache, just one replica is sufficient. Note that all cores are required to have the same Instruction Set Architecture
as prerequisite for TACO.

following example two shared objects are created: A Barnes-
Hut tree with replication managed by entry consistency and a
shared particle vector with a single central instance, initially
located at the configured default location.

EntryConsistencySpace entrySpace;
Shared<BHTree> tree =

allocate<BHTree>(entrySpace)(init-args...);
... more allocations

MigrationSpace mSpace(default-core);
Shared<FVector> results =

allocate<FVector>(mSpace)(init-args...);
... more allocations

An instance of the desired sharing space is provided to the
allocator. This approach allows to create shared objects of any
type in any sharing space, while the sharing pointer hides all
implementation details of the space. For example, it is possible
for a space to manage replication of its objects collectively
instead of separately for each object. Then, unrelated objects
can be allocated in separate spaces by using several instances
of the sharing space class.

Access to the shared object is granted to other cores by
passing them a sharing pointer as argument in a remote method
invocation. The object is accessed by creating a temporary
access object, which triggers consistency management and
can acquire and release locks to protect critical sections. Our
first implementation provides three access types: non-exclusive
non-modifying (Reader), exclusive modifying (Writer), and
non-exclusive modifying (MultipleWriter)—but the frame-
work can be extended by more specific access types. The
example below acquires read access to the replicated Barnes-
Hut tree and non-exclusive write access to the central force
vector. The method call on the tree will be executed on the
local replica, while the second call on the vector will be sent
to the central instance.

{
Reader<BHTree> t(tree);
MultipleWriter<FVector> v(results);

Node n = t->invoke(m2f(&BHTree::nextNode));
... compute forces of particle i ...
v->apply(m2f(&FVector::put, i, forces));

} // destroys access object, releases locks

core 0 core 1 core 46 core 47

Shared Replica Shared Replica

Control
Container

Storage
Container

Global Object Space

Container
Pointer

Lo
ca

l A
dd

re
ss

 S
pa

ce
s

Fig. 4. A Control container and a Storage Container embedded into the
Global Object Space. The cores in a domain share one data replica but have
individual controllers. Other objects can point to these containers.

After the access object is acquired, the replica is accessed
using TACO’s method invocations. The invocations may be
executed locally or are redirected to another core depending
on the sharing model. The critical section is left and locks
are released when the access object is destroyed. In the above
example this happens automatically in the last line by leaving
the scope in which the access objects was created.

B. Distributed Containers as Implementation Vehicle

A container contains several object instances, called mem-
bers, that are distributed throughout the system, for example
with one member on each core. A special pointer class for
containers provides access the core-local member, any other
member, and all members collectively. These pointers can be
passed between cores and immediately allow other cores to
access all of the members.

As depicted in Figure 4, two implementations are particu-
larly interesting. Control containers have one member per core
and are useful to implement, for instance, the core’s cache
control. Storage containers reflect the heterogeneous memory
architecture by grouping the cores into sharing domains and
have a member in each domain. In the following paragraphs,
we introduce the interface to control containers and then
extend it with the additional aspects of storage containers.

69

TABLE II
BASIC COLLECTIVE OPERATIONS FOR DISTRIBUTED CONTAINERS.

interface semantics
map(f) apply f asynchronously on each member
step(f) call f synchronously on each member
step(f, future) as above, but deferred synchronous
reduce(f, op) invoke f and merge results by op
reduce(f, op, future) as above, but deferred synchronous

All members of a container are aligned across the individual
address spaces of the cores, which means they have the same
local address everywhere. Communication with members is
greatly simplified by this address alignment: Global object
pointers to individual members can be created on demand
by combining the local memory address with the target core.
Then, members can be accessed through TACO’s RMIs with
the mechanism summarized in Table I.

Collective operations on the members are provided as well
and the operations can be restricted to selected members
by providing a boolean predicate. TACO already provides
convenient collective operations on groups of objects based
on global object pointers, which are summarized in Table II.
In the MESH implementation, all containers share a single
TACO group for the propagation of their collective operations.
Internally, the method invocations and predicates are wrapped
in order to operate on the actual container’s members instead
of the helper group’s members. Details of the efficient parallel
implementation of collective operations are presented in [10].

In the following example, first a method is called on the
local member, followed by a method call on a remote member.
Finally, a collective step operation calls the invalidate()

method on each member of the container.

ControlPtr<MC> p = ...;
int i = p.local()->invoke(m2f(&MC::mgrCore));
p.other(i)->call(m2f(...));
p.each()->step(m2f(&MC::invalidate));

Control and storage containers share this interface. While
control containers have exactly one member per core, storage
containers have fewer members that are shared between cores.
Their main purpose will be to hold the replica of a shared
object. Note, that although their main purpose will be the
replication of a shared object, the storage container itself
does not know anything about the real object—it just contains
images of it [11]. The cores are partitioned into sharing
domains with one replica per domain. Each domain has a
leading core that is responsible for management tasks and each
core has a pointer to his leader, which also allows to check if
two cores are in the same domain. Storage containers extend
the collective operations interface to operations on all leaders
and on all cores of the own domain.

On the SCC, POPSHM is used to allocate physical shared
memory and the cores are grouped into four domains accord-
ing to the four DRAM devices. On other systems, POSIX
shared memory is used and the domains are discovered auto-
matically. The access to a replica can go through conventional
coherent caches, SCC’s non-coherent caches, or circumvent
the caches. Special care is necessary on the SCC, because the
replica in the memory device can be in a valid or invalid state,

Migration
Space

T

Sharing Model
acquireReader()
acquireWriter()
acquireMultipleWriter()
release...()

Entry
Consistency

Space

T

Controller
Container

*

Shared
Pointer

Reader Writer

1 *

T T

T

Fig. 5. Interaction and dependencies between spaces, controllers and access
objects.

while the cache can contain either no data, some unmodified
valid data, some unmodified outdated data, or modified data.
These results in six possible states, because a valid replica
with modified cache and an invalid replica with valid data in
the cache is not possible. Consistency protocols must ensure
that two cores in the same domain never have modified cached
data for the same replica, because their caches will write back
lines at any moment leading to inconsistent memory contents.

Replica data should not be transmitted between cores inside
a sharing domain, because explicit flushing parts of the cache
is sufficient. Between sharing domains, data transmissions
over the network are necessary. Note that this changes the
caching states of the sender (to unmodified data in the cache)
and receiver (to invalid replica with modified data in the
cache). Thus, consistency protocols must perform additional
cache control around such transmissions. Inside domains with
hardware coherent caches, the cache flushing actions are
simply ignored, although the consistency protocols may still
track the replica and cache state.

C. Implementing Sharing Spaces

Pointers to replicated objects point to a control container as
shown in Figures 4 and 5. The container’s members, called
controllers, implement a common interface to communicate
between access objects and the sharing model. Virtual methods
are used to hide implementation details about the sharing
model. An alternative implementation without virtual methods
is possible, but would increase the code complexity on the
application side, while the performance win is small as these
methods are called only at the construction and destruction of
access objects.

Our implementation currently provides two different sharing
models (migration spaces and replication spaces with per-
object entry consistency). Other models can be integrated by
implementing the respective controllers.

The allocator of migration spaces creates a storage container
for the shared object and initializes it only on one core,
called the central instance. The controllers have a global
object pointer to this central instance and implement a shared-
exclusive lock for the critical sections. The lock is distributed
in a way so non-exclusive acquisitions are performed locally,
while exclusive acquisitions perform a collective operation.
Migration of the central instance to another core is performed

70

by acquiring exclusive access, transmitting the replica, updat-
ing the controller’s object pointer collectively, and releasing
the exclusive access. Because no access object can be created
during this operation, the migration is not visible to the
application

The allocator for entry consistency spaces creates a storage
container for the replicas and a control container. The con-
trollers contain the shared-exclusive lock, a pointer to the stor-
age container, the local consistency state (see Section III-B)
and a pointer to the core that modified the object last.

When acquiring read access on a core with an invalid replica
state, the domain’s leader is asked to update the shared replica.
This ensures, that the data is transmitted just once from the
last writer to this domain: In case the leader knows that the
replica is already valid, the transmission is skipped.

Our implementation simplifies the consistency protocol by
avoiding three of the possible states: Sooner or later, modified
data in a cache has to be written back and, thus, we do it
as early as possible to eliminate the modified cache state.
Because the writer flushes his cache immediately, any core
in the same domain already knows, that his replica is valid.
Thus, there is no need to ask the leader for updates in case
the last writer was in the same domain. Outdated data in a
cache is produced by data transmissions from the last writer
to a new writer. This state is eliminated by flushing the cache
after such transmissions.

We focused on entry consistency, because it allows to
use the shared memory very efficiently. Object-based release
consistency can be implemented as well, but would require
separate data copies in each modifying access object in order
to compute the update messages.

IV. PERFORMANCE ESTIMATES

Our work-in-progress implementation already runs on
cache-coherent systems and is able to trigger the manual cache
flushing on the SCC. However, it is in a too early state for
meaningful performance benchmarks on the SCC.

We performed LOGP parameter [12] benchmarks for
TACO’s communication protocol. Based on these numbers, it
is possible to estimate, for example, the management overhead
for replication spaces with entry consistency. Here, we con-
sider a single 48-core SCC and an controller implementation
using a distributed shared-exclusive lock, that is non-exclusive
locking is done locally, but exclusive locking requires collec-
tive operations over all cores in the sharing space.

For a non-exclusive read access, the lock and release oper-
ations perform no communication and thus have just a very
small overhead. To acquire exclusive write access, the locks
have to be acquired by a collective operation over all cores
(one step). The same operation is also used to invalidate
all other replicas and inform the cores about the owner of
the new valid replica. Finally, when the write section is left,
a collective one-way operation releases all locks (one map)
Before updating an invalid replica with data from the last
writer, it is more efficient to check, whether the replica was
already updated in the own domain. This is achieved by asking
the domain leader (one invoke). Otherwise the data is fetched
from the last writer.

TABLE III
MICRO-BENCHMARK RESULTS FOR INDIVIDUAL PROTOCOL ACTIONS.

Action Local Overhead min. Completion Time
step 2600 cycles 8000 cycles
invoke 600 cycles 1500 cycles
apply 470 cycles 750 cycles
map 2100 cycles 5600 cycles
read acquire — —
read + update 1070 cycles 2250 cycles
write acquire 4700 cycles 13600 cycles
write + update 5770 cycles 15850 cycles

Table III summarizes pessimistic estimates for the four pos-
sible situations (read vs. write, valid vs. update) based on the
800 MHz core and 1600 MHz mesh frequency configuration.
The local overhead counts the send and receive overheads
at the core, and the completion time counts the time until
the operation is finished on all involved cores. In practice,
the operations will take longer, because the involved cores
have better work to do than idle polling. However, only the
computing overhead really matters as the cores cannot do any
useful computations in that time.

The consistency protocol has to transmit data copies over
the mesh network and to flush the L1 and L2 caches. Due
to current hardware limitations, the latter is implemented in
software by a Linux kernel module. Flushing a individual line
takes 280 to 580 cycles (clean vs. dirty) plus the system call
overhead.1 Flushing larger memory ranges is up to four times
more efficient due to the cache’s architecture.

V. RELATED WORK

In the past, frameworks for Distributed Shared Memory
(DSM) were unlikely confronted with non-cache-coherent
shared memory. The hardware either was entirely distributed
memory (clusters), or cache-coherent shared memory (multiple
cores), or a mix of both (clusters of multiple cores). The SCC
probably is one of the first systems available to researchers
that does not provide hardware-implemented cache coherence.
Thus, until now, the necessary distinction between control
and storage containers, as discussed by this paper, was not
immediately apparent.

The Multigrain Shared Memory system [13] is very similar
to the presented approach. It implements page-based release
consistency with many optimizations, particularly it uses the
cache-coherent shared memory of multi-core processors to
share replicas. As a pure DSM system, it does not integrate
sharing by function shipping.

In [4] a DSM implementation for the SCC is presented.
It is page-based and transparent to the applications running
on it, while our approach is embedded into the programming
language. Coherency domains are used to define which appli-
cations/cores have access to the shared data and the employed
release consistency creates local copies of accessed pages. In
contrast, our entry consistency approach eliminates the local
copies and the domains are used to share replicas between
nearby cores.

1Based on measurements reported by Michiel W. van Tol.

71

The PSHM [14] implementation of GASNet provides a
PGAS optimized for clusters of shared memory machines. The
PSHM processes on a cluster node share some cache-coherent
memory and use it for faster messaging and of course for direct
access (instead of RDMA mechanism) to the nearby partitions
of the global address space.

Baumann et al. [6] compared the performance of concurrent
access over cache-coherent shared memory versus concurrent
access over function shipping to a central server. Their exper-
iments show, that the latter message-based approach scales
better on current multi-core systems. The migration space
presented in Section III are equivalent to this central server
approach, but the presented framework enables also hybrid
solution between central servers and replication.

DSM implementations, like Midway [9] and Orca [15], have
separate synchronization variables to manage the consistency.
Our architecture is not different in this respect. The replicated
object pointers internally actually point to the synchronization
variable and just through this variable access to the shared
data is possible.

We used TACO to supply a global address space and remote
method invocation. However, the presented replication spaces
can be implemented on top of almost any framework that
supplies a global address space and function shipping. For
instance the well known GASNet platform [16] could be used
as well, but requires considerably more effort.

VI. CONCLUSIONS

No single sharing paradigm can serve all use cases equally
well and, thus, hybrid paradigms based on function shipping,
data replication, and local sharing of replicas are necessary.
Many-core systems like the Intel SCC combine aspects of
a distributed system with aspects of a (non-cache-coherent)
shared memory system. Thus, they support hybrid sharing
paradigms very well and applications on such systems also
benefit from hybrid sharing compared to conventional imple-
mentation approaches.

Conventional sharing approaches either consider cache
control without replication, full per-core replication without
exploiting shared memory, or communication with central
instances. The presented MESH framework is truly hybrid and
flexible by exploiting the available shared memory, performing
cache control just where necessary, and performing message-
based communication where sufficient. By layering various
control and storage containers as well as sharing spaces on
top of a common global address space, the different sharing
paradigms can be used together in applications.

ACKNOWLEDGMENTS

We express our gratitude to Sandra Beyer and Robert
Zimmermann, who provided us with valuable experience from
their Bachelor’s thesis projects. Furthermore, we thank Intel
for the access to the SCC and the opportunity to contribute
to its MARC (Many-core Applications Research Commu-
nity) program. In particular, we thank Michiel W. van Tol
(University of Amsterdam), Werner Haas (Intel Research
Braunschweig), and Jan-Arne Sobania (HPI Potsdam) for

tremendous insights into SCC’s non-coherent memory and
implementing the software-based L2 cache flushing.

REFERENCES

[1] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C.-C. Miao, J. F. B. III, and A. Agarwal, “On-chip
interconnection architecture of the tile processor,” IEEE Micro, vol. 27,
pp. 15–31, 2007.

[2] Y. P. Zhang, T. Jeong, F. Chen, H. Wu, R. Nitzsche, and G. R.
Gao, “A study of the on-chip interconnection network for the ibm
cyclops64 multi-core architecture,” in Proceedings of the 20th interna-
tional conference on Parallel and distributed processing, ser. IPDPS’06.
Washington, DC, USA: IEEE Computer Society, 2006, pp. 64–64.

[3] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl,
D. Jenkins, H. Wilson, N. Borkar, G. Schrom et al., “A 48-core IA-32
message-passing processor with DVFS in 45nm CMOS,” in Solid-State
Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE
International. IEEE, 2010, pp. 108–109.

[4] X. Zhou, H. Chen, S. Luo, Y. Gao, S. Yan, W. Liu, B. Lewis,
and B. Saha, “A Case for Software Managed Coherence in Many-
core Processors,” Poster on 2nd USENIX Workshop on Hot Topics in
Parallelism HotPar10, 2010.

[5] J. D. Owens, W. J. Dally, R. Ho, D. N. J. Jayasimha, S. W. Keckler, and
L.-S. Peh, “Research challenges for on-chip interconnection networks,”
IEEE Micro, vol. 27, pp. 96–108, September 2007.

[6] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania, “The multikernel: a new os
architecture for scalable multicore systems,” in Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems principles, ser. SOSP
’09. New York, NY, USA: ACM, 2009, pp. 29–44.

[7] J. Barnes and P. Hut, “A hierarchical O (N log N) force-calculation
algorithm,” Nature, vol. 324, pp. 446–449, 1986.

[8] J. Nolte, Y. Ishikawa, and M. Sato, “TACO – Prototyping High-Level
Object-Oriented Programming Constructs by Means of Template Based
Programming Techniques,” ACM Sigplan, Special Section, Intriguing
Technology from OOPSLA, vol. 36, no. 12, December 2001.

[9] B. Bershad, M. Zekauskas, and W. Sawdon, “The midway distributed
shared memory system,” in Compcon Spring’93, Digest of Papers.
IEEE, 1993, pp. 528–537.

[10] J. Nolte, M. Sato, and Y. Ishikawa, “TACO — Exploiting Cluster
Networks for High-Level Collective Operations,” in Proceedings of the
First IEEE/ACM International Symposium on Cluster Computing and
the Grid (CCGrid 2001), Brisbane, Australia. IEEE Computer Society
Press, May 2001.

[11] Plato and F. Cornford, “Allegory of the cave,” in The republic. Oxford
University Press, 1951.

[12] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos,
R. Subramonian, and T. von Eicken, “Logp: towards a realistic model
of parallel computation,” in Proceedings of the fourth ACM SIGPLAN
symposium on Principles and practice of parallel programming, ser.
PPOPP ’93. New York, NY, USA: ACM, 1993, pp. 1–12.

[13] D. Yeung, J. Kubiatowicz, and A. Agarwal, “Multigrain shared memory,”
ACM Trans. Comput. Syst., vol. 18, pp. 154–196, May 2000.

[14] F. Blagojević, P. Hargrove, C. Iancu, and K. Yelick, “Hybrid PGAS
runtime support for multicore nodes,” in Proceedings of the Fourth
Conference on Partitioned Global Address Space Programming Model.
ACM, 2010, pp. 3:1–3:10.

[15] H. E. Bal, M. F. Kaashoek, and A. S. Tanenbaum, “Orca: A language
for parallel programming of distributed systems,” IEEE Trans. Softw.
Eng., vol. 18, pp. 190–205, March 1992.

[16] D. Bonachea, “Gasnet specification, v1.1,” Berkeley, CA, USA, Tech.
Rep., 2002.

72

Towards Symmetric Multi-Processing Support for
Operating Systems on the SCC

Jan-Arne Sobania, Peter Tröger and Andreas Polze

Abstract—The Intel Single-Chip Cloud Computer (SCC) is an
experimental many-core system created for research purposes.
By default, it is operated as 48-node cluster-on-a-chip with one
operating system instance per core.

In this paper, we analyze the hardware capabilities expected
by a standard operating system for symmetric multi-processing
support. We discuss how the SCC lacks some of these manda-
tory capabilities, and present a technique for overcoming the
differences through virtualization. Our new Linux hypervisor
RockyVisor emulates missing SMP capabilities for the SCC
hardware, which allows the execution of para-virtualized SMP
operating systems on the SCC.

I. INTRODUCTION

THE Single-Chip Cloud Computer (SCC) is a 48-core
experimental processor [1] created by Intel Labs. It

is intended to act as a hardware platform for many-core
software research on different system levels. Highlights of
the SCC architecture are the on-die mesh network for com-
munication between cores and memory controllers, flexible
power management and frequency scaling capabilities, and a
reconfigurable shared memory hardware.

Due to differences in peripheral device and interrupt han-
dling, standard unmodified operating system kernels do not
run on the SCC, even on a single processor core. In [2],
we have analyzed necessary modifications for the Linux 2.6
kernel to support its execution on a single SCC core. To
utilize the entire chip, it is still needed to run 48 independent
instances of the operating system and use the resources as
cluster execution environment. With such a setup, applications
need to rely on a distributed parallel programming model, e.g.
with the Message Passing Interface (MPI) or the SCC-specific
RCCE [3] messaging facility. There is no default support for
parallel shared-memory based applications spanning multiple
SCC cores.

In this paper, we present a novel approach for not only
running parallel messaging-based applications, but also an
entire SMP operating system on the SCC. This would al-
low concurrent shared-memory applications to use the SCC
hardware resources as a whole. Our approach relies on a
new hypervisor with specialized support for the unique SCC
hardware environment – the RockyVisor. It implements a
virtualized provisioning of SMP capabilities, which allows the
guest operating system kernel to experience the hardware as a
traditional SMP system, so existing software can run without

The authors are with Hasso Plattner Institute for Software Systems En-
gineering, Potsdam, Germany – http://www.hpi.uni-potsdam.de.
E-Mail: [jan-arne.sobania/peter.troeger/andreas.polze]@hpi.uni-potsdam.de

Manuscript received October 22, 2011.

modification. By moving the handling of the shared-memory
SMP issues into the hypervisor layer, we reduce the amount
of necessary changes in both the host and the guest operating
system kernel.

In the following text, we first analyze the interface between
an x86 operating system and standard SMP hardware (Section
II), and contrast it to the Intel SCC (Section III) hardware
prototype interfaces. Based on this analysis, we present an
architecture for the RockyVisor to encapsulate hardware lim-
itations of the SCC (Section IV). Section V proposes an
implementation of this architecture, and Section VII discusses
related work.

II. X86 OPERATING SYSTEMS ON SMP HARDWARE

x86 processors have been used in multi-processor machines
for a long time. An accepted standard for symmetric multi-
processing (SMP) hardware support in x86 systems is the Intel
MultiProcessor specification [4]. It has the goal of “[extend-
ing] the performance of the existing PC/AT platform beyond
the traditional single processor limit, while maintaining 100%
PC/AT binary compatibility”. Although superseded by today’s
standards such as ACPI [5], this specification still acts as a
baseline for SMP support in the x86 architecture. Compliance
of SMP hardware to the specification requires special attention
in the following areas:

• PC/AT Backwards Compatibility. If an existing, non-SMP
operating system is executed on the hardware, it must still
function as if it was running on a single processor system.

• Memory Subsystem. All processors must have access
to the same memory locations that must be mapped
at the same physical address. Caching attributes must
be consistent and caches must be coherent. Interlocked
(commonly known as atomic) memory operations must
be honored by the hardware at least on aligned accesses.
Further details on the memory system are discussed later
in Section II-A.

• Interrupt Logic. Processors must be able to receive in-
terrupts from peripherals in a configurable manner, as
well as interrupt each other individually. This is further
discussed later in Section II-B.

• Reset Support. As part of backwards compatibility, both
a software and hardware reset is required to act on all
processors. Furthermore, the specification requires that
SMP-capable operating systems must be given a means
to reset processors individually.

• Configuration Information. Information about specific
hardware details, like the number and identifiers of

73

available processors and I/O buses, are reported by the
hardware via an in-memory structure known as the MP
Configuration Table.

Notably, higher-level functionality is not expected to work
synchronously between CPUs, such as the stateful operation
of the memory-management unit (MMU), the handling of
translation lookaside buffers (TLB) or model-specific register
provisioning (timestamp counter, system call vector). Those
resources are maintained individually by each processor, which
makes the operating system responsible for all required con-
sistency management activities.

A. Memory Subsystem

In the default case on x86 SMP systems, all processors have
access to the same memory locations with the same physical
addresses. This includes all locations in main memory, devices
mapped to I/O space, as well as memory-mapped devices like
controllers on peripheral extension cards. The only exception
are devices that are completely processor-specific, like the
local interrupt controllers (see Section II-B).

Most memory accesses are expected to work just as if the
program was running on a single-processor system, so the MP
specification lists the following requirements [4, pg.3-4]:

• Memory attributes, like whether or not a region is
cachable, are identical across all processors.

• Cache coherency is guaranteed by hardware. There is no
need for a software coherency mechanism.

• Caches support flushing. If a processor issues a flush call
(i.e., the WBINVD instruction), only its own caches are
guaranteed to be flushed.

• Atomic operations (i.e., instructions having the LOCK
prefix) are visible to all processors. However, atomicity is
guaranteed only on aligned accesses; caches may ignore
the LOCK prefix for unaligned operations.

• Memory write operations are observable by other proces-
sors in the order they appear in the program.

B. Interrupt Logic

The CPU In single-processor systems is the only target for
interrupt requests from peripheral devices. Traditionally, x86
CPUs have relied on an external Intel-8237-alike interrupt con-
troller to gather interrupt requests from devices and dispatch
them to the CPU. This scheme has been extended for SMPs
in two major ways.

First, Interrupt Routing from peripheral devices to pro-
cessors is configurable, thus allowing interrupts from certain
devices or buses to be handled by a subset of installed
processors. This can be used by administrators to link certain
devices with processors for increased system throughput.

Second, Inter-Processor-Interrupts (IPIs) must be addition-
ally supported in the system. They are the primary means of
the operating system to trigger other processors to perform
work. Similar to device interrupts, the interrupt vector number
is transferred with the request. If additional information is
needed by the recipient, it needs to be communicated via other
channels like shared memory.

1) The Advanced Programmable Interrupt Controller:
Starting with the MP specification, the traditional IBM PC-
style programmable interrupt controller (Intel 8259 PIC) has
been superseded by a set of Advanced Programmable Interrupt
Controllers (APICs). The older PIC (or a compatible device)
still needs to be present for backwards compatibility in single-
processor mode, but as soon as multiple processors are run-
ning, the APICs are the primary means of managing interrupts.

In the APIC system, there is one Local APIC (LAPIC)
for each processor, as well as at set of I/O APICs serving
interrupts from peripherals; typically one IOAPIC per device
bus, but other topologies could be used by manufacturers as
well. IOAPICs are mapped into global memory space, whereas
local APICs are mapped for their respective processor only.

2) IPIs and Processor Reset: A special case of signaling
other processors to perform work is a processor reset or
initialization request. Due to backwards compatibility, the MP
specification requires that only a single Bootstrap Processor
(BSP) is active when the BIOS code is executed. If the
machine is used by a single-processor operating system, the
BSP will act as this single processor and no other processor
will be active until a system restart. The BSP need not be
predetermined by the hardware, though; it is also possible
to start all processors at power-on, then run an agreement
protocol as part of the BIOS startup sequence to determine
a BSP and stop all other processors afterward.

For a multi-processor operating system, its startup code
is responsible for detecting the presence of other processors
and starting them. These other processors, named Application
Processors (APs) in the Intel MP specification, are identified
via the identifiers of their local APIC on the APIC bus. Startup
is accomplished by sending special IPIs; the type of IPIs
depends on whether the system uses external (Intel 82489DX)
or on-die local APICs.

The INIT IPI causes the remote processor’s local APIC
to reset the processor state and begin the normal bootstrap
sequence, just as if power had been turned on for the proces-
sor. In comparison, the STARTUP IPI causes the instruction
pointer to change to an address specified by the vector number
in the IPI message; all other CPU state remains unchanged.

III. WHY THE SCC IS NO X86 SMP

The SCC processor design consists of 48 GaussLake cores
that are organized in 24 dual-processor tiles, each having:

• its own independent clock generator,
• a set of core configuration registers,
• a scratch-pad memory called the Message-Passing Buffer

(MPB)
• a message router that interfaces the tile to the on-die

communication network [1].
The prototype platform does not have a “chipset”, but

instead contains an FPGA that is connected directly to the
on-die network [6]. Depending on the firmware version, the
FPGA contains a set of core-specific devices like queues for
the Ethernet ports. Furthermore, it acts as a communication
bridge, forwarding packets between the on-die network and the
Management Console PC (MCPC) connected via PCI-Express.

74

From an overall architecture perspective, each of the 48
processor cores conforms to the standard 32-Bit x86 architec-
ture. However, the whole SCC cannot be treated as x86 SMP
system, since it does not conform to the MP specification in
several areas, as described in the next sections. While some
of these differences could be alleviated by software running
either on the GaussLake cores itself (like a modified BIOS),
or the FPGA or the MCPC (for device emulation), certain
others like differences in the memory subsystem are inherent
for the hardware and would need a new silicon revision to be
changed. We discuss each of the categories below, providing
information on what could and cannot be changed in software.

A. BIOS Support

The MP specification requires the hardware to be in a spe-
cific state after the BIOS has performed its startup processing:
only one processor (the Bootstrap Processor, BSP) shall be
running, while each other (Application Processor, AP) shall
be placed in a state where it is inactive and waits for an INIT
or STARTUP IPI.

On the SCC, there does not exist a BIOS up to and
including sccKit 1.4.1.3. We submitted our minimal SCC
BIOS introduced in [2] for inclusion in sccKit 1.4.2, but it also
does not include support for the MP specification or the warm
restart. Instead, cores are reset directly from the MCPC, and
the initial memory contents that would be constructed from a
bootloader on a standard x86 system are transferred directly
via the MCPC to the memory controllers [2].

However, these differences could easily be overcome by
implementing a full BIOS; e.g., by providing the warm restart
vector as well as MP or ACPI tables.

B. Peripheral devices

In the current sccKit releases, no peripheral devices known
from a standard PC are implemented for the SCC. Instead,
if a core performs an I/O operation (via either the IN or
OUT x86 instruction), the corresponding network packet is
sent to the MCPC and potentially handled there. Implementing
these devices relates to an appropriate device emulator on
the MCPC side – the authors have prototyped this approach
by implementing virtual 16550A UARTs at standard PC
addresses, which could then be handled by build-in Linux
device drivers. Real-world systems based on SCC could then
contain the according true implementations of these devices.

C. Memory

As written in the SCC External Architecture Specification
(EAS) [6], the memory subsystem of the SCC is considerably
different than that of a standard x86 SMP. The main differ-
ences are as follows:

1) Additional memory mapping layer. The mapping of a
core’s physical addresses to system addresses is con-
trolled via Look-Up Tables (LUTs); these allow each
core to have a completely different view of the global
memory space. For SMP operation, the LUTs could be

configured to map all participating cores to the same
region in main memory.

2) Cache coherency is not maintained by the hardware, so
there is no single view of a global memory space if
caches are enabled.

3) Processor cores do not have a means to communicate the
LOCK signal to memory controllers, even with disabled
caches.

A formal workaround for incoherent caches is to disable
them completely, which is also clearly allowed by the MP
specification – but may not be desirable because of the
expected performance impact. However, there is no such
workaround for the missing LOCK signal: the corresponding
line from the GaussLake is not connected in hardware, and
the processor itself does not allow to emulate or trap on
instructions that use the prefix. Therefore, atomic operations
do not work on the SCC, as LOCK is silently discarded.
According to the checklist [4] in the MP specification, this
makes the SCC non-compliant, which prevents the operation
as standard x86 SMP system.

As part of our solution, we propose to solve this issue
by using a combination of a software coherency layer and
virtualization. When caches are enabled, the following condi-
tions are sufficient to prevent data corruption in a non-coherent
hardware environment:

1) At most one ’owner’ core has a physical page mapped
for write access at each point in time

2) When a write access has to be performed by another
core, the ’owner’ must perform a flush

The initial idea relies now on the possibility to prevent
a page write access by setting the corresponding page table
protection bits [7]. Furthermore, for guaranteeing sequential
consistency, it is necessary to disallow reading of a page on
a core if any other core has mapped it for writing. In our
concept, the RockyVisor distributed hypervisor fulfills the role
of such a memory access coordination entity.

D. Interrupt Handling
Similar to the memory subsystem, the SCC’s interrupt

handling support also differs significantly from traditional x86
systems. The GaussLake cores contain a local APIC, just like
the original P54C; however, these APICs are not connected.
Instead, the corresponding lines to the processor core are
exposed directly via the tile’s configuration registers [6].

Although one end of the bus is exposed, there is no means to
actually send a message over to a local APIC, as the signaling
protocol is not publicly documented. Furthermore, even if it
would be known, receiving messages is not guaranteed to
work, as it would require polling the bus wires at a high speed,
with no means to prioritize such traffic on the on-die mesh or
the link to the MCPC in the SCC system.

As one possible solution, we chose to simulate the APIC op-
erations at a higher abstraction level, by sending corresponding
IPI messages between hypervisor instances. In combination
with the memory management interception of a hypervisor
described above, we end up in a solution where a distributed
hypervisor adds the missing SMP capabilities for the SCC
platform.

75

IV. SMP VIA VIRTUALIZATION

Although the discussion so far is limited to one shared-
memory SMP system architecture, our general discussion is
strongly related to what is known as a Single-System Image
(SSI) view. In SSI systems, any process – no matter on which
physical processor or system of the cluster it runs – has always
the same view of the multi-computer. The term “SSI” can refer
to various layers of either software or hardware [8, pp350],
though, but we are discussing it here only in the context of
shared-memory SMP systems.

In traditional operating systems, there are two main oper-
ational modes for executing code. Applications run in non-
privileged (user) mode, whereas the kernel runs in privileged
(kernel) mode to control the hardware. When simulating an
SMP system through a hypervisor, we deliberately extend this
model. A new layer below the kernel is now responsible for
converting the existing hardware interface to a virtual one the
kernel understands. For traditional virtualization, the VMM
just provides the same interface (or a subset) to the kernel
as it would find on real physical hardware, probably with
some para-virtualized devices for increasing performance. In
our architecture, the VMM layer is responsible for simulat-
ing all aspects of a shared-memory SMP the real hardware
lacks, which let’s the VMM transparently add new hardware
capabilities.

��� ��� ��� ���

����	
 ����	
 ����	

��
������� ��
������� ��
�������

���������������������������

����	
������ �
�����

���� ���� ���� ����

������ ������ ������

��
�������

����	

������

Fig. 1. RockyVisor with Guest OS

For the given approach, it is not relevant whether the VMM
itself runs directly on the physical hardware (Type 1 VMM)
or if it runs as a process in another host operating system
(Type 2 VMM). We also do not distinguish implementation
techniques of VMMs; e.g., whether it uses hardware-assisted
virtualization on a trap-and-emulate-virtualizable instruction
set, or a software technique such as binary translation or para-
virtualization [9]. As discussed in Section V below, we chose
a Type 2 VMM approach (Hosted VM) for our prototype
to allow for reusing code from an open-source hypervisor
(lguest). Figure 1 shows the resulting architecture.

We assume each processor to run a separate “Level 1” oper-
ating system instance, in order to manage low-level hardware
resources like communication devices. On top of this operating
system, our RockyVisor process runs as a regular application.
Multiple RockyVisor instances cooperate to provide a single,
coherent memory space; in addition, each RockyVisor supplies
a single virtual CPU. Inside the resulting virtual machine, the

“Level 2” operating system is executed as a standard SMP
operating system.

To realize the proposed software architecture on the SCC,
there are two fundamental problems to solve: The SCC CPU
cores must virtualized, and the overall virtual hardware used
by the LV2 operating system must show behavior similar or
equal to a real x86 SMP.

V. THE ROCKYVISOR: VIRTUALIZING THE SCC
As the GaussLake processor cores in the SCC are based

on the P54C [6], they do not contain virtualization support
instructions. Classical trap-and-emulate virtualization is there-
fore not possible [10]. We decided to use para-virtualization
for our prototype, since the lguest hypervisor is already
providing the capability with the standard distribution of the
Linux kernel. At the same time, this hypervisor is compact
enough to be easily understandable for research purposes.
lguest has been developed by Rusty Russell and is part of
Linux since version 2.6.23. It is a minimal, yet fully-functional
hypervisor that is implemented as a loadable kernel module.
It supports para-virtualization only, so the guest kernel must
be changed accordingly. For Linux, a corresponding sub-
architecture supplying necessary callbacks on the kernel’s
paravirt interface is provided.

The hypervisor itself has basic support for MMU virtualiza-
tion using shadow page tables [9], as well as device emulation
via Linux’ build-in virtio framework. Unlike Xen or KVM,
lguest is not meant as a commercial-grade solution, but as a
platform for research and experimentation. Specifically, lguest
favors readability of the hypervisor code over performance
wherever possible.

The current lguest hypervisor does not support multi-
processor guest systems. Specifically, it does not fully dis-
tinguish per-processor from machine state. Although the lg
kernel module contains structures for both hypervisor and
virtual CPU (vcpu) state, the separation is incomplete: some
fields are still present in the wrong structure, and the paravirt
layer installed in the guest does not have a notion of more
than processor.

In order to implement the RockyVisor, we first developed
an SMP extension of lguest. For this, we implemented support
for more than one virtual processor in the guest’s paravirt
layer, separating the hypervisor state into global and per-
virtual-CPU structures. The global state now consists of just
the virtual interrupt controller; virtual processor state includes
the interrupt enable flag, mask of pending interrupts, as well
as information required by the virtual MMU.

We also added new hypercalls to support emulation of local
APICs. As discussed in section II-B, local APICs provide
two basic operations not required in single-processor mode:
startup of APs (secondary processors), and signaling between
processors. In our implementation, we added corresponding
hypercalls that forward these operations to the lguest launcher
process, which then sends to other virtual CPUs via sockets.

VI. SMP MMU VIRTUALIZATION

As briefly mentioned in section II, the MMUs of all proces-
sors act independently in an x86 SMP. Unlike cache coherency

76

or the software-visible LOCK prefix, there is no implicit
communication between processors, so all MMU state changes
need to be explicitly requested by the operating system.

However, virtualization also provides opportunities for opti-
mization, especially in regards to the MMU [9]. Some of these
optimizations can have a major impact on hypervisor design,
which we are going to discuss in the remainder of this section.

On processors that support nested page tables, MMU vir-
tualization can be trivially implemented. This is not the case
for the SCC, as the GaussLake cores are based on the P54C
that predates any virtualization assists in hardware. Therefore,
MMU virtualization requires other techniques that allow the
guest operating system to safely change the real page tables
used by the physical hardware.

An example is Xen, which allows the guest to manipulate
its page table directly, giving the guest direct knowledge of the
physical page frame numbers it uses for its mappings. Before
such a page table is used by the processor, the hypervisor
just needs to check that the guest does not install any page
numbers it is not allowed to access. Other implementations
use shadow structures that are maintained by the hypervisor
and fully hidden from the guest operating system.

A. Emulated TLB

Another technique, traditionally implemented by VMware
and (in a modified form) by lguest, is called emulated trans-
action look-aside buffer (TLB) or (in optimized form) shadow
page tables [9]. For both techniques, the guest manipulates its
own page tables, and does not need any knowledge of real
(physical) memory addresses. The page table that is used by
the MMU to translate guest-virtual to physical addresses is
manipulated only by the hypervisor.

For the emulated TLB, the real page table represents the
TLB of the virtual CPU. On a guest page fault, the hypervisor
interprets the guest’s page tables. If it does not find a mapping
or its attributes do not provide sufficient access, the page fault
is reflected into the VM. Otherwise, the hypervisor retrieves
the guest-physical page number, performs the translation to a
host-physical page number itself, then install a mapping from
the guest-virtual to host-physical address in the page table. On
any later access, the processor just uses the already installed
entry directly.

The software TLB has a major drawback: loading any TLB
entry is considerably more expensive than the corresponding
hardware operation in a non-virtualized environment, as it
requires both a software pagetable walk to fill the software
TLB, then another hardware pagetable walk to fill the real
TLB. Furthermore, the real TLB needs to be flushed more
often, as the hypervisor’s page fault handler runs in hypervisor
space instead of guest space. Any page fault results in two TLB
flushes, whereas real hardware does not need to perform any
flushes in this case. Similarly, reloading the guest’s virtual CR3
(e.g., on a context switch in LV2) also leads to clearing the
entire software TLB, thus resulting in a storm of hidden page
faults afterward. We are currently investigating these issues
for further improvement.

B. Shadow Page Tables

As an optimization to the software TLB, hypervisors can use
shadow page tables. These use multiple page table hierarchies,
one for each value of the guest’s CR3 register: if the guest
operating system switches to another process that has already
been active before, it can just switch to the cached page table
corresponding to this CR3 value.

One major problem with shadow page tables is to decide
when to remove entries from inactive, but still cached shadows.
For the hypervisor to notice changes to page tables, it can make
use of traces: once a shadow page table has been constructed
for a page in guest memory, the guest is transparently disal-
lowed to perform any further changes. If the guest performs a
write, the hypervisor recognizes that the page being changed
has an associated shadow page table and invalidates it.The
lguest hypervisor also implements shadow page tables, but
the invalidation problem is solved in a different way: it relies
on the guest operating system to notify the hypervisor of
any changes to page tables. Therefore, whenever an entry is
removed or changed – in any page table – the hypervisor is
informed and purges corresponding entries from shadow page
tables.

C. RockyVisor Page Tables

As the emulated TLB is fully consistent with documented
behavior of real hardware, it was our first choice when
designing page table support for the cooperative RockyVisor.
The existing implementation of shadow page tables by the
underlying lguest has a major drawback here: as the guest
needs to communicate changes of the page tables to the
hypervisors, the RockyVisor would need to communicate all
changes to page tables across the entire system, leading to a
potentially huge number of useless simulated IPIs.

We implemented an optimization that is based on the
following observation: Linux maintains a bitmask for each
page table, noting which processors reference the page table.
If the kernel modifies a page table in memory, it automat-
ically sends a corresponding IPI to each CPU listed in the
bitmask, requesting it to perform the necessary TLB flush.
The abstraction level of this operation is fairly high, so more
detailed information is available: for example, the affected
virtual addresses are known, so a subset of TLB entries could
be flushed if the processor supported such a “selective” TLB
flush.

The page table indication bits are normally changed during
context switch. In our architecture, though, the guest just
sets the bit when it activates a page table. The bit of the
old page table’s mask is not cleared, because it may still be
cached by the hypervisor. Instead, the address of the bitmask
is communicated to the hypervisor as part of context switch,
allowing it to clear the bit for that virtual CPU when the
shadow page table is no longer available.

D. RockyVisor Memory Coherency

As caches on the SCC are not coherent, the RockyVisor
cannot simply map one physical page on more than one core

77

at a time. Instead, when enabling caches, it needs to obey the
criteria for cache coherency as discussed in section III-C.

The lguest implementation of shadow paging allows the
hypervisor to keep track of all pages it has mapped for a
virtual CPU, and transparently change these mappings (e.g.,
to make a page read-only) without the need to communicate
with the guest operating system. If a guest later requires to
access the page again, it will encounter another hidden page
fault. Therefore, on our architecture, memory coherency can
be implemented as follows:

• If a guest page fault is encountered, the corresponding
page is requested from the memory coherency driver. The
page fault handler completes once the page is available.

• If a shadow page table is torn down, all referenced pages
are released to the coherency driver.

• If the coherency driver is requested for a page that
violates above conditions, it informs the hypervisors that
still have the page mapped, requesting them to release
the page.

We are currently working on the according extension of the
prototype implementation.

VII. RELATED WORK

As precondition for the work presented here, we have
demonstrated a modified Linux kernel before that works on a
single core of the SCC [2]. This kernel only works on a single
SCC core at a time and does not provide SMP operation.

A completely different approach for multiprocessor opera-
tion is the Barrelfish operating system [11]. Barrelfish uses
satellite kernels and demands tailored high-level applications.
There is no backward compatibility to any existing application.

vNUMA [12], developed by Matthew Chapman as part of
his Ph.D. thesis, is a distributed hypervisor for IA-64 proces-
sors. It simulates an SMP system on networked workstations,
using Gigabit Ethernet as node interconnect. NEX [13] by
Xiao Wang et al. is a similar effort based on the open-
source XEN hypervisor, but requires hardware extensions for
virtualization. Versatile SMP [14] by ScaleMP is a commercial
product that claims to support up to 1024 processors (with
up to 8192 cores) on standard computers, interconnected via
Infiniband. All these projects rely on the availability of a
standard x86 processor, especially with respect to memory
coherency and device handling.

Finally, MetalSVM [15] is another project for hypervisor-
based SMP on the SCC. In contrast to the RockyVisor,
MetalSVM implements a Type 1 VMM that runs directly on
the hardware, instead of another operating system instance.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we analyzed the properties of an x86 SMP
system and denoted in which points the Intel SCC research
hardware differs. Based on this analysis, we presented the
architecture and first steps for the RockyVisor that is intended
to run a para-virtualized SMP operating system on the SCC.

We are currently in the process of finalizing this archi-
tecture, using the modified Linux kernel presented in [2]
as a unified LV1 and LV2 kernel. In the current state of

our prototype, a single GaussLake core can simulate a 2-
way SMP VM. The modified shadow page table mechanism,
as well as the reverse mapping for finding which shadows
contain references to specific physical pages have also been
implemented, but our implementation still lacks the cache
coherency layer. Future work will focus on the completion
of the prototype and the experimental evaluation.

REFERENCES

[1] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl,
D. Jenkins, H. Wilson, N. Borkar, G. Schrom, and et al., “A 48-Core
IA-32 message-passing processor with DVFS in 45nm CMOS,” 2010
IEEE International SolidState Circuits Conference ISSCC, vol. 9, pp.
58–59, 2010.

[2] J.-A. Sobania, P. Tröger, and A. Polze, “Linux Operating System Support
for the SCC Platform - An Analysis,” in 3rd Many-core Applications
Research Community (MARC) Symposium. KIT Scientific Publishing,
Karlsruhe , 2011.

[3] E. Chan, RCCE comm: A Collective Communication Library for the Intel
Single-chip Cloud Computer, http://communities.intel.com/docs/DOC-
5663, 2010.

[4] Intel Corporation, MultiProcessor Specification, May 1997.
[5] Hewlett-Packard Corporation, Advanced Configuration and Power Inter-

face Specification, Apr. 2010.
[6] Intel Labs, SCC External Architecture Specification (EAS), Apr. 2010.
[7] Intel Corporation, Intel Architecture Software Developer’s Manual,

Volume 3: System Programming, 1999.
[8] G. F. Pfister, In search of clusters, 2nd ed. Upper Saddle River, NJ,

USA: Prentice-Hall, Inc., 1998.
[9] K. Adams and O. Agesen, “A comparison of software and hardware

techniques for x86 virtualization,” SIGARCH Comput. Archit. News,
vol. 34, pp. 2–13, Oct. 2006.

[10] J. S. Robin and C. E. Irvine, “Analysis of the Intel Pentium’s ability
to support a secure virtual machine monitor,” in SSYM’00: Proceedings
of the 9th conference on USENIX Security Symposium. Berkeley, CA,
USA: USENIX Association, 2000, pp. 10–10.

[11] A. Schüpbach, S. Peter, A. Baumann, T. Roscoe, P. Barham, T. Harris,
and R. Isaacs, “Embracing diversity in the Barrelfish manycore operating
system,” in In Proceedings of the Workshop on Managed Many-Core
Systems, 2008.

[12] M. Chapman, “vNUMA: Virtual Shared-Memory Multiprocessors,”
Ph.D. dissertation, Computer Science and Engineering, The University
of New South Wales, 2008.

[13] X. Wang, M. Zhu, L. Xiao, Z. Liu, X. Zhang, and X. Li, “NEX: Virtual
Machine Monitor Level Single System Support in Xen,” in International
Workshop on Education Technology and Computer Science, vol. 3. Los
Alamitos, CA, USA: IEEE Computer Society, 2009, pp. 1047–1051.

[14] ScaleMP, “Versatile SMP (vSMP) Architecture,”
http://www.scalemp.com/architecture.

[15] S. Lankes, “MetalSVM: A Bare-Metal Hypervisor for Non-
Coherent Memory-Coupled Cores,” http://www.lfbs.rwth-
aachen.de/content/metalsvm, 2011.

78

Fiasco.OC on the SCC
Markus Partheymüller, Julian Stecklina, Björn Döbel

{mpartheym,jsteckli,doebel}@tudos.org
Operating Systems Group, TU Dresden

Abstract—Our initial goal was to port the Fiasco.OC micro-
kernel to the Single-Chip Cloud Computer in order to use it as
an experimentation platform for our research. In this paper we
describe the few hardships we encountered during this porting
work and our solutions for those problems. With our kernel
running on top of the SCC, we evaluated message passing
performance between cores and came across a cache-related issue
that can seriously decrease message-passing performance.

I. INTRODUCTION

The Single-Chip Cloud Computer (SCC) experimental pro-
cessor is a 48-core ’concept vehicle’ created by Intel Labs
as a platform for many-core software research. To facilitate
our research in this area, we decided to port the Fiasco.OC
microkernel developed in our group to the SCC. Establishing
a working environment to run Fiasco.OC on the SCC will then
pioneer experiments concerning all kinds of many-core related
research topics, including energy saving, inter-core message
passing and trusted, robust server applications.

With the SCC consisting of x86 CPUs and Fiasco.OC
already available for this CPU architecture, most of the
porting work was straightforward. However, on our way we
encountered a couple of issues related to the non-standard SCC
hardware features. In this paper we present these issues and
describe our solutions.

We then describe a first experiment we conducted to
evaluate message passing performance between instances of
Fiasco.OC running on different SCC cores. This experiment
led us to discover a caching-related hardware issue, which for
unaware developers may pose a serious performance problem.

II. FIASCO.OC AND L4RE

Our work takes place in the context of the Fiasco.OC mi-
crokernel [1]. Fiasco.OC is the only piece of software running
in privileged processor mode and following the philosophy of
L4 microkernels provides only mechanisms for constructing an
operating system but does not implement any policies, such
as resource management.

The main mechanism provided by Fiasco.OC are capabili-
ties [2], which can be viewed as kernel-protected references
to objects. The objects themselves are either implemented
in the kernel (e.g., tasks, threads, interrupts) or by user-
level applications (e.g., memory managers, device drivers,
protocol stacks). An object’s functionality can be used by
clients possessing access to an object’s capability through
Fiasco.OC’s invoke() system call. The close relation between
objects and capabilities in Fiasco.OC also motivated choice of
the .OC suffix.

Hardware

Microkernel

Root-Pager (Sigma0)

Root-Task (Moe)

Task A Task CTask B

User mode

Privileged
Processor Mode

Fig. 1. Basic structure of an L4Re based System

Policies, such as resource management decisions, are im-
plemented on top of Fiasco.OC as user-level applications. The
most basic services, such as a C library, application memory
managers, and a loader for ELF binaries, are implemented
in a set of libraries and servers called the L4 Runtime
Environment (L4Re) [3]. Apart from that, our public SVN
repository contains a wide range of additional software such as
a GUI service, ports of various libraries (Qt, libjpeg, freetype),
as well as software packages, such as sqlite and Valgrind [4].

Booting an L4Re setup on Fiasco.OC involves first boot-
strapping the microkernel itself. Thereafter, the sigma0 root
pager is booted, which initially owns all resources in the
system. However, sigma0 only serves as the user-level pager
for the next application in line: the root task, called Moe. Moe
then provides essential services required by user applications,
such as a program loader, an address space manager that
is injected into every task, and a memory allocator serving
regions of virtual memory. An overview of this structure is
given in Figure 1.

Fiasco.OC and L4Re provide all means necessary to im-
plement user-level applications. One of the most demanding
applications running on top of our system is L4Linux [5], a
para-virtualized version of the Linux kernel running as a user-
level application on top of Fiasco.OC. With this approach we
are able to run arbitrary Linux binaries on top of our system,
while it still allows for all the benefits of virtualization: as the
Linux kernel is running as an unprivileged user application,
it becomes isolated from the rest of the system and outside

79

services may impose resource constraints as well as enforce
security policies. Furthermore, it is possible to increase re-
source utilization by running multiple instances of L4Linux
on the same core.

III. FIASCO ON THE SCC

The SCC being an x86 architecture based Pentium processor
system suggests to use the existing x86 port of Fiasco.
However, the absence of typical hardware devices such as
the BIOS, the Programmable Interval Timer (PIT), a keyboard
controller and a graphics card did not allow to run the kernel
unmodified. In addition, I/O requests issued from the cores
are routed to the management PC, because there are no local
devices that can handle them. The x86 boot process relies on
these devices and would therefore fail immediately.

As the SCC allows running dedicated OS instances on every
core, we decided to initially port Fiasco.OC in a way that
each core executes one Fiasco.OC instance and explore how
the SCC’s specific communication mechanisms can be used
for messaging between the instances. In later experiments we
plan to also explore the concept of a Single System Image.

To cope with the SCC’s lack of firmware, we implemented
an sccKit application called sccLoad. This application is
responsible to set up a multiboot-compliant boot environment,
which provides a memory map, a couple of register values,
and a kernel command line. From then on, it is possible to
boot the kernel using its native x86 boot code.

While booting Fiasco.OC, a timer calibration is performed,
which calculates the ratio of clock cycles (accessible through
the TSC register) to time values like nanoseconds. This is
usually done using a second timer with configurable frequency.
By setting this frequency to a known value and measuring
the clock cycles during a fixed time interval, the ratio can
be derived. On the SCC a second timer (e.g. the PIT) is
missing and therefore there is no way for the core to determine
the ratio on its own. To address this issue two solutions are
possible: The first one is to calculate the ratio beforehand and
hard-code it into the kernel. However, this assumes a fixed
core frequency which is not necessarily the case on the SCC
because of frequency scaling mechanisms. The second solution
is to pass the core frequency as a command line parameter. It
allows for this flexibility and was therefore preferred.

Beside the boot environment, sccLoad emulates a basic
serial console using an I/O handler and can currently run, mon-
itor and even control (via keyboard input) multiple instances of
the kernel ELF [6] binary from the management PC. The I/O
handler ensures that all I/O related code can be used without
modification. When we started our work, the Fiasco.OC kernel
was not able to use the Local APIC as configurable source for
interrupts other than the timer. However, the SCC provides
inter-core interrupts through the Local APIC and therefore,
we needed to modify Fiasco.OC. We added an additional
initialization section to the kernel binary, which sets up the
Local APIC to trigger an interrupt vector directly representing
the inter-core interrupt requests.

SCC

System FPGA

Management
PC

sccKit

sccLoad

Log Window

Core 1 Output Core 2 Output

sccLoad
output

Fig. 2. Environment setup for monitoring two Fiasco.OC instances

Further addtional SCC features include the new MPBT
memory type and the message passing buffers. To support
these, we disabled support for Page Size Extension in the
kernel and at the same time enabled the new MPBT feature.
In the current state of our port, the addresses of the Message
Passing Buffer (MPB) and the control register buffer (CRB)
are not provided as regular RAM, but instead hardcoded into
the kernel, assuming the standard memory layout described
in the EAS. This enables us to view these memory regions
as I/O memory. An L4Re server called io then provides these
locations as flexibly mappable I/O regions.

While working on the io server, we discovered an issue
that arises when the MPB is declared as uncacheable [7].
When doing so, reading data from MPB memory results in
the first eight bytes of the memory content being repeated
four times. The remaining 24 bytes of each cache line are
inaccessible. To circumvent this, we had to make the io server
work with the MPB as cacheable memory, which had not
been necessary for any previous hardware resources managed
by this server. While this combination of settings is not a
usual use case for the MPB, it would have been interesting
to examine the performance of shared DDR memory tagged
as MPBT, because the need for an L2 cache flush routine
could be eliminated while using the Write Combine Buffer
to circumvent performance issues caused by non-allocate-on-
write.

Altogether we now have an environment that can run
basically any ELF binary produced by the L4Re build infras-
tructure, for example a Fiasco microkernel with a message
passing application or even multiple instances of L4Linux.

IV. PRELIMINARY RESULTS

As a first experiment on top of our newly ported OS
infrastructure, we tried to evaluate message passing perfor-
mance between different cores. We started with two cores,
both located in tile [0,0], where core 1 sends a 32 MiB large
message (separated into packets of 4096 bytes) to core 0
through the MPB. Core 0 copies the content into its own

80

0

14

28

42

56

70

Without emulation With emulation

Th
ro

ug
hp

ut
 in

 M
iB

/s

Fig. 3. Performance impact of non-allocate-on-write for memcpy.

memory and acknowledges the transfer to core 47, which
measures the time that is needed to transfer the whole 32
MiB. The left bar of Figure 3 shows the obtained throughput
result for the standard frequency configuration (533/800/800).

Our experimental data shows a significant impact of a cache-
related hardware design choice. The cache property, often
referred to as non-allocate-on-write, affects the performance of
message passing or rather the actual memory accesses. When
a program causes a write miss by writing to a memory location
that is not present in the cache hierarchy, the caches do not
allocate a new cache line for the write request. The request is
instead passed on to the memory controller. In the worst case
of byte-wise writes, each write issues an individual transaction
to main memory.

The significance of this performance decrease can be
demonstrated by implementing a software emulation of
allocate-on-write. For a memcpy operation, before writing
to a destination address, the location is read. This happens
every 32 bytes, thus causing the caches to allocate a cache line
for each address the operation will write to. We implemented
this emulation and the right bar in Figure 3 shows, that using
software emulated allocate-on-write significantly improves the
message-passing throughput.

The results of these experiments will be evaluated to de-
termine our next steps concerning message passing on top of
Fiasco.OC. We did not intend the application to become a real
message passing framework, but rather use it as a prototype
to assess the difficulties and opportunities encountered when
implementing communication software for the SCC in our
microkernel environment.

V. FUTURE WORK

Currently we are conducting preliminary experiments ex-
ploring the inter-core message passing facilities in terms of
performance and implementation complexity. We expect these
experiments to give us results helping to decide if and how
we should continue our work on message passing. Choices
include a combination of a message passing library and an

L4Re server multiplexing the MPBs as well as a RCCE
port. Related to message passing is the performance issue
mentioned above, leading to the question how to compensate
for this shortcoming of the cache architecture and where to
implement the improvement.

Also in connection to message passing is the inherent
security issue when allowing all cores to access every memory
location with full rights. In the standard layout, each core
can read and modify all configuration registers, MPBs and
DDR memory. By modifying its own LUT entries it can
basically control the entire system. When the MPB is used
for communication, there is no means to prevent cores from
tampering with MPB data once they have access to the MPB
locations.

Exploring ways to establish security measures could be an
interesting topic. For example, one could think of sandboxing
cores by not giving them access to configuration registers.
This, of course, would render inter-core interrupts, which
are implemented using those registers, impossible. A slightly
weaker restriction, allowing access to all configuration regis-
ters but the cores’ own one, would enable interrupts again but
also gives the cores the ability to mess with other cores.

Instead of the configuration registers, also the recently added
functionality of a global interrupt controller could be used
along with the other additional features (global timestamp
counter, global atomic increment counter), which are currently
not implemented in our software.

In addition to covering performance issues, we also believe
the SCC to be a good platform to research energy-related
issues, because it provides regulators allowing to modify tiles’
frequency and voltage settings. These regulators also allow
for controlled undervolting, which may lead to energy savings
as well failures with yet unknown characteristics. We plan
to evaluate the concrete manifestations of such failures and
tradeoffs between power saving and fault probability in future
experiments.

VI. CONCLUSION

Although porting Fiasco.OC to the SCC seemed straight-
forward, we have encountered several problems that made the
port more difficult than expected, such as bugs in the sccKit
and cache misbehavior. Nevertheless we could establish a
working environment for future experiments with microkernels
on many-core systems in order to investigate particularities and
problems that can occur on such systems, as well as possible
approaches to solve them.

ACKNOWLEDGMENTS

The authors would like to thank Adam Lackorzyński and
Alexander Warg for sharing their Fiasco.OC knowledge. Addi-
tional thanks go to Intel and the MARC community, especially
Ted Kubaska, Jim Held, and Michiel W. van Tol, who provided
insights during discussions in the community forum.

81

REFERENCES

[1] TU Dresden OS Group, “Fiasco.OC microkernel,” http://os.inf.tu-
dresden.de/fiasco/, 2010.

[2] A. Lackorzynski and A. Warg, “Taming Subsystems: Capabilities as
Universal Resource Access Control in L4,” in IIES ’09: Proceedings of
the Second Workshop on Isolation and Integration in Embedded Systems.
Nuremberg, Germany: ACM, 2009, pp. 25–30.

[3] TU Dresden OS Group, “L4 runtime environment,” http://os.inf.tu-
dresden.de/l4re/, 2010.

[4] A. Pohle, B. Döbel, M. Roitzsch, and H. Härtig, “Capability wrangling
made easy: debugging on a microkernel with Valgrind,” in VEE ’10:
Proceedings of the 6th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments. New York, NY, USA: ACM, 2010,
pp. 3–12.

[5] H. Härtig, M. Hohmuth, J. Liedtke, S. Schönberg, and J. Wolter, “The
performance of μ-kernel-based systems,” in Symposium on Operating
Systems Principles, Saint Malo, France, 1997, pp. 66–77.

[6] “Tool Interface Standard - Executable and Linkable Format,”
http://www.rcollins.org/intel.doc/Tools.html, 1998.

[7] M. Partheymüller, “Strange behaviour when reading MPB,”
http://communities.intel.com/message/133047, 2011.

82

Aktuelle Technische Berichte
des Hasso-Plattner-Instituts

Band ISBN Titel Autoren / Redaktion

54 978-3-86956-

158-5
An Abstraction for Version Control
Systems

Matthias Kleine,
Robert Hirschfeld, Gilad Bracha

53 978-3-86956-
160-8

Web-based Development in the Lively
Kernel

Jens Lincke, Robert Hirschfeld
(Eds.)

52 978-3-86956-
156-1

Einführung von IPv6 in
Unternehmensnetzen: Ein Leitfaden

Wilhelm Boeddinghaus,
Christoph Meinel, Harald Sack

51 978-3-86956-
148-6

Advancing the Discovery of Unique
Column Combinations

Ziawasch Abedjan,
Felix Naumann

50 978-3-86956-
144-8

Data in Business Processes Andreas Meyer, Sergey Smirnov,
Mathias Weske

49 978-3-86956-
143-1

Adaptive Windows for Duplicate Detection Uwe Draisbach, Felix Naumann,
Sascha Szott, Oliver Wonneberg

48 978-3-86956-
134-9

CSOM/PL: A Virtual Machine Product Line

Michael Haupt, Stefan Marr,
Robert Hirschfeld

47 978-3-86956-
130-1

State Propagation in Abstracted Business
Processes

Sergey Smirnov, Armin Zamani
Farahani, Mathias Weske

46 978-3-86956-
129-5

Proceedings of the 5th Ph.D. Retreat of
the HPI Research School on Service-
oriented Systems Engineering

Hrsg. von den Professoren
des HPI

45 978-3-86956-
128-8

Survey on Healthcare IT systems:
Standards, Regulations and Security

Christian Neuhaus,
Andreas Polze,
Mohammad M. R. Chowdhuryy

44 978-3-86956-
113-4

Virtualisierung und Cloud Computing:
Konzepte, Technologiestudie,
Marktübersicht

Christoph Meinel, Christian
Willems, Sebastian Roschke,
Maxim Schnjakin

43 978-3-86956-
110-3

SOA-Security 2010 : Symposium für
Sicherheit in Service-orientierten
Architekturen ; 28. / 29. Oktober 2010 am
Hasso-Plattner-Institut

Christoph Meinel,
Ivonne Thomas,
Robert Warschofsky et al.

42 978-3-86956-
114-1

Proceedings of the Fall 2010 Future SOC
Lab Day

Hrsg. von Christoph Meinel,
Andreas Polze, Alexander Zeier
et al.

41 978-3-86956-
108-0

The effect of tangible media on
individuals in business process modeling:
A controlled experiment

Alexander Lübbe

40 978-3-86956-
106-6

Selected Papers of the International
Workshop on Smalltalk Technologies
(IWST’10)

Hrsg. von Michael Haupt,
Robert Hirschfeld

39 978-3-86956-
092-2

Dritter Deutscher IPv6 Gipfel 2010 Hrsg. von Christoph Meinel und
Harald Sack

38 978-3-86956-
081-6

Extracting Structured Information from
Wikipedia Articles to Populate Infoboxes

Dustin Lange, Christoph Böhm,
Felix Naumann

37 978-3-86956-
078-6

Toward Bridging the Gap Between Formal
Semantics and Implementation of Triple
Graph Grammars

Holger Giese,
Stephan Hildebrandt,
Leen Lambers

ISBN 978-3-86956-169-1
ISSN 1613-5652

	Titelblatt
	Impressum

	Message from the Program Co-chairs
	Contents
	I Improved RCKMPI’s SCCMPB Channel: Scaling and Dynamic Processes Support (Isaias A. Compres and Michael Gerndt)
	Abstract
	I. INTRODUCTION AND RELATED WORK
	II. IMPROVED SCCMPB CHANNEL
	A. Base Protocol
	B. Extended Protocol
	C. Protocol Characterization

	III. SUPPORT FOR MPI-2 DYNAMIC PROCESSES
	IV. PERFORMANCE EVALUATION
	A. SKaMPI 5
	B. NAS Benchmarks

	V. CONCLUSION AND FUTURE WORK
	REFERENCES

	II The Path to MetalSVM: Shared Virtual Memory for the SCC (Stefan Lankes, Pablo Reble, Carsten Clauss and Oliver Sinnen)
	Abstract
	I. INTRODUCTION
	II. PREVIOUS WORK
	III. DESIGN OF METALSVM
	IV. MEMORY SYSTEM
	V. COMMUNICATION LAYER
	VI. SVM SYSTEM
	VII. IP STACK
	A. Benchmark Results

	VIII. APPLICATION
	IX. CONCLUSIONS AND OUTLOOK

	III Parallel AI Planning on the SCC (Vincent Vidal, Simon Vernhes, and Guillaume Infantes)
	Abstract
	I. INTRODUCTION
	II. BACKGROUND ON CLASSICAL PLANNING IN AI
	III. THE SEQUENTIAL PLANNING ALGORITHM
	IV. AN HYBRID OPENMP/MPI PARALLEL PLANNING ALGORITHM
	V. EXPERIMENTAL EVALUATION
	VI. CONCLUSION
	REFERENCES

	IV Performance modeling for power consumption reduction on SCC (Bertrand Putigny, Brice Goglin, and Denis Barthou)
	Abstract
	I. INTRODUCTION
	II. PERFORMANCE MODEL
	A. Memory model
	B. Computational model
	C. Power model

	III. MODEL EVALUATION
	A. Dot product multiplication
	B. Matrix-vector product
	C. Matrix-matrix product
	D. Power efficiency optimization

	IV. RELATED WORK
	V. FUTURE WORK
	VI. CONCLUSION
	REFERENCES

	V Performance and Power Analysis of RCCE Message Passing on the Intel Single-Chip Cloud Computer (John-Nicholas Furst and Ayse K. Coskun)
	I. INTRODUCTION
	II. MONITORING INFRASTRUCTURE FOR THE SCC
	III. APPLICATION SPACE
	IV. EXPERIMENTAL EVALUATION
	A. Overhead of Message Logging
	B. Impact of Communication Distance
	C. Impact of Memory Accesses
	D. Impact of Network Contention
	E. Impact of Broadcast Messages
	F. Power and Energy Evaluation

	V. RELATED WORK
	VI. CONCLUSION
	REFERENCES

	VI Ruby on SCC: Casually Programming SCC with Ruby (Kouhei Ueno and Koichi Sasada)
	Abstract
	I. INTRODUCTION
	II. RUBY ON SCC
	III. RUBY BINDING OF RCCE LIBRARY
	IV. ADDING MESSAGE POLLING SUPPORT TO RCCE
	V. DRB ON SCC
	VI. PERFORMANCE EVALUTATION
	VII. CONCLUSION
	REFERENCES

	VII Characterization and analysis of pipelined applications on the Intel SCC (Tommaso Cucinotta and Vivek Subramanian)
	Abstract
	I. INTRODUCTION
	II. RELATED WORK
	III. PRELIMINARIES
	A. Modeling memory access
	B. Modeling message passing

	IV. PIPELINE
	A. Private memory
	B. Shared memory
	C. Effects of ordering of cores

	V. EXPERIMENTAL RESULTS
	VI. CONCLUSIONS
	VII. FUTURE WORK
	VIII. ACKNOWLEDGEMENTS
	REFERENCES

	VIII Deterministic Execution on Many-Core Platforms: application to the SCC (Bruno d’Ausbourg, Marc Boyer, Eric Noulard, and Claire Pagetti)
	Abstract
	I. INTRODUCTION
	A. Execution model
	B. Automatic message passing programming
	C. Expected benefits: timing analysis

	II. TARGET APPLICATION
	III. EXECUTION MODEL ON THE SCC
	A. Static allocation
	B. Required features of the SCC

	IV. ROAD-MAP
	V. PRELIMINARY RESULTS: WCTT EXPERIMENTS
	A. Time synchronization protocol
	B. Communicating task set description

	VI. CONCLUSION
	REFERENCES

	IX The SCC and the SICSA Multi-core Challenge (Paul Cockshott and Alexandros Koliousis)
	Abstract
	I. INTRODUCTION
	II. PHASE I
	A. An Improved Serial Implementation
	B. The Parallel Implementation
	C. SCC Experiments
	D. Other implementations

	III. PHASE II
	A. Lino
	B. Other Implementations

	IV. CONCLUSIONS
	REFERENCES

	X Experiences in porting the SVP concurrency model to the 48-core Intel SCC using dedicated copy cores (Roy Bakker and Michiel W. van Tol)
	Abstract
	I. INTRODUCTION
	II. SVP
	A. Resources
	B. Communication and Synchronization
	C. Memory Consistency
	D. Distributed SVP

	III. IMPLEMENTATION
	A. Using (i)RCCE
	B. Memory Remapping
	C. Copy Cores

	IV. EVALUATION
	A. Benchmarks
	B. Results

	REFERENCES

	XI Caching Strategies and Access Path Optimizations for a Distributed Runtime System in SCC Clusters
	Abstract
	I. INTRODUCTION
	II. RUNTIME ENVIRONMENT/SYSTEM OVERVIEW
	III. CHAINS OF FORWARDING PROXIES
	IV. OBJECT VERSION CACHING
	V. EVALUATION
	VI. RELATED WORK
	VII. CONCLUSION
	REFERENCES

	XII Flexible Sharing and Replication Mechanisms for Hybrid Memory Architectures (Thomas Prescher, Randolf Rotta, and Jörg Nolte)
	Abstract
	I. INTRODUCTION
	II. THE GLOBAL OBJECT SPACE
	III. SHARING SPACES
	A. User Interface
	B. Distributed Containers as Implementation Vehicle
	C. Implementing Sharing Spaces

	IV. PERFORMANCE ESTIMATES
	V. RELATED WORK
	VI. CONCLUSIONS
	REFERENCES

	XIII Towards Symmetric Multi-Processing Support for Operating Systems on the SCC (Jan-Arne Sobania, Peter Tröger, and Andreas Polze)
	Abstract
	I. INTRODUCTION
	II. X86 OPERATING SYSTEMS ON SMP HARDWARE
	A. Memory Subsystem
	B. Interrupt Logic

	III. WHY THE SCC IS NO X86 SMP
	A. Memory Subsystem
	B. Peripheral devices
	C. Memory
	D. Interrupt Handling

	IV. SMP VIA VIRTUALIZATION
	V. THE ROCKYVISOR: VIRTUALIZING THE SCC
	VI. SMP MMU VIRTUALIZATION
	A. Emulated TLB
	B. Shadow Page Tables
	C. RockyVisor Page Tables
	D. RockyVisor Memory Coherency

	VII. RELATED WORK
	VIII. CONCLUSION AND FUTURE WORK
	REFERENCES

	XIV Fiasco.OC on the SCC (Markus Partheymüuller, Julian Stecklina, and Björn Döbel)
	Abstract
	I. INTRODUCTION
	II. FIASCO.OC AND L4RE
	III. FIASCO ON THE SCC
	IV. PRELIMINARY RESULTS
	V. FUTURE WORK
	VI. CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

	Aktuelle Technische Berichte des Hasso-Plattner-Instituts

