
Technische Berichte Nr. 46

des Hasso-Plattner-Instituts für
Softwaresystemtechnik
an der Universität Potsdam

Proceedings of the

5th Ph.D. Retreat of the

HPI Research School on

Service-oriented Systems

Engineering
hrsg. von
Christoph Meinel, Hasso Plattner, Jürgen Döllner,
Mathias Weske, Andreas Polze, Robert Hirschfeld,
Felix Naumann, Holger Giese

Technische Berichte des Hasso-Plattner-Instituts für
 Softwaresystemtechnik an der Universität Potsdam

Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam | 46

Proceedings of the 5th Ph.D. Retreat of the
HPI Research School on Service-oriented

Systems Engineering

herausgegeben von

Christoph Meinel
Hasso Plattner
Jürgen Döllner

Mathias Weske
Andreas Polze

Robert Hirschfeld
Felix Naumann

Holger Giese

Universitätsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet über http://dnb.de/ abrufbar.

Universitätsverlag Potsdam 2011
http://info.ub.uni-potsdam.de/verlag.htm

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 4623 / Fax: 3474
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam wird herausgegeben
von den Professoren des Hasso-Plattner-Instituts für Softwaresystemtechnik
an der Universität Potsdam.

ISSN (print) 1613-5652
ISSN (online) 2191-1665

Das Manuskript ist urheberrechtlich geschützt.

Online veröffentlicht auf dem Publikationsserver der Universität Potsdam
URL http://pub.ub.uni-potsdam.de/volltexte/2011/5147/
URN urn:nbn:de:kobv:517-opus-51472
http://nbn-resolving.org/urn:nbn:de:kobv:517-opus-51472

Zugleich gedruckt erschienen im Universitätsverlag Potsdam:
ISBN 978-3-86956-129-5

mailto:verlag@uni-potsdam.de�

Contents

Towards a Truly Retargetable Decompiler 1
Jan-Arne Sobania

Unifying the definition of megamodels:
Toward describing service-oriented system’s development 15

Regina Hebig

A Granular Approach for Information Lifecycle Management in the Cloud 25
Johannes Lorey

Data in Business Process Modeling 35
Andreas Meyer

Semantics Detection for Data Quality Web Services 47
Tobias Vogel

A Shared Platform for the Analysis of Virtual Team Collaboration 59
Thomas Kowark

Programming Models for Parallel Heterogeneous Computing 67
Frank Feinbube

A Study on Mobile Real-Time Middleware 77
Uwe Hentschel

Understanding Service Implementations Through Behavioral Examples 89
Michael Perscheid

Modeling Browser-based Mashups by Means of Meaningful Choreogra-
phies 101

Emilian Pascalau

Multiple Runtime Models and their Relations for Self-Management 111
Thomas Vogel

Fall 2010 Workshop i

Contents

Recent Developments in JCop –
Context-oriented Concurrency Control and Compiler Optimization 123

Malte Appeltauer

Towards Service-Oriented,
Standards- and Image-Based Styling of 3D Geovirtual Environments 133

Dieter Hildebrandt

Modeling and Verification of Self-Adaptive Service-Oriented Systems 149
Basil Becker

Parsing Behavior: The Hierarchical Nature of Concurrent Systems 159
Artem Polyvyanyy

Categorization and Use of Identity Trust 169
Ivonne Thomas

Enabling Reputation Interoperability through Semantic Technologies 179
Rehab Alnemr

A Proactive Service Registry With Enriched Service Descriptions 191
Mohammed AbuJarour

Towards Automated Analysis and Visualization of Distributed and
Service-based Software Systems 201

Martin Beck

Towards Efficient Camera Interaction in Service-based 3D Geovirtual
Environments 211

Jan Klimke

Towards Synchronization of Partitioned Applications 221
Felix Geller

ii Fall 2010 Workshop

Towards a Truly Retargetable Decompiler

Jan-Arne Sobania

jan-arne.sobania@hpi.uni-potsdam.de

Moore’s Law has been the source of growth of computing performance for decades,
as the exact same binary programs would get speedups simply by moving them to
newer hardware. However, this has changed in the last years, as further miniaturiza-
tion is no longer utilized to accelerate single-threaded code, but to provide parallelism.
To fully leverage this potential, applications now need to be written with parallelization
in mind. This presents a challenge for specialized custom applications. These can
generally not be replaced by commercial-of-the-shelf software, but due to cost and
time constraints, traditional porting or re-development for new architectures is also not
feasible. In addition, in-house applications may use old or obsolete development envi-
ronments which may either no longer be available, not supported on new hardware, or
even the source code to the original application might been lost.

This report proposes decompilation as a solution. Decompilers have traditionally
been written to support only one particular processor type, although remarkable parts
of their core analysis algorithm are independent of the processor type or even the pro-
cessor family. Few researchers have worked on retargetable decompilers in the past;
i.e., decompilers supporting processors from different families with non-identical fea-
ture sets. However, these approaches generally failed to deliver a single core analysis
that worked as well as a processor-specific one while still supporting changing the
target architecture.

We discuss the current status of the research and propose an architecture for a
general, retargetable decompiler for current processor families. An example of an ex-
perimental decompiler is shown that translates Microsoft .NET CLI code into OpenCL
for execution on appropriate accelerators. Finally, we discuss how the presented tech-
niques are applicable to more general processor architectures like the Intel Single-Chip
Cloud Computer (SCC).

1 Introduction

The first decompilers were developed during the 1960s. In contrast to today’s ma-
chines, most computers were not backwards compatible back then, so decompilers
were seen as a convenient means to help in porting legacy code. At later times, de-
compilers have been used for a variety of other purposes, including documenting, de-
bugging and alterating programs [5], or malware/security research, besides the obvious
use case of reconstruction of programs whose original source code has been lost [15].
Furthermore, analysis techniques typically used by decompilers are also present in
modern runtime environments like the Java Virtual Machine [13] or the .NET CLI [9] for
verifying code prior to execution.

Fall 2010 Workshop 1

Towards a Truly Retargetable Decompiler

Despite the broad field of use, all these approaches have something in common:
they are limited to a particular, definite task for a single target processor. However,
their core analysis algorithm is largely independent of the processor architecture, as
it depends only on the set of features offered by the processor, not the respective
representation of those features in the instruction set.

Independent of the specific processor, machine code generated from a high-level
language typically preserves aspects of the structure of the original code. For example,
instructions are typically attached to a single function, and control flow statements are
represented by branch instructions. Therefore, in order to reconstruct the control flow
graph (and then the control flow statements), it is sufficient to only consider branch
instructions. Furthermore, the specific encoding of the instruction on the machine is
irrelevant; what matters is what parameters it uses and what the target operation is.

This observation of the core analysis mainly being independent of the target pro-
cessor has led to research into retargetable decompilers, examples of which include
DCC [5,6] and Boomerang [1]. However, these approaches are limited in several ways,
as discussed below.

The main contribution of this report is a refined architecture of a truly retargetable
decompiler. We discuss challenges that modern processors pose for decompilation
which are not sufficiently dealt with in other decompilation approaches, and we highlight
on how corresponding analysis passes can be integrated into our architecture. Based
on these preliminaries, we present an experimental decompiler for translating .NET CLI
code to OpenCL, which can be used to speed up computations if a suitable accelerator
is installed in the system. Finally, we will discuss how these principles could be applied
in a more general case, using the example of the Intel Single-Chip Cloud Computer
(SCC).

This report is organized as follows: section2 summarizes previous efforts to create
retargetable decompilers. Section 3 reviews common processor features available to
assembler programs and relates them to the operation of a decompiler. Section 4
then outlines the decompilation process and discusses the operations performed by
a compiler that need to be reversed in order to reconstruct source code. Section 5
shows an example of how these principles can be applied to convert code generated
by a .NET compiler for execution on OpenCL-compatible devices. A discussion of a
broader use case follows in section 6, which outlines on how decompilers can help in
porting code to modern many-core architectures like the Intel SCC. Finally, section 7
concludes this report.

2 Related Work

According to Cristina Cifuentes [5], the first decompilers date back to the 1960s and
where used to aid in porting programs from older machines to new architectures; as
an example, the decompiler D-Neliac is mentioned which decompiles Univac M-460
machine code to Neliac, a variant of Algol 58 (see [11]).

Many decompilers have been developed since, dealing with various problems in
both machine languages and high-level languages. In our discussion below, we con-

2 Fall 2010 Workshop

3 Processor Features

centrate on efforts towards the creation of retargetable decompilers:

• DCC [4], although meant as a general decompiler, does only support 16-bit x86
code as input, and its intermediate representation is crafted to support commonly-
used x86 features. However, it lacks support for non-x86 processor features like
branch delay slots, register renaming, predicated instructions and so on.

Furthermore, the handling of pointers in the program is severely bugged, which
basically allows it to be used only for programs consisting of only a few kilobytes
of binary code.

• Boomerang [1] was started as an open-source project to create a general retar-
getable decompiler, but development has stopped for some years now. It sup-
ports x86, SPARC and PowerPC code as input, but has several shortcomings
listed on the project page [2]. For example, several analysis only work for certain
targets and are not handled in a general way, like partial register accesses (e.g.,
on x86, AH is an alias for bits 8 to 15 of AX). Currently, these are only for the x86
family, with the underlying algorithm being unsuitable for other architectures like
SPARC.

• UQBT [7], the University of Queensland Binary Translator, as its name implies,
is a binary translator which also contains features of a decompiler. Retargeting is
implemented via different front ends for different processor architectures, which
also perform processor- and operating-system-specific pre-processing.

UQBT relies on emulating the source processor’s instruction stream if decom-
pilation of a method is deemed impossible (e.g., if instructions are encountered
for which no appropriate representation in a high-level language exists). Indirect
jumps or calls via function pointers rely on tables that map the code address from
the source architecture to its counterpart on the target. A program’s data section
is copied verbatim, so there is no need to reconstruct any data types beyond the
basic arithmetic ones. In addition, being a binary translator, no importance is
attached to generating human-readable code.

3 Processor Features

This section reviews features found in current processor architectures and how they
relate to decompilation.

3.1 Stack vs. Register Machines

Probably the most basic distinction of modern processors is whether they represent
stack or register machines. Virtual environments like Java [13] or .NET [9] typically
use a stack only, whereas all "‘normal"’ processors (x86, IA-64, SPARC, ARM etc.) rely
on a combination of registers and a stack, which might be just a software convention;
e.g., a memory region and general-purpose register reserved for the stack pointer.

Fall 2010 Workshop 3

Towards a Truly Retargetable Decompiler

Stack machine code can be ported in a straight-forward way to a register machine,
provided that certain constraints are met. Especially, this task is trivial if the size of
the allocated stack frame is known at each program point – as is always the case
with valid Java and .NET programs, because their respective byte code verifier would
prevent other binaries from running. Therefore, for decompilation, we can assume the
input program to be written for a register machine; the number of registers may not be
constant for each program (e.g., some Java programs might use more stack locations
simultaneously than others), but their count is still finite and statically known.

3.2 Basic Instructions

Standard operations on register machines include the following:

• Arithmetic instructions, which are usually separated into integer and floating-point
instructions (on machines having native support for the latter).

• Memory accesses. RISC machines typically have separate instructions to trans-
fer data between registers and memory, whereas CISC machines might also com-
bine memory accesses and other operations (like arithmetic ones) in a single
instruction.

• Control flow instructions, like branches or calls to subroutines.

• Processor management instructions. Typically, these are used by operating sys-
tems to manage the execution environment for single processes (like instructions
to configure the protection level or page tables).

Processor management instructions present a challenge for a decompiler, as their
effects can usually not be represented in a machine-independent manner, like the ef-
fects of instructions from the other categories. However, this seems not to present a
problem, as compilers usually do not emit them in the first place.

3.3 Register Operands

Another challenge is the addressing of operands of an instruction. We can always
assume these to be registers (on CISC machines, memory operands can always be
loaded into a temporary pseudo register), but we cannot assume a single named reg-
ister to contain only one program-level variable at each point in time. For example, on
x86, the register operands AL and AH specify the lower and upper byte, respectively, of
the register AX; in 32-bit mode, AX itself specifies the lower-order 16 bits of the 32-bit
register EAX.

Other processors similarly store multiple user-visible values in a single register; for
example, the SSE instructions of x86, as well as the parallel- arithmetic instructions
of IA-64, might separate single 128-bit registers into 4 32-bit values, interpret each
of them as a single-precision floating point value, then perform 4 additions in parallel.
On vector processors, instructions typically contain bit masks denoting which parts

4 Fall 2010 Workshop

3 Processor Features

of these sub- divided registers are being used in an operation; unused contents are
ignored and keep their contents, even if the register is a destination operand.

Therefore, a general decompiler should also support accesses to parts of a reg-
ister natively ; i.e., it should be capable of representing such parts without resorting
to higher-level constructs, like the bit operations a programmer would use in the C
language to represent such accesses on long integer variables.

3.4 Control Flow Instructions Revisited

The above section on basic instruction types already mentioned control flow instruc-
tions like branches or calls, stating that their effects can usually be represented in a
machine-independent manner. There are, however, certain special cases of these in-
structions that are in fact machine-dependent, as we will discuss now.

Architectures like SPARC or MIPS use so-called delay slots after branches, calls
and other similar instructions that change the address of the next instruction explicitly.
The delay slots immediately follow their corresponding branch instructions in mem-
ory, and contain regular instructions themselves. During execution, the new program
counter is loaded when the branch is being executed, but the branch takes effect only
after the instruction in the delay slot has been executed.

Special care must be taken when reconstruction a control flow graph of a program
on such an architecture, as delay slot instructions can occur in two places with com-
pletely different semantics:

• In the delay slot of a branch. In this case, the program behaves as described
above.

• As the target of a branch. In this case, the instruction executes as usual, and
serves as the first instruction of a new basic block.

3.5 Register renaming

Certain architectures like ARM, SPARC or IA-64 support implicit register renaming; i.e.,
a single register operand like r21 might refer to different physical registers, depending
on which state the processor is in. Regular analysis algorithms in decompilers like the
ones introduced in [5] expect register names to be unique, so they cannot be used
as-is on such architectures without disambiguating registers first.

On ARM, the situation is simple, as registers are really just banked instead of re-
named. That is, register mapping depends only on the processor mode (like user,
supervisor or interrupt), not on other implicit status. Compilers are not expected to
change the processor mode in order to get access to the banked registers; therefore,
a decompiler can safely assume that register names are unique, as long as no mode
switching occurs. SPARC contains limited support for register renaming on subrou-
tine calls: of its 32 general-purpose registers, only 8 are global (i.e., never renamed),
whereas the other ones are categorized into three groups consisting of 8 registers
each:

Fall 2010 Workshop 5

Towards a Truly Retargetable Decompiler

• Local registers are allocated per function and cannot be read or written to by
subroutines.

• Output registers behave as local registers, but supply arguments to subroutines,
as well as results to the caller.

• Input registers contain parameters passed to the current routine by its caller, and
can be used for return values as well.

On a subroutine call, the output registers of the current routine are renamed such that
they become input registers of the subroutine; in addition, the subroutine gets new lo-
cal and output registers its caller does not have access to. On return, the local and
output registers are deallocated, and the input registers can now be accessed using
their old name again, so the caller can read the routine’s return value. The IA-64 archi-
tecture uses an extended register renaming scheme. It specifies 128 general-purpose
registers, of which 96 are renamed; in comparison to SPARC, it uses the same notion
of local, input and output registers, but the size of the corresponding registers windows
is not fixed. Instead, a function uses the ALLOC instruction to specify their number.
The register windows are not limited in size, the only constraint is that at each time,
the total number of allocated registers must not be greater than 128. In addition to
these variable register windows, IA-64 also supports another renaming scheme to im-
plement modulo-schedules loops. When executing the ALLOC instruction, in addition
to the size of the local and output register window – input registers are treated like
local ones from the point of view of the function – there is also a window of rotating
registers. As the name suggests, these registers are renamed in a rotating fashion,
with the next rotation step being initiated by special branch instructions. This allows
constructing software-pipelined loops in which each iteration processes values in its
own local register (prepared by the previous iteration), thus reducing the number of
data dependencies and increasing parallelism. Control flow differs quite a bit for reg-
ular and modulo-scheduled loops, and reconstruction requires static knowledge of the
set of rotating registers [16]. However, if this information is available, reconstruction is
straight-forward.

3.6 Speculative Execution

IA-64 provides special instructions for performing speculative memory accesses. For
example, a program can request to load a value into a register a long time before it is
required; if execution finally reaches the instruction in need of the value, it is already
present in the register, so there is no additional overhead.

There are two types of speculation available on IA-64: control and data. A control
speculation works just like an ordinary memory load operation, except that it places a
special value called NaT (not-a-thing) in an invisible part of the target register if the
operation fails (e.g., because the address is invalid). On the other hand, a data spec-
ulation records the address being accessed in the so-called advanced load address
table (ALAT); if the address is later being written to, the processor removes the cor-
responding ALAT entry. Therefore, the program can check whether the target value

6 Fall 2010 Workshop

4 Decompiler Architecture

might have been changed before using the register in other operations and retry the
operation if necessary. Control and data speculation can also be used at the same
time. For a decompiler, speculative execution poses quite a challenge, as accurately
reconstructing success and failure of speculative accesses requires analysing all other
parallel activity on the system in question. However, we assume this not to be needed
for most programs: as speculation might fail because of intervening accesses by other
programs (e.g., an ALAT overflow), we think that speculative accesses can be repre-
sented just like normal memory accesses, and all speculations in the program can be
assumed to have succeeded.

3.7 Invoking Code on Co-Processors

Some processors support direct invokation of code written for other processors or pro-
cessing modes. For example, IA-64 provides a special jump instruction to execute x86
code, and ARM provides a similar instruction to switch between routines running in
normal and thumb mode (which has a different instruction set). Some custom pro-
cessors might also contain coprocessors capable of executing own programs (within a
completely different memory space and register set), and appropriate call instructions
might resemble those for normal subroutines.

There are two basic ideas how decompiling such cases can be handled:

• The coprocessor call is handled like a library function for which no other informa-
tion is available. If parameters are being passed – for example, by directly reading
from or writing to the coprocessor’s registers – these accesses must then be rep-
resented by library calls as well.

• On the other hand, if the routine running on the coprocessor is known and the
decompiler supports the other instruction set, the call can be handled just like a
normal subroutine call. In this case, accessing the coprocessor’s register does
not differ from accessing the normal processor’s registers.

4 Decompiler Architecture

4.1 The Compiler Pipeline

As a general decompiler is expected to reverse the process of compilation for a wide
range of target architectures, we have to provide a general model for this process
first. This general model, which we call the compiler pipeline, is displayed in figure
1; it is similar to the model of a "‘language processing system"’ shown in the "‘dragon
book"’ [3, p. 4]. In comparison, the linker and loader have been separated into own
stages, in order to reflect that these processes are quite distinct.

In this model, the program is transformed step by step by various subprocesses.
First of all, a compiler reads the input code and emits assembler instructions suitable
for the target processor. This assembler code is then converted into object files, which
are combined with additional (static) libraries and linked to form the program’s binary

Fall 2010 Workshop 7

Towards a Truly Retargetable Decompiler

���������	��

���
������ ��������
������

���

������

���

��	���

����	����

������ ���	�� ��	���

���	���

����	����

������

��	��

���������	��

���

Figure 1: The Compiler Pipeline

file (e.g., an elf file for UNIX or an exe file for Windows). If this binary file and re-
quired dynamic libraries are available, the operating system’s loader can then create a
runnable image of the program in memory.

The model applies to machine code programs (e.g., C programs compiled by gcc)
as well as high-level programs written in languages like Java or .NET, although the latter
use slightly different terminology. For example, the Java Compiler already contains the
corresponding assembler, and its result is called a class file instead of an object file.
The linker step does not exist at all, although packaging of class files into a JAR archive
could be seen as a form of linking.

As can be seen, the final executing program does not solely contain code written by
the user, but also consists of static and dynamic libraries, as well as possible other code
generated during any of the phases in the model. Therefore, it is not sufficient for a
general decompiler to reverse the process of a compiler alone; instead, to reconstruct
code that is as close as possible to the original source, it should reverse the entire
compiler pipeline, making use of any additional information gathered during the phases,
if available.

4.2 Decompilation Overview

Similar to the compiler pipeline shown in figure 1, we propose the model shown in
figure 2 for a general decompiler. This is an extension of the model proposed for DCC
in [5].

������ ��	
��

�	���

����

����	��

��������

������
�������

�����

������

��������

������

�
��
�������	���� ���
	�����

�
����

�
��

�����	������

�
��

Figure 2: Proposed Decompiler Pipeline

Decompilation starts with binary files of the program, which are used to build virtual
memory images of the target program via a special loader. If no binary file is available,
the decompiler might also start directly from a memory image of the real system under
investigation.

The reason we specify multiple images is that programs may load different modules
at the same address ranges over time, whereas the decompiler might need to analyze
the whole program at once. For example, overlays can be represented by multiple

8 Fall 2010 Workshop

4 Decompiler Architecture

memory images, as can self-unpacking code or code running on co-processors as
discussed in section 3.7.

Once memory images are known, code from each image is checked for static li-
braries by means of a reverse-linker; this step is similar to the recognition of library
signatures as described in [5]. As an extension, we propose to also process symbol
information from corresponding static libraries at this point to reconstruct parts of the
program’s symbol table. That is, if a section of a known object or library file is found
in the memory image, our reverse-linker can resolve relocation records from the object
file to get symbol names and addresses in the memory image. Depending on which
information is contained in the object files, this might also return function signatures or
type information for later parts of decompilation.

After reverse-linking, it is known which parts of the binary represent libraries and
which represent user code; therefore, the decompiler can focus on the latter ones, as
they are what compiling the original source code has produced. For decompilation,
instructions are now disassembled and converted into an intermediate code, which will
be refined during the subsequent process until it resembles the original source code
as close as possible.

4.3 The Decompiler Core

Beginning at the memory images with static libraries identified, decompilation can pro-
ceed as follows:

The disassembler produces decoded instructions, which are then converted into C-
like intermediate code. For example, if an instruction like add eax, edx is encountered,
it can be converted into a C-type statement like eax = eax + edx. Special instructions
like those subject to register renaming are marked and resolved later, as the corre-
sponding C expression does also depend on other state not known yet.

Based on these instructions, boundaries of subroutines are reconstructed. As a
simple heuristic, the target of a call instruction is assumed to be the beginning of a new
function; the list of subroutines may be extended during later phases. Processor- or
operating-system-specific heuristics can also be used to get a list of entry points. For
example, when decompiling a DLL under Windows, its export table can be used to get
base addresses of publicly-callable functions.

The instruction lists are used to reconstruct a control flow graph for each function.
This phase might also include processor-specific activity; for example, on SPARC on
IA-64, register renaming can be detected and converted into appropriate C constructs,
as can modulo-scheduled loops [16] or predicated instructions. Once this phase is
complete, all processor-specific features have been resolved into expressions in the
intermediate language.

Global data-flow analysis [5] is used to track passing of parameters and return
values in registers, and to detect operations on common runtime structures like the
stack. This allows to give an initial estimate of procedure signatures.

Up to this point, almost no information on the data types used by the program are
known (besides width of registers and memory accesses, if available on the target
processor). There has been work on how to reconstruct types in the past [8, 14], but

Fall 2010 Workshop 9

Towards a Truly Retargetable Decompiler

some basic problems of this step from a decompiler’s point of view have still remain.
For example: how to accurately represent values and types split over multiple memory
locations (as is the case for 64-bit arithmetic on 32-bit x86), and how to find a repre-
sentation of the decompiled code (that adheres to a reconstructed type system) while
at the same time resembling code that a human programmer might have written.

With type information, expressions can be re-written to resemble C-style accesses
more closely. For example, a memory access via a pointer and scaled operand can
be converted into an array access. Once expressions have been rewritten in this re-
gard, the decompiler can invoke its final stage to produce readable source code. As
discussed in [6], another post-processing step may be invoked to convert this raw C
into higher language constructs; for example, to detect virtual method calls on objects
and represent them accordingly.

5 Decompilation Example: .NET CIL to OpenCL

Based on the principles discussed above, we have built an experimental decompiler for
translating .NET CIL code into OpenCL. It reads the native CIL stream generated by a
source language compiler and outputs OpenCL-compatible C code; this code is then
sent to the vendor-provided OpenCL compiler to generate the binary for execution on
the OpenCL compute device.

Choosing CIL as input (instead of, for example, source code in a high-level language
targeting the .NET runtime) allows invoking the decompiler from within the same .NET
assembly that already contains the user code. This way, we could selectively offload
certain compute-intensive tasks to accelerators if available, but still rely on the CPU for
other systems without appropriate hardware. For the prototype, it is specified explicitly
which code shall be executed on the GPU, by using a syntax similar to the Task Parallel
Library [12].

CIL uses the abstraction of a stack machine, but individual instructions still closely
resemble semantics of operations in a high-level language. Therefore, in comparison
to machine code for "‘normal"’ processors, CIL is particularly easy to decompile.

As OpenCL-compatible devices provide a rather constrained environment for code
execution in comparison to CPUs, we have not implemented every aspect of CIL in our
decompiler and C code generator. Currently, we support the following:

• Control flow statements (like if, switch, for)

• Intrinsic data types (8 to 64-bit integers as well as single and double-precision
floating-point values) and associated basic arithmetic operations

• Accesses to one- and multi-dimensional arrays, as long as the target array is
statically known.

Specifically, memory allocations, exceptions and pointers to arbitrary memory lo-
cations are not supported, and code containing these features is rejected by the in-
struction decoder. Exceptions are a special case, though, as they may be thrown as a

10 Fall 2010 Workshop

6 Intel SCC: Many-Core and Beyond

side-effect of an instruction, rather than being used explicitly. In the latter case, the CIL
code is just rejected and never compiled to OpenCL. On the other hand, instruction
side effects that could result in an exception being thrown (e.g., if an array index is out
of range) are silently discarded.

6 Intel SCC: Many-Core and Beyond

The Intel SCC is a research microprocessor developed at Intel Labs Braunschweig,
Germany, and other locations around the globe. It combines 48 P54C cores (software-
compatible to a Pentium 90) on a single die – 6 times as many cores as on Intel’s
current high-end CPU Nehalem EX – together with 4 memory controllers, an on-chip
network, power management and hardware support for message passing [10].

Cores are organized in 24 so-called tiles, which are arranged in a 6x4 mesh. Power
management is software-controlled, and both the operating frequency and voltage can
be adjusted freely to increase energy efficiency. Frequency is set per tile, whereas
voltage is controlled on a 2-by-2 tile basis (voltage island). The SCC consumes 50W
to 125W, depending on the voltage required for a specific frequency; further savings
are possible by disabling cores or even by powering down entire voltage islands.

All communication between cores, memory controllers and the I/O subsystem is
accomplished via high-speed message passing – basically, the cores send messages
directly into each other’s level-1 cache. In comparison to other modern CPUs, there is
absolutely no hardware cache coherency support; if coherency is required, it needs to
be implemented in software.

The lack of hardware cache coherency eliminates snoop traffic – which can already
limit scaling in current multi-core systems – and is believed to be a key in allowing to
scale processors to 100 cores and beyond. However, it provides quite a challenge in
actually programming the machine, as most mainstream programming models rely on
multiple threads having the same (cache-coherent) view of the main memory.

For example, when using traditional multi-threading under Windows or Unix, all
threads use the same memory space; i.e., a write performed by one thread can be seen
immediately by all others, and pointers to memory buffers can be passed unchanged to
any other thread. On some system, actual bandwidth and latency of memory accesses
may depend on a particular physical core or socket (ccNUMA), but memory is still
shared from the viewpoint of the application.

The traditional means for applications to use more than one address space is
to spawn multiple processes. However, when these processes are running on the
same node, operating systems still allow using shared memory in this case (e.g. via
MapViewOfFile under Windows or mmap under Unix), which again is assumed to be
cache-coherent. If an application shall be able to execute on different nodes, it needs
to use communication explicitly; for example, via sockets or MPI on cluster systems.

When trying to port legacy applications into such an environment, for example with
the aid of a decompiler, there are at least three types of challenges:

• Identifying potential parallelism in what might be a sequential algorithm

Fall 2010 Workshop 11

Towards a Truly Retargetable Decompiler

• Mapping parallel constructs to a non-cache-coherent architecture

• Assessing whether parallel execution is beneficial for execution

A decompiler can produce abstract syntax trees for source machine code, but ob-
viously that is not sufficient for identifying parallelizable constructs. However, it could
be extended by integrating techniques originally developed for optimizing compilers for
cache-coherent multi-core systems; for example, methods to detect memory depen-
dencies in sequential code. A similar analysis could be employed by a decompiler to
reconstruct fields of data structures being accessed, so part of the information required
for identifying parallelism would already be available.

The same applies to mapping abstract syntax to a non-cache-coherent architec-
ture. If it can statically be deduced which parts of buffers are accessed, data structures
can also be rearranged for efficient execution in distinct address spaces. However, this
could result in quite some overhead if done at runtime (or even depending on which
processing cores are active, their respective memory latency, and so on); therefore,
it needs to be assessed upfront whether parallelization should be performed at all, or
whether it is more beneficial to the optimization goal (which may not be just perfor-
mance, but also power consumption, system efficiency etc.) if the computation is just
executed sequentially.

7 Summary and Conclusions

We have presented a number of challenges when developing a retargetable decom-
piler, and strategies on how to deal with them. In general, when designing a single
representation for multiple input languages, a choice must be made as to which fea-
tures to integrate natively, which to re-build via more basic constructs, and which not to
include at all. For our decompiler, we propose a tradeoff that is pragmatic: if a compiler
is able to generate certain code for a certain target, the decompiler should support it.
However, we feel no need to support every aspect of a particular instruction set that
compilers do not support as well.

We then presented a generalized architecture for a decompiler and related it to its
well-understood counterpart for compilers. Based on this, we introduced an experi-
mental decompiler for Microsoft .NET CIL code with an attached OpenCL code gen-
erator. The next steps include extending the basic decompiler framework to support
other source architectures and produce easily-readable high-level code, for example
to aid in porting existing binary programs to other processor architectures like the Intel
Single-Chip Cloud Computer.

12 Fall 2010 Workshop

References

References

[1] Boomerang – a general, open source, retargetable decompiler of machine code
programs. http://boomerang.sourceforge.net/.

[2] Boomerang – what needs to be done. http://boomerang.sourceforge.net/

tobedone.php.

[3] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
Principles, Techniques, and Tools (2nd Edition). Addison Wesley, August 2006.

[4] Cristina Cifuentes. http://www.itee.uq.edu.au/~cristina/dcc.html.

[5] Cristina Cifuentes. Reverse Compilation Techniques. PhD thesis, School of Com-
puting Science, Queensland University of Technology, 1994.

[6] Cristina Cifuentes. An environment for the reverse engineering of executable pro-
grams. Asia-Pacific Software Engineering Conference, 0:410, 1995.

[7] Cristina Cifuentes, Mike Van Emmerik, and Norman Ramsey. Uqbt - a resource-
able and retargetable binary translator. http://www.itee.uq.edu.au/~cristina/
uqbt.html.

[8] E. N. Dolgova and A. V. Chernov. Automatic reconstruction of data types in the
decompilation problem. Program. Comput. Softw., 35(2):105–119, 2009.

[9] ECMA. Common language infrastructure (cli). Standard ECMA-335, ECMA Inter-
national, June 2005. www.ecma-international.org/publications/standards/

Ecma-335.htm.

[10] J. Howard et al. A 48-core ia-32 message-passing processor with dvfs in 45nm
cmos. In ISSCC, 2010.

[11] Maurice H Halstead. Machine-independent computer programming. Spartan
Books, 1962.

[12] Daan Leijen and Judd Hall. Optimize managed code for multi-core machines.
MSDN Magazine, October 2007. http://msdn.microsoft.com/en-us/magazine/
cc163340.aspx.

[13] Tim Lindholm and Frank Yellin. Java Virtual Machine Specification. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[14] Alan Mycroft. Type-based decompilation, 1998.

[15] Mike Van Emmerik and Trent Waddington. Using a decompiler for real-world
source recovery. In WCRE ’04: Proceedings of the 11th Working Conference
on Reverse Engineering, pages 27–36, Washington, DC, USA, 2004. IEEE Com-
puter Society.

Fall 2010 Workshop 13

References

[16] Miao Wang, Rongcai Zhao, Jianmin Pang, and Guoming Cai. Reconstructing
control flow in modulo scheduled loops. In ICIS ’08: Proceedings of the Seventh
IEEE/ACIS International Conference on Computer and Information Science (icis
2008), pages 539–544, Washington, DC, USA, 2008. IEEE Computer Society.

14 Fall 2010 Workshop

Unifying the definition of megamodels:
Toward describing service-oriented

system’s development

Regina Hebig

System Analysis and Modeling Group
Hasso-Plattner-Institut

regina.hebig@hpi.uni-potsdam.de

Service-oriented systems as well as model driven engineering are applied to affect
the performance of software development and the degree of reuse of software. Thus,
developing SOAs with MDE can lead to synergistic effects, but also to the compensa-
tion of SOA’s effect of these two factors. Therefore, capturing the development with
MDE is crucial for optimizing the way of building SOAs. Megamodels, that are used to
capture models and their interrelations, are a natural candidate for that task. However,
there is no unique definition of the term megamodel. In this report we survey different
approaches and come up with a unified definition of the term megamodel.

1 Introduction

Today, model-driven engineering (MDE) is used in an increasing number of software
development projects. Thereby, an increasing amount of models are applied to de-
velop and realize the desired system. These models may show overlapping aspects
of the system under development at different levels of detail, which is suggested in
the unified process [8] by developing a system in different phases (e.g., requirements,
analysis, design, implementation, etc.). Additionally, a key feature of MDE is automa-
tion. Thus, models are automatically created from other models by means of model
transformations.

Service-oriented systems are applied, in order to increase the performance of soft-
ware development and to support reuse of software. However, both factors perfor-
mance and reuse are also influenced by the usage of MDE. Consequently, we assume
that an unsuitable form of MDE might counteract the SOA goals, while a suitable MDE
can strongly complement with SOA in exhausting the development performance and
reuse of software. Therefore, the ability to capture the used models, model types, and
model operations - the form of the MDE - is crucial, for optimizing the way of building
SOAs.

In recent years scientific approaches arose, which deal with the question of how
to capture the dependencies between models. The most prominent examples are

Fall 2010 Workshop 15

Unifying the definition of megamodels:
Toward describing service-oriented system’s development

megamodels proposed by J. Bézivin [2] and J.M. Favre [4] or R. Salay’s macromod-
els [10]1. The dependencies of models that already exist are not the only thing in focus
of research. Approaches that deal with transformation chains [3] aim to predefine and
automatically perform compositions of model transformations that are defined between
models.

There is already a considerable amount of literature about megamodels and related
approaches [1, 2, 4, 5, 10, 11, 13].2 However, the understanding and desired usage of
megamodels differs from author to author. Therefore, we collect characteristics that
can reasonably be applied to megamodels for classifying existing approaches and for
providing an overall understanding of megamodels. In order to provide a common
understanding of the concept megamodel, we unify the different definitions and provide
a corresponding metamodel that reflects the definition. To the best of our knowledge
there is currently no approach that gives an overview about megamodel approaches or
provides a unified definition.

In Section 2 we survey different megamodel-related approaches. In Section 3 we
present a unified definition for the term megamodel. A full version of the presented
findings, is published in [7]3.

2 State of the Art

In this section, we discuss approaches that define the term ‘megamodel’ or related con-
cepts like the ‘macromodel’. We focus on how terms are defined and on the intention
for the application of these types of models.

2.1 Definition of Megamodels and Related Terminologies

Most approaches that deal with megamodels come up with their own definition of the
term. In the following we introduce the different definitions.

BÉZIVIN is one of the first founders of the term megamodel. His view of the term
megamodel has grown during the recent years. The first definition was given
in the year 2003: “A megamodel is a model with other models as elements”
[2]. In 2007 this definition is further complemented: “A megamodel contains
relationships between models” [1].

FAVRE can be seen also as one of the founders of the term megamodel. Neverthe-
less, in comparison to BÉZIVIN he has a strong theoretical focus on megamodels.
In 2004 he gave the following definition: “... the idea behind a megamodel is to
define the set of entities and relations that are necessary to model some aspect

1We will use the term megamodel for all approaches throughout this paper, since the main part of the
surveyed papers use this term.

2Due to space limitations we only focus on a few approaches and omitted approaches that strongly
overlap with them.

3This is a joint work with Andreas Seibel and Holger Giese

16 Fall 2010 Workshop

2 State of the Art

about MDE” [4]. In a follow-up paper, FAVRE provided an extension of the defini-
tion: “A megamodel is a model that represents this kind of complex arrangements
without entering into the details of each artifact” [5].

SALAY provides an approach that uses the term macromodel, which is related to the
term megamodel but has a different intention. A first definition is provided in
2007: “A macromodel is a graphical model whose elements denote models and
whose edges denote model relations” [10]. Later, he defines the term macro-
model as: “A macromodel consists of elements denoting models and links de-
noting intended relationships between these models with their internal details
abstracted away” [11].

SEIBEL is also influenced by the terminology of BÉZIVIN and provides the following
definition: “A megamodel is a combination of high-level traceability models and
low-level traceability models” [13]. A high-level traceability model shows thereby
relations between models whereas a low-level traceability model shows relations
between element of different models.

2.2 Comparing the definitions

All approaches have in common that they use megamodels or macromodels in order
to illustrate the dependencies between models. We further want to compare the def-
initions used by the different approaches. Thereby, some definitions come along with
a metamodel for megamodels. These are the definitions of SEIBEL, FAVRE, BÉZIVIN,
and SALAY. BÉZIVIN, FAVRE, and SALAY further allow extensions of their metamodels,
such that the possible relations can be adapted to the current needs (’extensibility’).

Besides the opportunity to extend the metamodel, some approaches have con-
straints on possible megamodels. For example, the metamodel that is introduced by
BÉZIVIN excludes that a megamodel can be used as reference model. There, a meg-
amodel is modeled as terminal model. Other constraints can arise if the types of rela-
tions that are allowed to be part of the megamodel are predefined. Most definitions do
not restrict the possible relations, although they predefine relation types. BÉZIVIN only
predefine the ’conformsTo’ relation for associating a model to its reference model. How-
ever, he does not restrict the possible types of relations between the models. SALAY
does not restrict the types of relations within the macromodel. In SEIBEL’s approach
relations are named ’traceability links’, which can be fact links or obligation links. While
fact links only state that there is a relationship, obligation links also define how a change
can be propagated to restore the consistency of a relationship. Furthermore, SEIBEL
allows the definition of the type of the traceability links via the ’isOfType’-relation. Thus,
SEIBEL does not restrict the possible relation types, since the type and semantic of a
required traceability link can be defined by the user of the approach. FAVRE introduces
his metamodel in order to identify a set of relations that are sufficient to cover the needs
of MDE. Naturally, the possible relation types are restricted to the relations already
identified by FAVRE, such as ’RepresentationOf’ , ’DecomposedIn’, ’ConformsTo’, or
’IsTransformedIn’. New relation types would require an extension of this metamodel.
Therefore, we say that FAVRE restricts the possible types of relations.

Fall 2010 Workshop 17

Unifying the definition of megamodels:
Toward describing service-oriented system’s development

SALAY FAVRE BÉZIVIN SEIBEL

Provide Metamodel X X X X
Extensibility X X X -
Constraints (Megamodel is no
Reference Model)

- - X -

Constraints on Relations - X - -
Hierarchy of Megamodel X X X X
Hierarchy of relations X - - X
Inter-Level-Relations X - - X

Table 1: Properties of different Megamodel-definitions

As a further characteristic of a megamodel definition we want to highlight the ques-
tion whether it supports hierarchy. That includes on the one hand the question, whether
a megamodel can contain further megamodels. On the other hand there is the question
whether relations can contain other relations. The most approaches allow megamod-
els explicitly to contain further megamodels. FAVRE allows systems to contain further
systems via the ’DecomposedIn’ relation. Similarly, SEIBEL allows a ’subElement’ rela-
tion between models. Since a model that contains models conforms to the definition of
a megamodel, one might say that SEIBEL allows a megamodel to contain further meg-
amodels. BÉZIVIN allows a megamodel to contain models, while he sees a megamodel
as a model. Thus, BÉZIVIN allows a megamodel to contain further megamodels. In a
similar manner SALAY allows the same.

SALAY and SEIBEL allow relations to contain further relations. BÉZIVIN does not
directly allow a relation to contain a further relation, but provides weaving models that
can be associated to relations and contain relations between the elements of models
that are associated to that relation. There is a further characteristic that is fulfilled
by SEIBEL. He allow ’inter-level-relations’, this means relations that connect modeling
artifacts on different hierarchical levels. For example, such a relation can connect a
model element with a model. Following the formal definition of macromodels in [10]
SALAY also allows ’inter-level-relations’.4

2.3 Application of Megamodels

After looking at the definition of the term megamodel we want to summarize the in-
tended applications of the different approaches. Thereby, we add the approach of
DIDONET as example for transformation chain approaches. However, since these ap-
proaches deal with a kind of model operation, one can consider to use megamodels
as definition language for transformation chains.

BÉZIVIN proposes different applications of megamodels. In [2] megamodels are ap-
plied to support model-driven software development by using it for model man-
agement. Thus, megamodels provide a global view on models. Whereas, in [1]

4Confusingly, SALAY’s metamodel in [11] seems to allow no relations between macromodels and
models.

18 Fall 2010 Workshop

2 State of the Art

megamodels are applied to facilitate traceability between models and their ele-
ments.

FAVRE applies megamodels to model MDE [4,5]. He does not focus on the applicabil-
ity of megamodels but on reasoning about relations that can exist in the context
of MDE. He defines exemplary patterns in MDE by using the megamodels.

SALAY shows in [10,11] how to apply macromodels to capture the modelers intention
how different models, showing different views of the system, are related to each
other. Therefore, a macromodel can be a type that represents a pattern that
defines a certain intention of a modeler and it can be an instance that represents
the current models. He provides an automated analysis to examine whether the
intention of the modeler is satisfied.

SEIBEL shows in [13], similar to [1], that megamodels are predestined for the applica-
tion of traceability in MDE. Additionally, relations can be associated with behavior,
such as model transformations. This ’behavior of relations’ is used to resolve in-
consistencies that may occur when models change.

M. DIDONET introduces in [3] an approach for supporting the combination of rules and
automated execution of multiple transformations. Thereby, he already proposes
the integration of their language into a megamodeling platform, such that the
interrelation of multiple transformation, models and metamodels can be better
handled.

2.4 Characteristics of Megamodel Approaches

Besides the intention of a megamodel, it is interesting to look at the operations that
are performed on a megamodel. SEIBEL and BÉZIVIN automatically adapt their meg-
amodels to the current situation. In contrast, SALAY compares his macromodels with
the current situation and verifies, whether the constraints defined in the macromodel
are satisfied. In addition to the automated derivation of the megamodel, SEIBEL auto-
matically interprets his megamodels in order to restore consistency between models.
Also FAVRE interprets his megamodels in order to identify mega-pattern automatically.
Since DIDONET does not use megamodels, he cannot perform operations on it. How-
ever, the specification he uses instead is interpreted within the tool.

Models in classical software engineering are used to illustrate the structure, the
behavior, and the function of a system (e.g., feature models [12]). Transferred to meg-
amodels ’behavior ’ means that the approach treats the megamodel as a behavioral
model and ’structure’ means that the approach does only consider the megamodel
as a representation of the models including their relationships. Most approaches use
megamodel for the illustration of structure, which might, for example, be compared to
a current situation. Only SEIBEL also defines behavior, since he defines the trigger
for actions to reestablish consistency as well as the corresponding actions within the
megamodel. None of the approaches uses megamodels to illustrate function.

Fall 2010 Workshop 19

Unifying the definition of megamodels:
Toward describing service-oriented system’s development

We differentiate between four types of relations. Thereby, the first type is the re-
lation that illustrates a relation that exists in the represented system. Typically this
type of relation occurs in ’normal’ models and is in most cases not expected to occur
in megamodels. The other three types of relations should not be illustrated with non-
megamodel models. First, there is the ’overlap’-relation that indicates that models have
overlapping aspects. This relation is, for example, used by SALAY to indicate that two
models show different views of the same system. SEIBEL uses this relation as basis
for identifying consistency and inconsistency between two models. In [1] BÉZIVIN uses
megamodels for traceability issues and not as repository as in [2]. Therefore, he uses
’overlap’-relations in [1]. The ’model operation’-relation is a representative of a model
operation that was/can be/will be performed with models as input and models as output.
For example, FAVRE introduces the ’isTransformedIn’ relation, which indicates that one
model was transformed to another model. Similarly, BÉZIVIN support this relation type.
SEIBEL uses the ’model operation’-relation for automatically restoring the consistency
between two models. The last type of relation is called ’static’-relation. We introduce
this type for the reason of capturing a huge amount of relations, such as ’conformsTo’,
which represents the relation between a model and a reference model, or the ’contains’
relations, which indicates that a model is contained by another model. This might also
include the ’represents’ relation between a models an the represented system, which
is used by FAVRE. We do not provide a full list of relations that can be handled as
’static’-relations. Like FAVRE denotes, there is still research on the question of which
relations between models are part of MDE. Most approaches, like BÉZIVIN, work with
the ’conformsTo’ relation. SEIBEL uses the ’isOfType’ relation for links. Also SALAY
uses to show the ’instanceOf’ relation in his example models. A model might be used
to describe a current situation (descriptive) or to define a desired situation or behavior
(prescriptive). The approaches of BÉZIVIN consider the megamodel to be created au-
tomatically and, thus, to describe the actual state of the system. Also SEIBEL works
with an automatically derived megamodel and thus descriptive megamodels. However,
SEIBEL defines operations for reestablishing consistency between models and, thus,
prescribes also behavior. FAVRE captures a current picture, where he also models
mega-patterns of relations, which he uses to describes possible types of activities in
MDE. SALAY uses his megamodel to describe a current situation as well as to prescribe
desired situations with constraints. As the goal of DIDONET is the definition of a chain
of transformations, he specifies behavior, which is the application of transformations in
the specified order. Thus, DIDONET’s approach is prescriptive. Since, DIDONET uses
no megamodel he defines no relations. However, he specifies transformations and,
thus, deals with model operations.

3 Unified Definition of Megamodel

As shown above, megamodel-related approaches have different motivations, and come
along with different meanings of the term megamodel. We first provide a ‘unified’ defi-
nition of the term megamodel, which is a synthesis of the definitions of the investigated
approaches from Section 2.1. Based on this unified definition we provide a generic

20 Fall 2010 Workshop

3 Unified Definition of Megamodel

metamodel of a megamodel. Finally, we define what we expect from a megamodel.
The basic structure of a model can be considered as a graph that contains nodes

and edges between them. A classical software model is typically a graph [9] and thus
is a model that contains model elements and relations between them with model el-
ements are nodes and relations are edges. A megamodel could be considered as a
classical software model. Thus, we define a megamodel as: a model that contains
models and relations between them. However, there is a major difference to classi-
cal software models that is a megamodel explicitly considers models instead of model
elements. This difference is visually shown in Figure 1.

Model
Element Relation< connects Model Relation

< connects

Classical Software Model Megamodel

Node Edge< connects

Graph

Figure 1: Core of structural models

Based on this unified definition of a megamodel we define a metamodel, which is
free of implementation aspects and can be extended to the needs of the different ap-
proaches. The metamodel is shown in Figure 2. This metamodel contains additional
concepts like models can contain models, models can contain relations and relations
can depend on other relations. These additional concepts are motivated in the follow-
ing.

Model Relationcontains >

< connects
1..* 0..*

1..1 0..*

< contains context of >

0..* 0..*

0..10..1

Figure 2: Core metamodel for megamodels

But first, why is a relation not considered to be a model? Basically, because an edge
is not considered as a graph. In the megamodel case, the relation itself only describes
that models are related in some specific way (dependent on the type of a relation).
For example, FAVRE introduces a relation of the type ’isTransformedIn’, which reflects
that one model is the result of a transformation that was applied to another model. If
an approach like SEIBEL’s requires for example a transformation specification to be
associated to a relation, the core metamodel can be extended, such that a relation can
have a corresponding association to a model.

A model can contain models for at least two reasons. First, a megamodel is a
model that contains models and thus a model should be capable of containing models
(hierarchical megamodel). In this case, the model is a megamodel that can contain
models as well as megamodels. Second, model elements in classical software mod-
els can be interpreted as models and thus models can contain models. In this case,
the model is a model element, which does not contain further models. However, this

Fall 2010 Workshop 21

Unifying the definition of megamodels:
Toward describing service-oriented system’s development

depends on how models are internally structured and how they are interpreted. To the
best of our knowledge, there is currently no consensus about how to structure models
right. A prominent example is UML. Technically, a UML model is a single monolithic
model. However, conceptually a UML model may contain different models, e.g, class
diagrams, sequence diagrams, etc. Nevertheless, these are only model elements in a
UML model. This interpretation of model elements depends on the level of detail that
should be considered in a megamodel.

Additionally, a model can contain relations. A megamodel is a model that contains
relations between models. Thus, the model should reflect the capability of containing
relations, too. In the core metamodel relations are not directed. A direction can be
introduced by extending the core metamodel. Finally, a relation between models does
not necessarily exist in isolation. Certain relations may require another relation. In [6]
a transformation explicitly requires another transformation as its own context. In [13]
it is shown that relations at different levels of detail can have a dependency between
each other. We further expect that models in a megamodel, which are not megamod-
els itself, do only contain relations that are necessary to describe their original. All
other relations should not be part these models but should be explicitly contained in
the megamodel that contains these models. For example, relations like ‘conformsTo’,
‘contains’ (if they are used for structuring models only), ‘isTransformedIn’, etc. should
be explicitly reflected in a megamodel but not in the models itself.

All in all, our proposed core metamodel of megamodels is extensible, allows hier-
archies of models (and thus of megamodels) and relations, and supports ’inter-level-
relations’. In comparison to BÉZIVIN, we do not provide specific types of models nor
relations. Furthermore, we do not declare a megamodel to be a terminal model, which
is a specific kind of model. FAVRE’s metamodel of megamodels does not distinguish
between the concept of models and relations. He also predefines specific relations
(e.g., ‘conformsTo’) in the metamodel, which is however not necessary in all appli-
cation domains of megamodels. SALAY’s metamodel of macromodels does explicitly
distinguish between macromodel and model and further between macrorelations and
relations. We do not make this explicit distinction because we define a megamodel
to be a model. SEIBEL’s metamodel of megamodels is somehow similar to this meta-
model but it is more detailed. It explicitly distinguished between models and model
elements. Furthermore, it is distinguished between two kinds of relations. Subsum-
ing, our proposed core metamodel provides a consistent view on megamodels, which
covers all surveyed approaches.

To give an idea of how to extend the core metamodel of the megamodel, we show
an exemplary extension in Figure 3. (a) shows a metamodel extension, which ad-
ditionally contains three kinds of relations like ‘Transformation’, ‘conformsTo’ and ’is-
TransformedIn’ and four kinds of models like ‘M2Model’, ‘M1Model’, ‘M1ModelElement’
and ‘Tool’. ‘M2Model’ represents metamodels whereas ‘M1Model’ represents models,
which conform to ‘M2Model’ reflected by the ‘conformsTo’ relation. The ‘Transforma-
tion’ relation is specified by a ‘M1Model’, which contains an executable specification of
a model transformation. This specification can be executed by a tool ‘Tool’. It takes a
transformation with a specification connected and creates an ‘isTransformedIn’ relation
between M1Models it has transformed.

22 Fall 2010 Workshop

4 Conclusion & Future Work

Model

Relation
M2Model M1Model

Transfor
mation

isTrans
formedIn

Tool

< specified by

1..1
0..*

ou
t >

1..*

0..*

1..1in >

1..1

conforms
To

M1Model
Element

x:M2Model y:M2Modelt:Transformat
ion

c:isTransform
edIn

tool:Tool

x':M1Model y':M1Model

tm:M1Model

connects >

connects >

< connects

< connects

in

out

specified by

c1:confor
msTo

c2:confor
msTo

connects

connects

connects

connects

x1':M1Model
Element

y1':M1Model
Element

c1:isTransfor
medIn

< connects connects >
context ofcontains

(a) metamodel (b) linguistic instance (abstract syntax)

<

<

<

<

<

<

<

<

<

contains<

Figure 3: Exemplary extension of the core megamodel metamodel

(b) shows a linguistic instance of the metamodel extension. ‘tm’ is the specification
of a model transformation ‘t’ between the two ‘M2Model’-metamodels ‘x’ and ‘y’. ‘tool’
applied ‘t’ on ‘x” (which conforms to ‘x’) and ‘y” (which conforms to ‘y’). Thereby, ‘tool’
produced the ‘isTransformedTo’ relation ‘c’. A strength of the hierarchy can be seen in
the example, too. It is possible to illustrate not only that the model ‘x” was transformed
to the model ‘y”, but also that in this context, the model element ‘x1” was transformed
to the model element ‘y1”.

Note, this is only one possible extension of the megamodel-metamodel. For exam-
ple, the semantic of the specified ‘isTransformedIn’ relation might not be appropriate
for each megamodel approach. In (b) there is an ‘isTransformedIn’ relation between
model ‘x” and model ‘y”. What happens if model ‘x” is affected by changes? In the
semantic of this metamodel extension, there is no reason that the ‘isTransformedIn’
relation will be removed. This is appropriate if the changes on ‘x” do not influence
‘y” or if the megamodel approach is only interested in the fact, that the transformation
happened. However, other megamodel approaches might require the transformation
to be redone. It might even be desired to introduce the notion of validity to the transfor-
mation ‘isTransformedIn’, such that the relation would become invalid if ‘x” changes.
This example shows that even terms that are strongly associated to megamodels,
such as transformations, can have quite different semantics in different megamodel
approaches.

4 Conclusion & Future Work

Different approaches provided different understandings of the term megamodel. We
introduced a unified definition of the term megamodel including a core metamodel that
will help to improve discussions about megamodels. We were able to show that meg-
amodels are used for very different purposes, but also for the illustration of behavior.
Further, we introduced a unified core definition for the term megamodel. Based on this
core definition, we can, in future work, specialize megamodels for capturing the MDE
development of SOAs. Further, we will develop metrics for comparing different forms
of MDE development, in order to find the most suitable form.

Fall 2010 Workshop 23

References

References
[1] Mikael Barbero, Marcos Didonet Del Fabro, and Jean Bézivin. Traceability and Prove-

nance Issues in Global Model Management. In ECMDA-TW’07: Proc. of 3rd Workshop
on Traceability, pages 47–55. SINTEF, June 2007.

[2] Jean Bézivin, Sébastien Gérard, Pierre-Alain Muller, and Laurent Rioux. MDA compo-
nents: Challenges and Opportunities. In Proc. of First International Workshop on Meta-
modelling for MDA, pages 23 – 41, York, UK, November 2003.

[3] Marcos Didonet Del Fabro, Patrick Albert, Jean Bézivin, and Frédéric Jouault. Industrial-
strength Rule Interoperability using Model Driven Engineering. Research Report RR-
6747, INRIA, 2008.

[4] Jean-Marie Favre. Foundations of Model (Driven) (Reverse) Engineering – Episode I:
Story of The Fidus Papyrus and the Solarus. In Proc. of Dagstuhl Seminar on Model
Driven Reverse Engineering, 2004.

[5] Jean-Marie Favre. Megamodelling and etymology. In Proc. of Dagstuhl Seminar on Trans-
formation Techniques in Software Engineering, volume 05161, 2005.

[6] Mathias Fritzsche, Hugo Brunelière, Bert Vanhooff, Yolande Berbers, Frédéric Jouault,
and Wasif Gilani. Applying Megamodelling to Model Driven Performance Engineering. In
Proc. of 16th Annual IEEE International Conference and Workshop on the Engineering of
Computer Based Systems, pages 244–253. IEEE Computer Society, 2009.

[7] Regina Hebig, Andreas Seibel, and Holger Giese. On the Unification of Megamodels.
In MPM’10 at the 13th IEEE/ACM International Conference on Model Driven Engineering
Languages and Systems, 3 October 2010.

[8] I. Jacobson, G. Booch, and Jim Rumbaugh. Unified Software Development Process.
Addison-Wesley, 1999.

[9] Thomas Kühne. What is a model? In In proc. of Dagstuhl Seminar, volume 04101, 2005.

[10] Rick Salay. Towards a Formal Framework for Multimodeling in Software Engineering.
In Proc. of the Doctoral Symposium at the ACM/IEEE 10th International Conference on
Model-Driven Engineering Languages and Systems, volume Vol-26, Nashville (TN), USA,
October 2007.

[11] Rick Salay, John Mylopoulos, and Steve Easterbrook. Using Macromodels to Manage
Collections of Related Models. In Proc. of 21st International Conference on Advanced
Information Systems Engineering (CAiSE’09), volume 5565/2009 of LNCS, pages 141–
155, Amsterdam, The Netherlands, 8-12 June 2009. Springer.

[12] Pierre-Yves Schobbens, Patrick Heymans, and Jean-Christophe Trigaux. Feature dia-
grams: A survey and a formal semantics. In Proc. of 14th IEEE International Require-
ments Engineering Conference (RE’06), volume 0, pages 139–148, Los Alamitos, CA,
USA, 2006. IEEE Computer Society.

[13] Andreas Seibel, Stefan Neumann, and Holger Giese. Dynamic Hierarchical Mega Models:
Comprehensive Traceability and its Efficient Maintenance. Software and System Model-
ing, 9(4):493–528, 2009.

24 Fall 2010 Workshop

A Granular Approach for Information
Lifecycle Management in the Cloud

Johannes Lorey

Information Systems Group
Hasso-Plattner-Institut

johannes.lorey@hpi.uni-potsdam.de

Traditional data placement strategies in the context of Information Lifecycle Man-
agement (ILM) are applicable only to on-site storage systems. In contrast to this ap-
proach, Cloud storage provides a novel possibility to reduce or entirely eliminate capital
expenditures for hardware. As a unique solution to buffer short-term resource demand
peaks, Cloud infrastructures can be combined with on-site systems to support efficient
placement of data.
The algorithms underlying this optimization must consider not only the workload as a
whole, but rather variable-sized subworkloads to determine an optimal placement. As
a means to identify these subworkloads, we introduce a multi-dimensional granular-
ization approach. Based on different granules of metadata information, we propose a
flexible hybrid data placement system incorporating both on-site and Cloud resources.

1 Research Context and Related Work

The amount of digital data is increasing constantly. A recent study by hardware vendor
EMC yields that in 2010 the overall storage demand of newly created data will increase
to 1.2 Zettabytes, a 50% increase from 0.8 Zettabytes in 2009 [6]. The expenses
for purchasing and maintaining storage infrastructure on the other hand declines –
but at a much slower rate [19]. Hence, evaluating current data placement paradigms
offers great opportunity for reducing storage cost. Our idea for facing this challenge
comprises approaches from three different research areas.

1.1 Information Lifecycle Management

To reduce capital expenditures for hardware, being able to dynamically determine the
current value of a single datum is a key factor in choosing its optimal storage location.
This decision process is generally referred to as Information Lifecycle Management
(ILM). ILM strategies aim at reducing the cost for storage by placing and relocating
data accordingly. For placement decisions, usually only on-site hardware resources
are considered, such as hard disk drives or magnetic tapes [3] [11]. These resources
can be classified hierarchically into different categories based upon their technical and
economical characteristics. Generally speaking, higher-level storage is more costly (in

Fall 2010 Workshop 25

A Granular Approach for Information Lifecycle Management in the Cloud

terms of money per storage unit) and more easily accessible, while lower-level storage
is cheap and mostly used as a back-up solution. This relationship is illustrated in Fig. 1.

Cache

Main Memory

Solid State Disk /
Hard Disk Drive

Tape drives

decreasing speed
increasing capacity

decreasing access time
increasing TCO

Figure 1: The Information Lifecycle Management Pyramid.

Thus, purchasing and operating a hard disk drive will result in higher cost than
employing a magnetic tape with identical size. On the other hand, a record that is
accessed frequently should reside on a faster hard disk drive instead of a slower tape
in order to ensure time-critical operations can be executed quickly. During its lifetime,
a single datum is typically moved from higher-level to lower-level storage depending
on several factors, such as its access frequency or its current importance. Usually,
these migration operations are based on a set of pre-defined policies [1] [18] or are
sometimes even performed manually [17].

One major drawback of the traditional fixed set-up illustrated in Fig. 1 is its lack to
flexibly handle varying demand in storage resources. This shortcoming is typically by-
passed with higher capital expenditures, i.e., ‘throwing more hardware at the problem’.
Clearly, this approach cannot be regarded as a sophisticated solution. Instead, there
is a demand for an alternative storage platform to flexibly buffer demand peaks without
high up-front cost.

1.2 Cloud Storage

Cloud Computing and Cloud storage offer a novel approach for data handling and
maintenance. Two of the main characteristics of the Cloud are its rapid elasticity and
the associated metering of resource consumption. Hence, there are little to no capital

26 Fall 2010 Workshop

1 Research Context and Related Work

expenditures associated with using Cloud services [13]. On the other hand, long-term
storage necessities may economically justify purchasing on-site hardware instead of
renting resources in the Cloud. The authors of the aforementioned EMC study point
out that by 2020, one third of all digital data will either live in or pass through the Cloud.

As Cloud Computing has been a major technological trend for only a short time,
the decision between using on-site or Cloud resources has usually been a binary one
for companies up to now. Established organizations usually have the resources re-
quired for their daily operations at hand and thus do not sense the need to outsource
infrastructure. On the contrary, security and reliability concerns might even prevent
them from doing so [15]. For start-up businesses on the other hand, commercial Cloud
Computing offerings usually satisfy most resource demands and provide the entire
hardware and software stack for them to offer services over the Internet.

However, there has been only little research on integrating both on-site and Cloud
resources. Most of the ongoing projects aim at emulating certain aspects of com-
mercial providers [10] or face the challenge of establishing a hybrid system by storing
identical copies of data on-site and in the Cloud [2]. Generally, data is either regarded
in its atomic form or in its entirety. Other work focuses on the technical aspects of com-
bining local and remote storage facilities [7], but not on the actual placement decisions.
Only recently have there been advances to include Cloud resources for ILM systems,
but these have been rather limited to certain scenarios [9].

1.3 Distributed Databases

Wide-area networks and the accompanying dissemination of information has also re-
sulted in great research effort in the context of distributed databases. Cloud storage
services are based on the same concepts. Thus, the elementary challenges faced for
highly-distributed systems are also present in a Cloud environment, such as concur-
rency control, reliability, or consistency [12]. It has been recognized by the research
community that the old paradigms established for local databases, such as ACID, are
not always suitable for or even necessary in a distributed or Cloud environment. In-
stead, new requirements have been proposed, such as predictability and flexibility [5].
This somewhat impedes the combination of Cloud and on-site resources.

In general, the aim of distributed databases is to provide an efficient way for query-
ing and processing disseminated information. In this however, they are limited by the
well-known CAP theorem [4]. The acronym summarizes the three concepts Consisten-
cy, Availability, and Partitioning and states that it is trivial to achieve any two of them,
but impossible to satisfy all three at the same time. In the case of data distributing,
partitioning is implicit whereas consistency might be sacrificed for availability or vice
versa.

Besides providing greater scalability, distributed databases also offer straighforward
failover and back-up mechanisms. If data is replicated across the infrastructure, losing
a single system should be easy to compensate. However, whereas in single-machine
environments the choice for data relocation is trivial, in a distributed set-up migrat-
ing data to satisfy queries more efficiently, i.e., by moving the data closer to the con-
suments, is an ongoing research challenge with many practical implications [20] [14].

Fall 2010 Workshop 27

A Granular Approach for Information Lifecycle Management in the Cloud

2 Granular Access

The traditional approach of establishing data placement strategies in the context of ILM
tends to handle all involved entities isolated from one another [3]. For example, pieces
of data are only considered in their most atomic form (e.g., as an individual record
or binary file). Also, the lifecycle of a datum is usually partitioned into fixed-size time
frames. Moreover, data access often is monitored globally only, i.e., with no regard
to individual user or user group access profiles. This stems from the fact that data
storage systems were conventionally ordered hierarchically according to their access
speed and respective cost per storage unit. We propose a hybrid approach to optimize
placement decisions, both in terms of storage capabilities and data organization.

2.1 Fragments

As a basic abstraction model, we propose the notion of fragments. A fragment serves
as a container for multiple atomic data items that are somewhat similar regarding the
way they are accessed. This allows us to formulate placement decisions based on
different levels of granularity by combining more (i.e., coarse-grained) or less (i.e., fine-
grained) atomic data items into an individual fragment. We refer to this approach as
Granular Access. The notion of a fragment is inspired by the ideas proposed in [16].

It should be pointed out that fragments are not strict partitions of the underlying
dataset. Instead, multiple fragments may contain the same atomic data item. Thus, to
optimize query execution by storing data in the most suitable location, there exist two
alternatives: replication (i.e., having multiple copies of a data item) and relocation (i.e.,
moving a single data item to where it is currently best fit).

Both replication and relocation offer advantages and disadvantages. Replication
leads to an increase in storage space and consistency issues, but provides an implicit
back-up mechanism and avoids transfer overhead. On the other hand, relocation is
very efficient in terms of space demands and consistency, however it offers no auto-
matic failover mechanism and may result in bandwidth clogging.

2.2 Two-dimensional Granular Access

The two basic dimensions for deriving fragments based on Granular Access are data
and users. Obviously, atomic data items represent the target of every access oper-
ation. Users, on the other hand, are the source for these operations. By monitoring
information of user operations on data, access patterns can be established. This in
turn helps discovering relationships between pieces of data or individual users. Addi-
tionally, it is usually helpful to identify the type of an operation, in particular whether the
access is non-conflicting (e.g., a read) or could be potentially conflicting (e.g., a write).

Fig. 2 illustrates one possible example for such a relationship between users and
data items based on different kinds of access operations. Here, d1,1 through d1,8 refer
to atomic data items, whereas u1,1 through u1,8 indicate individual users. A red square
represents a potentially conflicting access operation on a datum by a user, a green

28 Fall 2010 Workshop

3 System Design

square stands for a non-conflicting operation. By clustering multiple access operations,
fragments can be formed.

For example, in Fig. 2 there is a strong relationship between u1,1, u1,2 and d1,5, d1,6.
Hence, on a more coarse-granular level u1,1, u1,2 are considered as u2,1 and d1,5, d1,6
as d2,3. This in turn hints at how the fragment is composed (containing d1,5, d1,6) and
where it should be stored (‘close’ to u1,1, u1,2). Note that the first index of di,j and uk,l

indicates how many individual data and user entities are comprised, respectively.

d1,1 d1,2 d1,3 d1,4

u1,1

u2,1

d2,1 d2,2

d1,5 d1,6 d1,7 d1,8

d2,3 d2,4

d4,1 d4,2

u1,2

u1,3

u1,4

u2,2

u1,5

u2,3

u1,6

u1,7

u1,8

u2,4

u4,2

u4,1

Potentially

conflicting

access

Non-conflicting

access

Figure 2: Granular Access based on user and data information.

2.3 Three-dimensional Granular Access

In the context of ILM, time is another essential dimension. Thus, we extend our previ-
ous model of Granular Access to include a temporal component as well. Fig. 3 visual-
izes the result. As with the other two dimensions, time can be considered on different
levels of granularity. An atomic time interval t1,i might represent a minute, an hour, a
day, etc. By coarsening the granularity, different access patterns might become appar-
ent, e.g., morning/evening, weekday/weekend, or seasonal trends.

In [8], we present a formal definition for granular ILM workloads based on the data,
user, and time dimension. There, we also discuss the implications of fragment compo-
sition properties on scalability, storage model, and transaction policy.

3 System Design

Fig. 4 depicts our design for an ILM system based on Granular Access. Here, the
central concept are fragments, which comprise a number of atomic data items. One

Fall 2010 Workshop 29

A Granular Approach for Information Lifecycle Management in the Cloud

t1,1
t1,2

t1,3
t1,4

t1,5
t1,6

t1,7
t1,8

t2,1

t2,2

t2,3

t2,4

t4,2

t4,1

Figure 3: Granular access based on user, data, and temporal information.

individual data item might be included (i.e., replicated) in multiple fragments. The major
components of the system design are briefly summarized in the following subsections.

3.1 Transaction Analyzer

The Transaction Analyzer identifies the atomic data items for a single query based on
the according transaction log entry. For each datum, the corresponding metainforma-
tion (e.g., the storage location and size) is gathered. Subsequently, the lifecycle status
of every datum is updated. The resulting metadatum entities are then passed on.

3.2 Fragment Cohesion Calculator

The Fragment Cohesion Calculator uses the identified metadatum items to establish
possible fragment combinations. For this, the user and time information is extracted
from the currently analyzed query. Possibly, more than one atomic datum is relevant to
the query, hence, all possible fragment combinations are identified and a corresponding
cohesion score is calculated. The cohesion score reflects how coherent the individual
data items are with respect to the fragment’s size. In practice, a threshold might be
applied to the cohesion score in a subsequent component to avoid composing and
storing fragments with only loosely connected data items.

In case a fragment is already present in the fragment metainformation database,
its score is updated. Otherwise, the properties of the new fragment are stored in the
database. Among these properties are the cohesion score, the identifiers of the in-
dividual data and user items, as well as the query time. This information is used to
identify the proper storage location later on.

30 Fall 2010 Workshop

4 Summary and Next Steps

3.3 Fragment Analyzer

The Fragment Analyzer calculates the overall lifecycle information of a fragment based
on the according status of its components. In addition, it determines the fragment’s
replication factor, i.e., how many of the fragment’s data items can be found in other
fragments. While the cohesion score was solely based on an individual fragment,
the replication factor must be determined by comparing multiple fragments with one
another.

3.4 Cost Estimator

As placement decisions are formulated based on a cost model, the Cost Estimator
needs to gather information about the technical and monetary characteristics of all
available datastores. By calculating the cost for storage, transfer, and processing of
a fragment, the optimal storage location for its data items can then be determined.
However, a cost model for leasing disk space in a Cloud can become very complex
even when only regarding plain data storage features [19].

3.5 Storage Dispatcher

As pointed out in the description of the Cost Estimator and indicated in Fig. 4, data-
stores might present different technical features. This is observable foremost in their
storage model, e.g., being relational, key/value, etc. Hence, for dynamically migrating
data between datastore with different paradigms it is essential to convert data from
one format to another. This is the responsibility of the Storage Dispatcher. Addition-
ally, it executes the relocation operations by actually transferring the data items to the
respective infrastructure.

4 Summary and Next Steps

In this work, we presented our granular approach for Information Lifecycle Manage-
ment incorporating both on-site and Cloud resources. Additionally, we introduced the
key concept of fragments and analyzed our idea of a Granular Approach on data in-
corporating user and temporal information. Furthermore, we gave an overview of a
system design that leverages different datastores to automate and optimize placement
decisions. Here, we briefly discussed the most important components.

Fall 2010 Workshop 31

A Granular Approach for Information Lifecycle Management in the Cloud

MetaDatum

MetaDatum

MetaDatum

.

.

.

MetaDatum

Fragment

.

.

.

Fragment

Fragment
Cohesion
Calculator

L
o
g
s

Trans-
action

Analyzer

Fragment
MetaDB

Data
MetaDB

Fragment
Storage

Dispatcher

Cost
Estimator

Fragment
Analyzer

Key/
Value

RDBMS

OO
DBMS

RDF/
Graph

Figure 4: A design for an ILM system based on Granular Access.

Using the Granular Access approach in combination with the ideas from the re-
search areas outlined in Sec. 1, our future work will aim at answering the following
questions:

• How can the value of a datum be estimated accurately?

• How can data allocation and query processing be optimized?

• How can unnecessary relocation operations be avoided to prevent bandwidth
clogging?

• How can the cost for data storage be minimized?

The answers to these questions will influence the fragments’ composition, e.g., with
respect to their size and replication factor. The composition approach in turn has im-
plications on the implementation of the individual components of our system that were
introduced in Sec. 3. As next steps, we will specifically focus on the Fragment Cohe-
sion Calculator and Fragment Analyzer. We plan to evaluate our ideas on a number of
use cases.

32 Fall 2010 Workshop

References

References

[1] Mandis Beigi, Murthy Devarakonda, Rohit Jain, Marc Kaplan, David Pease, Jim
Rubas, Upendra Sharma, and Akshat Verma. Policy-Based Information Lifecy-
cle Management in a Large-Scale File System. IEEE International Workshop on
Policies for Distributed Systems and Networks, 0:139–148, 2005.

[2] Borja Sotomayor, Ruben S. Montero, Ignacio M. Llorente, and Ian Foster. Virtual
Infrastructure Management in Private and Hybrid Clouds. IEEE Internet Comput-
ing, 13:14–22, 2009.

[3] Charlotte Brooks, Giacomo Chiapparini, Wim Feyants, Pallavi Galgali, and Vini-
cius Franco Jose. ILM Library: Techniques With Tivoli Storage And IBM Totalstor-
age Products. IBM Redbooks, 2006.

[4] Eric A. Brewer. Towards robust distributed systems. In Proceedings of the 19th
annual ACM symposium on Principles of distributed computing, 2000.

[5] Daniela Florescu and Donald Kossmann. Rethinking cost and performance of
database systems. SIGMOD Rec., 38(1):43–48, 2009.

[6] John Gantz and David Reinsel. The Digital Universe Decade -Ű Are You Ready?
http://chucksblog.emc.com/content/DU2010text.pdf, May 2010. IDC iVIEW.

[7] Heeseung Jo, Youngjin Kwon, Hwanju Kim, Euiseong Seo, Joonwon Lee, and
Seungryoul Maeng. SSD-HDD-Hybrid Virtual Disk Consolidated Environments.
In Proceedings of the 4th workshop in Virtualization in High-Performance Cloud
Computing (VHPC), August 2009.

[8] Johannes Lorey and Felix Naumann. Towards Granular Data Placement Strate-
gies for Cloud Platforms. In 2010 IEEE International Conference on Granular
Computing, pages 346–351. IEEE Computer Society, 2010.

[9] M. Meisinger, C. Farcas, E. Farcas, C. Alexander, M. Arrott, J. D. L. Beaujardière,
P. Hubbard, R. Mendelssohn, and R. Signell. Serving Ocean Model Data on the
Cloud. In Proceedings of OCEANS 2009 MTS/IEEE, 2009.

[10] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano Obertelli, Sunil Soman,
Lamia Youseff, and Dmitrii Zagorodnov. The Eucalyptus Open-Source Cloud-
Computing System. In Proceedings of the 9th IEEE/ACM International Sympo-
sium on Cluster Computing and the Grid, pages 124–131, Washington, DC, USA,
2009. IEEE Computer Society.

[11] Oracle. Information Lifecycle Management for Business Data. http:

//www.oracle.com/technology/deploy/ilm/pdf/ILM_for_Business_11g.pdf,
June 2007.

[12] M. Tamer Özsu and Patrick Valduriez. Principles of distributed database systems
(2nd ed.). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1999.

Fall 2010 Workshop 33

References

[13] Peter Mell and Tim Grance. The NIST Definition of Cloud Computing, July 2009.

[14] Mahadev Satyanarayanan, Victor Bahl, Ramon Caceres, and Nigel Davies. The
Case for VM-based Cloudlets in Mobile Computing. IEEE Pervasive Computing,
99(PrePrints), 2009.

[15] James Staten, Simon Yates, Frank E. Gillett, Walid Saleh, and Rachel A. Dines.
Is Cloud Computing Ready For The Enterprise? Technical report, Forrester Re-
search, 400 Technology Square Cambridge, MA 02139 USA, March 2008.

[16] Michael Stonebraker, Paul M. Aoki, Witold Litwin, Avi Pfeffer, Adam Sah, Jeff
Sidell, Carl Staelin, and Andrew Yu. Mariposa: a wide-area distributed database
system. The VLDB Journal, 5(1):048–063, 1996.

[17] Paul P. Tallon. Understanding the Dynamics of Information Management Costs.
Communications of the ACM, 53(5):121–125, 2010.

[18] Tetsuo Tanaka, Kazutomo Ushijima, Ryoichi Ueda, Ichiro Naitoh, Toshiko Aizono,
and Norihisa Komoda. Proposal and Evaluation of Policy Description for Infor-
mation Lifecycle Management. International Conference on Computational Intel-
ligence for Modelling, Control and Automation, 1:261–267, 2005.

[19] Edward Walker, Walter Brisken, and Jonathan Romney. To lease or not to lease
from storage clouds. Computer, 43:44–50, 2010.

[20] Dong Yuan, Yun Yang, Xiao Liu, and Jinjun Chen. A data placement strategy in
scientific cloud workflows. Future Gener. Comput. Syst., 26(8):1200–1214, 2010.

34 Fall 2010 Workshop

Data in Business Process Modeling

Andreas Meyer

andreas.meyer@hpi.uni-potsdam.de

The importance of data in business process modeling increased steadily during the
last years motivated by the need of visualizing executable business process models as
well as industry-driven with regards to process controlling and business intelligence.
Several modeling notations do exist which deal with data on different levels. This report
classifies these notations and discusses some of them with regards to the role of data.
Additionally, chances with respect to future work in the field of data object life cycles
are discussed briefly.

1 Introduction

Traditionally, business process management emerged from Workflow modeling in the
mid-nineties of the last century. Workflow modeling comprised the basic representa-
tion of tasks needed to be executed to reach a specific business goal. These tasks
were ordered and for each of them, conditions could be specified which guided the
execution of the whole workflow. These conditions included statements about required
information, material, and resources, i.e. persons and machines, to perform the actual
work. [18] presents the derivation of patterns for all these perspectives from mainly
workflow systems.

In the beginning, business process management focused on the design and doc-
umentation of business processes and therefore, it focused on the order of and on
dependencies between tasks while data and resources played a very minor role if any;
i.e. the so-called control flow dominated these business process modeling notations.
The first notations utilized for modeling heavily relied on long existence approaches,
e.g. workflow nets have been derived from Petri nets which have been introduced by
Petri in 1962 [15]. In the beginning of this century many new approaches have been
introduced, but only few are of ongoing interest in business process modeling, e.g.
Business Process Model and Notation (BPMN) [13, 14]. Most of the notations intro-
duced in the beginning of the first decade do still focus on control flow, whereas later
introduced notations shifted their focus to data or at least data awareness. Two big
steps in this field are the notion business artifacts from IBM [1,6, 11] and the outcome
of the Corepro project of the university of Ulm in cooperation with Daimler AG [8]. This
shift of focus aligns with a widening focus in business process management. Execution
of business process models, especially the ones designed using a graphical notation,
became a more and more important aspect in business process management. Execu-
tion itself did already play an important role for a while and Business Process Execution
Language (BPEL) [12] became the industry standard. But BPEL lacks a graphical rep-
resentation (besides XML structures). Therefore, effort was put into a mapping of the

Fall 2010 Workshop 35

Data in Business Process Modeling

widely accepted BPMN representation to BPEL. However, the mapping is not straight-
forward [26] and finally, BPMN will get execution semantics in the upcoming version
2.0 [14]. And as execution got more attention also data needed to get attention as al-
most all process rely on documents and information; e.g. a simple order process needs
to consider the order document itself, probable item lists stating availability and costs
of the ordered items, the address information for delivery et cetera. All this information
is visualized by the means of data objects.

Besides the need based on execution, industry asks for data support for several
years now as it can be observed for instance through the keynotes as well as tutorials
by industry people at the recent BPM conference, the main conference on business
process management. The speakers claim for instance that control flow and data in-
formation depend on each other [17] and none of both “means” something without the
existence and specification of the other (Paul Harmon).

Additionally, data flow, i.e. the usage of data objects throughout a process, shall be
documented as well as used for KPI measuring and controlling and the field of business
intelligence. Business intelligence requires explicit statement of data objects. Pre- and
postconditions of data objects with regards to the manipulation of them during process
execution are of importance as well. Usually, these data objects are provided by differ-
ent, probably intersecting legacy systems installed in the organization and therefore,
the origin of data or more general information must be visualized and considered in the
business process models.

Tackling such talks and requirements, the aforementioned data-driven approaches
emerged during the last couple of years. However, even if industry claims the impor-
tance of data, not everybody follows the approach of strict data-centric approaches
as to be seen by the industry-driven development of the BPMN 2.0 standard. BPMN
2.o will get a stronger focus on data but still keeps data object as supporting model-
ing constructs and control flow will dominate the models. But nevertheless, they also
incorporated the higher importance of data in process models.

The scope of this paper is to revise different existing business process modeling
notations and discuss the role of data within these notations with regards to the re-
quirements sketched above. After presenting these discussions, ideas for future work
and improvements regarding business process modeling and data are presented. The
remainder of this report is structured as follows. Section 2 generally classifies different
business process modeling notations and discusses their feasibility to deal with data
at an high level of abstraction. Section 3 introduces ideas on utilizing existing works
on dependencies between business process models and data object life cycles. Ad-
ditionally, an outlook on future research is given. Finally, this report is concluded in
Section 4.

2 Data in Business Process Modeling Notations

This section presents a high-level classification schema of business process modeling
notations in the upcoming subsection. Afterwards, representatives for each classifica-
tion type are introduced and the role of data in these approaches briefly discussed.

36 Fall 2010 Workshop

2 Data in Business Process Modeling Notations

Ai

B

C

D o

Figure 1: Workflow net

Subsection 2.5 finalizes this section by summarizing the discussion.

2.1 Classification

Generally, business process modeling notations can be classified with respect to their
primary modeling constructs. Basically, three types have been identified: activity-
driven, data-driven, and communication-driven approaches.

2.2 Discussion of Activity-driven Approach

The activity-driven approach mainly focuses on the representation of the control flow.
In this section, workflow nets, BPMN 2.0, and BPEL are discussed as three impor-
tant representatives in this area. BPEL is the industry standard in business process
execution languages. BPMN gathered much attention regarding designing business
process models in a graphical environment and moves onward to execution semantics
specified in the 2.0 standard. Additionally, BPMN is widely accepted in industry and
highly influenced by industry leaders like SAP and Oracle. Workflow nets have been
the beginning in business process management and are still used as basis of other
notations like BPMN to allow syntactical checks in these higher level notations.

Petri Nets and Workflow Nets. Petri nets were introduced by Petri in [15]. After
several extensions covering for instance timing, hierarchies, and colors in Petri nets
[4,5,22,23], they are often used to model or formalize business processes. Transitions
model process activities, while places model process states and help to realize routing
decisions. The edges capture the process control flow. Data or data objects are not
considered at all. Hence, Petri nets focus on modeling of process activities and control
flow. The idea behind workflow nets is to utilize petri nets for workflow modeling [24].
Therefore, the statements for Petri nets are valid for workflow nets as well.

In Figure 1, a workflow net containing an exclusive split after activity A is visualized.
Data is not part of this model.

BPMN 2.0. Currently BPMN 2.0 is planned to succeed the version 1.2, see [14]. In
comparison to version 1.2, BPMN 2.0 evolves with new model elements, diagram types,
and model execution semantics. In essence, BPMN is an expressive graph-based
modeling notation. The graph nodes correspond to process elements, e.g., events,
activities, and gateways. Graph edges represent various object relations, where control
flow is the most important one among the rest. Those graph nodes that are related by

Fall 2010 Workshop 37

Data in Business Process Modeling

the control flow relation are referenced as flow objects, while other nodes as non-flow
objects. Flow objects include events, activities, and gateways, data objects are non-
flow objects.

Data objects can be associated to the flow objects, where an association indicates
that the flow object accesses the data object. While undirected associations capture
only the fact of data access, directed associations show, whether the data object was
read or written. A data object may have distinguished states, evolving through the pro-
cess. Along with graphical associations, BPMN allows to specify data access through
activity attributes InputSet and OutputSet. In the context of BPMN data modeling ca-
pabilities, it is relevant to mention the message exchange mechanism: different orga-
nizations communicate with each other via message exchange visualized via explicit
message objects. Data objects can be associated with sequence flow or message flow
edges. However, such a modeling method can be seen rather as a shortcut: the data
object is the output of the edge’s source node and the input of the edge’s target node.

Additionally, BPMN 2.0 introduces the concept of data object collections, organizing
similar data objects into groups. Further, to show that a data object is delivered by an
external resource or is consumed by it, a data object is declared as a process input
or output. BPMN 2.0 also introduces data store as an instrument for process data
persistence. Generally, data store represent anything where data can be gathered or
read from, e.g. paper, folder, database. In information systems, a data store is usually
represented by a database.

Figure 2 presents the capabilities of BPMN 2.0 with respect to data modeling. Date
objects Data 1 and Data 2 are read and written by different activities and passed along
between participants. As the objects traverse activities, their states are updated. The
message passing between two participants is modeled explicitly with the envelope as-
sociated with the message flow relation. Additionally, the model contains a database
element persisting information relevant to the communication of Organization 1 and
Organization 2 on the side of Organization 2.

Organization 1

O
rg

a
n

iz
a

ti
o

n
 2

R
o

le
 1

R
o

le
 2

Activity 1

Data 1

[state1]

Activity 2

Activity 3

Activity 4

Activity 5

Data 2

[state2]

Data 2

[state3]

Data 2

[state1]

Figure 2: BPMN 2.0

38 Fall 2010 Workshop

2 Data in Business Process Modeling Notations

Summarized, the role of data modeling increased in BPMN 2.0 and reached of data
flow in BPMN 2.0. However, BPMN remains the business process modeling notation
with a focus on control flow.

BPEL. WS-BPEL, Web Services Business Process Execution Language, has been
introduced by IBM, BEA Systems, Microsoft, Siebel Systems, and SAP and is the
current de-facto standard for web-service-based execution of business processes. The
current version 2 has been introduced in [12] and focuses on activities, services linked
to these activities, and their order visualized by an XML structure. Data flow is modeled
implicitly only through variables contained in globally visible data containers, which are
shared among the participants of the process. However, the variables represent in-
and output messages of the activities. The exchange of specific data objects and
the manipulation of variables may be handled through BPEL’s assign statement as
presented exemplarily in Listing 1.

1 <assign>
2 <copy>
3 <from con ta ine r= " c1 " pa r t = " partX " / >
4 < to con ta ine r= " c2 " pa r t = " partY " / >
5 < / copy>
6 < / assign>

Listing 1: Exchange of data elements in BPEL

Besides this data object passing, there are no possibilities to handle data. This
includes specifications of transformations and modifications of data objects. Therefore,
BPEL itself is very activity-centric and control flow focused with data flow playing a
very minor role. However, Habich et al. introduced a data aware extension to BPEL
in [3]. They utilize so-called Data-Grey-Box Web Services [2], which are web services
enhanced with an explicit data aspect specifying how the specific data (object) is to
be accessed. Additionally, they introduced a new link type to connect services from
the data perspective. Altogether, the authors propose an orthogonal extension to the
control flow concept: a separate data flow layer playing a supporting role in process
modeling. These extension increases BPEL’s data capabilities. However, the level
remains on a level of BPMN 1.2 and below BPMN 2.0.

2.3 Discussion of Data-driven Approach

The data-driven approach does mainly focus on data objects and information and tries
to visualize the flow of data and existing pre- and post-requirements which restrict the
manipulation of single data objects with respect towards the overall business goal, the
specific business process shall reach. In this section, the business artifact approach
as well as the Corepro framework are discussed. In the first mentioned approach,
data objects are named business artifacts around which all other business process
information is centered. In Corepro, data objects are not the only driving factor, but the
combination of data and control flow allows business process execution.

Fall 2010 Workshop 39

Data in Business Process Modeling

Besides these two modeling approaches, there exist also works dealing with data
in a pre step. For instance, the product-based workflow approach [16] discovers opti-
mal execution orders of activities primary based on data requirements and secondary
based on the costs and time the execution of a specific activity consumes. Based on
this information, a workflow net model is derived and presents the executable model.
Following, approaches of this kind are not considered as these are no real business
process modeling approaches trying to replace activity-driven approaches, but prepa-
ration steps to derive a business process model.

Business Artifacts. Business artifacts is a business process modeling approach that
“shift[s] the focus ... from the actions taken to the entities that are acted upon” [1].
Initially introduced by Nigam and Caswell in [11], the approach has been discussed
in a series of papers and thoroughly formalized by Bhattachary et al. in [1]. The
formalization identifies business artifacts, schemata, services, and business rules as
the main concepts of the approach.

Business artifacts are information entities capturing business process goals and en-
abling judgment of the goal accomplishment. Business artifact examples are order and
invoice in the order to cash process. According to the formalization developed in [1], a
business artifact is a fusion of two models: informational model and life cycle model.
The informational model describes the artifact properties relevant to the process. The
life cycle model defines the artifact states and allowed state transitions. The life cycle
states correspond to high-level states on the path towards reaching the business pro-
cess goal. While the informational model is formalized with a database schema, the
life cycle model can be defined as a finite state machine or a Petri net. A collection of
related business artifacts leading to the same business goal is called a schema.

Services correspond to activities in such notations as BPMN or EPCs (event-driven
process chains). A service acts on business artifacts manipulating the content of ar-
tifact’s informational model and changing the artifact life cycle state. Business rules
determine the use cases and conditions which need to appear for allowing a service to
access a business artifact.

Based on the aforementioned components, process execution does not follow a
predefined order but depends on the availability of business artifacts in a specific state
or business artifacts holding certain information. Hence, this approach utilizes data as
the first class modeling artifact which alone drives the business process execution.

Notice that the visual notation for business artifact modeling is not settled. In this
report, an example using the notation used in [1] is presented, see Figure 3. The figure
presents the model of one artifact with seven attributes, constituting the informational
model, and three life cycle states: state1, state2, and state3. The transitions between
states are realized by means of activities A1 and A2.

Corepro. Corepro is a framework providing an approach for enacting and changing
data-driven process structures. It is presented in [9] and [10]. The core idea is to au-
tomatically create data-driven process structures which form one out of two bases to
automatically create the control-flow strongly influenced by data dependencies. Alto-

40 Fall 2010 Workshop

2 Data in Business Process Modeling Notations

Figure 3: Business artifact example based on [1]

gether, this is a five-step-approach. First, available data objects and generally existing
states of these data objects are determined on the data side. Besides, the process
definition needs to be created and possible process states identified. Second, all data
objects are put into an hierarchical structure before the object life cycle for each data
object is created. In step four, the outcomes of the two preceding steps are utilized and
the dependencies between the data states of the single data objects are determined.
Lastly, this data-based structure is combined with the control-flow information leading
to rules which are used for the aforementioned automatic data-driven control-flow.

Following these steps, Corepro also allows process adaptation during runtime and
automatically translates the modifications made to data structures into the control-flow.
These modifications include but are not limited to changes like adding or deleting data
objects, changing relations of data objects, or adding external state transitions. For not
yet activated elements of the process, the authors provide simple rules for the adap-
tation. For modifications of already started instances, specific correctness constraints
are formulated and need to be fulfilled for allowing the intended adaptation.

Summarized, this approach closely relates control- and data-flow structures and the
process execution is strongly influenced by data structures.

2.4 Discussion of Communication-driven Approach

The communication-driven approach works with activity- as well as data-driven ap-
proaches. It focuses on interactions between all process participants and the business
goal is finally reached by a series of these interactions or communications. There-
fore, communications are the primary modeling construct. Following, proclets as one
representative are introduced.

Proclets. Proclets are leight-weight processes which communicate via structered
messages, so-called performatives, trough channels with each other. They have been
introduced in [21]. Each of these processes focus on the behavior of one specific case
instead of overloading single processes with information from several cases. The then
missing connections between dependent process chunks are introduced into the over-
all model via the aforementioned channels. Proclets itself are the specification of the
general process and contain a knowledge base comprising information about previous
interactions, i.e. a life cyle. Therefore, each proclet instance has a state. The working
procedure of the communication channels seems to be adapted from what is known

Fall 2010 Workshop 41

Data in Business Process Modeling

a

A

B

Naming Service

Proclet
Channel

Task

Port

Figure 4: Proclets framework based on [21]

from the internet protocols. For instance, point-to-point and broadcast communications
are allowed, different reliability channels exist comparable to the tcp/ip and udp pro-
tocols, and security and priority settings can be set to allow for encoded or real-time
communication for example. Additionally, a naming service ensures that the proclets
are able to find each other and to establish the communication. This naming service
works on basis of identifiers.

Summarized, proclets move the main focus from pure control-flow to communica-
tion and interaction between case-based process chunks, which are supposed to be
control-flow oriented. However, the processes connected by the communication chan-
nels might be of any focus. Figure 4 presents the framework of proclets, including all
relevant modeling artifacts: Proclet, channel, naming service, port, and task.

2.5 Conclusion of Approaches Discussion

Independently from the type of notation and approach, data awareness is existing or
currently approaching in notations which are still under ongoing development. From
the presented notations, only workflow nets are not capable of dealing with data in-
formation which is based on the fact that they are an one-to-one mapping from Petri
nets. Therefore, workflow nets will not change in the future. In all others, data plays
a role of increasing importance. These notations offer various opportunities to model
data flow and dependencies, although the activity-driven approaches do not visualize
the data flow explicitly. The step of deriving it needs to be performed, which is also au-
tomatable. Besides data awareness, the different notations do have further strengths
and therefore, based on the actual field of application the appropriate notation needs
to be chosen. Data alone is not a sufficient indicator. For instance, the activity-driven
approaches may the pick of choice regarding documentation of business processes.
Data-driven approaches are more applicable in areas which require flexible process
redesign, probably even during process execution, or fields of knowledge intensive
processes.

42 Fall 2010 Workshop

3 Dependencies between Business Process Models and Data Object Life Cycles

3 Dependencies between Business Process Models
and Data Object Life Cycles

The field of integrating data object life cycles and business processes has been initiated
by Wahler [19, 20, 25]. She introduced approaches for deriving data object life cycles
from business process models in activity diagram notation [19] and vice versa [7]. In the
same context, she introduced the notions of object life cycle conformance, object life
cycle coverage, and life cycle compliance which allow syntactic checks on the relation
between a business process model and the appropriate data object life cycle. In fact,
these notions check whether all transitions or activities respectively and all states have
a counter part in the other model type. For instance, if a data object life cycle and a
business process model fulfill the requirements for conformance and coverage, both
models are identical from an execution point of view.

Generally, there are four main types of views on a business process model with
respect to abstraction: the management view, the technical view, the data-based view,
and the implementation view. The relationship between these types is visualized in
Figure 5. Relationships between the very high-level management view and a rather
detailed but still control-flow-oriented technical view can be highlighted by the means of
behavioural profiles [27]. The mapping from the data-based view to the implementation
is tackled by a current master’s thesis of Ole Eckermann, the way back is currently not
tackled. The linkage of the technical view with the data flow probably defined by master
data management experts is currently a cumbersome and manual task and lacks a
common understanding from the process side (technical view) and the data side. In
this field, I like to tackle open issues based on Wahler’s work and I like to determine
opportunities to harmonize both worlds influenced by the achievements of the current
data-driven business process modeling approaches discussed in Subsection 2.3.

These issues comprise for instance the verification of process instances based on
the notions of data object life cycle conformance and coverage and providing informa-
tion and correction proposals to align both representations based on environmental
information. Further open issues concentrate around the fields of aggregations of data
object life cycles of different data objects utilizing Wahler’s synchronization points and
data object aggregations and connected to these two fields also concurrent access to
data objects or rather chunks of data objects.

4 Conclusion

This paper presents a discussion on the role of data in different business process mod-
eling notations which belong to the set of activity-driven, data-driven, or communication-
driven business process modeling approaches. Generally, data awareness is given in
all discussed notations which were updated during this century or are currently in the
update process. Especially the activity-driven approaches do not provide explicit data
flow representation, but it might be derived from the models automatically. Therefore,
the choice for a specific modeling notation is less dependent on data requirements,
but more with respect to further requirements like the need to flexibly change process

Fall 2010 Workshop 43

References

Management View

Technical View

Data-based View

Implementation View

Behavioural Profiles

Open Issues

Master’s Thesis

Figure 5: Views on business process models

structures at runtime or the intention to document current process structures within the
organization.

Additionally, insights regarding the interplay of business processes and data object
life cycles have been presented with respect to further improvements in this field of
application.

References

[1] K. Bhattacharya, C. Gerede, R. Hull, R. Liu, and J. Su. Towards Formal Analysis
of Artifact-Centric Business Process Models. Business Process Management,
pages 288–304, 2007.

[2] D. Habich, S. Richly, and M. Grasselt. Data-grey-boxweb services in data-centric
environments. In IEEE International Conference on Web Services, 2007. ICWS
2007, pages 976–983, 2007.

[3] D. Habich, S. Richly, S. Preissler, M. Grasselt, W. Lehner, and A. Maier. BPEL-DT
- Data-Aware Extension of BPEL to Support Data-Intensive Service Applications.
Emerging Web Services Technology, 2:111–128.

[4] K. Jensen. Coloured petri nets. Petri nets: central models and their properties,
pages 248–299, 1987.

[5] K. Jensen. Coloured Petri nets: basic concepts, analysis methods, and practical
use. Springer Verlag, 1996.

[6] S. Kumaran, R. Liu, and F. Wu. On the Duality of Information-Centric and Activity-
Centric Models of Business Processes. In Advanced Information Systems Engi-
neering, pages 32–47. Springer, 2008.

[7] J. Küster, K. Ryndina, and H. Gall. Generation of Business Process Models for
Object Life Cycle Compliance. Business Process Management, pages 165–181,
2007.

44 Fall 2010 Workshop

References

[8] D. Müller. Management datengetriebener Prozessstrukturen. 2009.

[9] D. Müller, M. Reichert, and J. Herbst. Flexibility of data-driven process structures.
In Business Process Management Workshops, pages 181–192. Springer, 2006.

[10] D. Müller, M. Reichert, and J. Herbst. A new paradigm for the enactment and
dynamic adaptation of data-driven process structures. In Advanced Information
Systems Engineering, pages 48–63. Springer, 2008.

[11] A. Nigam and N.S. Caswell. Business artifacts: An approach to operational spec-
ification. IBM Systems Journal, 42(3):428–445, 2003.

[12] OASIS. Web Services Business Process Execution Language Version 2.0, April
2007.

[13] OMG. Business Process Modeling Notation (BPMN) Version 1.2, January 2009.

[14] OMG. Business Process Model and Notation (BPMN) Version 2.0, June 2010.
draft, revised submission.

[15] C.A. Petri. Kommunikation mit Automaten. Rhein.-Westfäl. Inst. f. Instrumentelle
Mathematik an der Univ. Bonn, 1962.

[16] H.A. Reijers, S. Limam, and W.M.P. Van Der Aalst. Product-Based Workflow De-
sign. Journal of Management Information Systems, 20(1):229–262, 2003.

[17] C. Richardson. Warning: Don’t Assume Your Business Processes Use Master
Data, 2010.

[18] N.C. Russell. Foundations of Process-Aware Information Systems. 2007.

[19] K. Ryndina, J. Küster, and H. Gall. Consistency of Business Process Models and
Object Life Cycles. Models in Software Engineering, pages 80–90, 2007.

[20] Ks. Ryndina, J.M. Küster, and H. Gall. Consistency of Business Process Models
and Object Life Cycles. In MoDELS Workshops, volume 4364 of LNCS, pages
80–90. Springer, 2006.

[21] W. van der Aalst, P. Barthelmess, C. Ellis, and J. Wainer. Workflow modeling using
proclets. In Cooperative Information Systems, pages 198–209. Springer, 2000.

[22] W.M.P. van der Aalst. Time coloured Petri nets and their application to logistics.
Springer-Verlag.

[23] WMP Van der Aalst. Putting high-level Petri nets to work in industry. Computers
in Industry, 25(1):45–54, 1994.

[24] W.M.P. Van der Aalst et al. The application of Petri nets to workflow management.
Journal of Circuits Systems and Computers, 8:21–66, 1998.

Fall 2010 Workshop 45

References

[25] K. WAHLER. A Framework for Integrated Process and Object Life Cycle Modeling.
PhD thesis, IBM Research, 2009.

[26] M. Weidlich, G. Decker, A. Großkopf, and M. Weske. BPEL to BPMN: the myth of
a straight-forward mapping. On the Move to Meaningful Internet Systems: OTM
2008, pages 265–282, 2008.

[27] M. Weidlich, M. Weske, and J. Mendling. Change propagation in process models
using behavioural profiles. In Services Computing, 2009. SCC’09. IEEE Interna-
tional Conference on, pages 33–40. IEEE, 2009.

46 Fall 2010 Workshop

Semantics Detection for Data Quality
Web Services

Tobias Vogel

tobias.vogel@hpi.uni-potsdam.de

Data quality is an essential key factor for economical success. It is a set of prop-
erties of data, such as completeness, accessibility, relevancy, and consistency in pre-
sentation which also includes the absence of multiple representations for same real
world objects. To avoid those duplicates, there is a wide range of commercial prod-
ucts and customized self-coded software. These programs can be quite expensive in
both, adoption and maintenance which can be a barrier for small and medium-sized
companies to afford these tools. We present a novel approach, whose main charac-
teristics are (1) minimal user interaction required and (2) self-adaption to the provided
input data. Similarity measures are assigned to the provided records’ attributes and a
duplicate detection process is carried out. We incorporate a novel matching approach,
called 1:k Mapping to classify the provided data, which is a prerequisite for properly
assigning similarity measures.

1 The Need for Data Quality

Data are often captured by humans. Ignoring the correct spelling, insufficient audio
quality on a phone line, stress, typos, or encoding issues are severe problems for the
overall correctness of data in CRM systems filled by employees. There are validation
tools that check data for soundness to some extent, e.g., syntactical correctness of
telephone numbers or existence of postal addresses. However, it is unlikely – at least
with a reasonable confidence – to tell correct and wrong spellings of names apart or to
check a person’s occupation.

As a result, the affected company will face problems of, e.g., finding the correct
record when trying to solve a postal delivery issue. Furthermore, it is impossible to
calculate key performance indicators correctly, such as the correct number of unique
customers or the average revenue per customer. Also, the expenses for advertise-
ment mailings are unnecessarily high due to sending different shipments to the same
customer. And last but not least, the customer satisfaction suffers when clients are
bothered with unnecessary mailings.

There are approaches to manage these deficiencies by being more tolerant in
searching: similarity measures are introduced that relax strict comparisons by assign-
ing a real number (typically between 0 and 1) to a pair of elements, instead. This
number represents the certainty that both elements represent the same real-world en-
tity. This makes it possible to execute fuzzy queries. The challenge is to develop good

Fall 2010 Workshop 47

Semantics Detection for Data Quality Web Services

similarity measures and to apply them to the corresponding attributes in the data to
be cleaned, which is an assignment problem. Combining the different measures and
selecting promising pairs of elements in the provided datasets is called Duplicate De-
tection.

Applications to perform duplicate detection are offered by database vendors, third-
party software, and consultant companies. However, in general, the effort is not only
of financial nature, i.e., in buying and maintaining the software. Often, there are many
parameters to be set by domain experts to tweak the applications and to maximize the
effectiveness of the batch runs, hence a manual effort. While large companies are
able to pay for this essential process, other companies, which have the same need for
high-quality, duplicate-free data, are not able to pay consultants and maintenance for a
once-in-a-month-run.

Web Services1 are an appropriate model for such on-demand invocation styles.
They offer flexible and scalable processing powers and are often provided with pay-as-
you-go cost models.

Providers for duplicate detection services only offer webpages, where humans can
upload and download their database dumps manually. While this is cumbersome and
time-consuming, the extract and load procedures are not part of the service. Manual
effort has also to be put into assigning data types/semantics to the uploaded data as
shown in Figure 1.

Figure 1: Screenshot of assigning semantics to attributes of uploaded input data
(addressdoctor.com)

1We define a Web Service as a piece of software that serves a well-defined purpose, is typically
invoked over a network, and is called by other programs rather than human users.

48 Fall 2010 Workshop

2 Workflow

The conditions for different duplicate detection tasks are manifold, depending on
the amount of (meta) information, this tasks bases on. For example, if the data is not
in relational format, it is unclear, which attributes to compare, whereas if the data type
or semantics are unknown, it is hard to decide, how to compare different attributes.
We approach these challenges towards a service-based duplicate detection technique
without human interaction, that is integrated into the DAQS (Data Quality as a Service)
project.

In this paper, we propose

• the novel 1:k mapping problem between columns and similarity measures,

• a technique to classify semantics of columns and describe an extended version
of the Hungarian Algorithm to solve the 1:k mapping problem, and

• an evaluation on different datasets showing the feasibility and usefulness of our
approach.

2 Workflow

The duplicate detection service works in three phases, as illustrated in Figure 2.

Figure 2: Workflow and architecture of a duplicate detection service (phases are in
boxes)

In the problem classification phase, the provided data are analyzed to find out the
format and how to treat them during further processing [13], e.g., whether information

Fall 2010 Workshop 49

Semantics Detection for Data Quality Web Services

retrieval techniques have to be applied, whether schema information are present, etc.
This is not part of this paper. In the adjacent attribute classification phase, for each
attribute a corresponding similarity measure is found automatically using the 1:k map-
ping technique. This phase is the focus of this paper and is explained in Section 3.
The duplicate detection phase contains the actual duplicate detection logic and is not
in this paper’s focus.

For the remainder of the paper we will assume that we have no datatype information
but attribute names and instances. We further assume that the mapping is clear, i.e.,
it is known which attribute from one tuple to compare with which attribute from another
tuple. However, it is not clear, how to compare these attributes; we want to find this
out. Finally, we assume that we can differentiate between several attributes and have
separators (e.g., semicolons in CSV files).

3 Attribute Classification

The goal of the classification is to assign appropriate (highly specialized) similarity
measures to the attributes of the input data. This is facilitated by first assigning se-
mantics to these attributes and then derive similarity measures from those semantics.
E.g., two instances of a given name would be compared differently than two email ad-
dresses, still all values being of data type String (or VARCHAR). Besides, maiden names
and family names have the same characteristics, telephone and fax numbers are indis-
tinguishable, which implies that a too detailed semantics detection is both, not feasible
and not of much help, since it would result in inferring the same similarity measure. In
the following, we will stick to the term classification to describe this assignment. Each
different semantics is called class.

Classification is done with the help of feature vectors (c.f. next section). These vec-
tors are created for training data whose classes are known and the data whose classes
have to be found out, called test data. For classification, the test data is compared to
the training data through machine learning techniques. The better the features match,
the higher is the confidence that the piece of test data is of the same class as the
corresponding piece of training data. Figure 3 describes the classification process in
general whereas the following sections will provide more details on the classification.

3.1 Features

We define a set of boolean features, which are applied on each single attribute value,
thus creating single feature vectors. We use the heuristic that there is a high probability
that feature vectors for values from the same attribute look similar.

There are three different types of features (1. and 2. implemented predominantly
with regular expressions):

1. 73 single character features check for existence of letters, digits or some special
characters, e.g., “a”, “A”, “4”, “#”, or “@”.

50 Fall 2010 Workshop

3 Attribute Classification

Figure 3: Classification Process Details

2. About 20 multiple character features check for more advanced patterns, e.g.,
whether a string begins with a lowercase letter ([\\p{L}&&[^\\p{Lu}]].*), con-
tains a separated 4-digit number ((^|.*\\D)\\d{4}(\\D.*|$)), or has a length
between 20 and 29.

3. 2 lookup features use different webpages related to names.2

3.2 Correspondence Matrix

Once both attribute sets are represented by feature vectors, test data (the set of source
attributes) can be classified based on the training data (target attributes). With classifi-
cation, we mean the assignment of the most similar target attribute, the attribute of an
overall global schema, to each source attribute.

We use the Naïve Bayes classifier of Weka [4]. This classification results in a corre-
spondence matrix, c.f. Figure 3. Since each source attribute is to some extent similar
to each target attribute, the correspondance matrix contains many elements that are
greater than zero. For an example, see Table 1.

The challenge is to select a mapping from this correspondence matrix that repre-
sents the most realistic classification. Based on this matrix, it is not trivial to derive a
decision, which source attribute to match to which target attribute. The set of these
matching decisions is called the mapping, hence a mapping problem has to be solved.

2Among others: DBpedia (http://dbpedia.org/), NameWiki (http://wiki.name.com/)

Fall 2010 Workshop 51

Semantics Detection for Data Quality Web Services

Source\Target Firstname Lastname Phone Address
Fullname 0.8 0.6 0.1 0.2
Telephone 0.0 0.0 0.9 0.2

Street 0.2 0.4 0.1 0.9
House Number 0.0 0.0 0.7 0.7

ZIP 0.0 0.0 0.5 0.3

Table 1: Correspondence Matrix for Source (First Column) and Target (First Row) At-
tributes with Illustrative yet Sound Values

The correspondence matrix contains n source attributes and m target attributes. A
simple 1:1 mapping would assign each source attribute to one single target attribute as
long as there are free target attributes left. A downside of this approach is, that there
have to be enough matching partners (i.e., n > m). Moreover, each source attribute is
forcefully matched, even if there is no correct matching partner. To solve this, an 1:1
matching with a threshold is possible. Correspondences below this threshold would
not be taken in the final mapping. However, we want to allow different source attributes
to map to the same target attribute, e.g., “telephone”, “mobile phone”, and “fax” to
“telephone”, which is still not possible. Therefore, we could allow a 1:n mapping, having
“telephone” participating several times.

While it is possible that a tuple contains several attributes similar to telephone num-
bers (i.e., fax numbers) it is very improbable that there are several birthdays in a tuple.
The birthday class should only be able to take part once in the final mapping, while a
given name might appear several times. The knowledge about target attributes com-
prises also information about how often such an attribute may appear in the source
schema and thus, defines the number of times a source attribute can be matched (“K
Constraints” in Figure 2). Therefore, we propose the 1:k Mapping which is basically a
1:n mapping, but with changing n for each target attribute.

3.3 1:k Mapping

Assume an acyclic, directed, bipartite Graph G = (S, T,E) with two sets of nodes
(source and target elements) si ∈ S, i = 1, . . . , n and tj ∈ T, j = 1, . . . ,m respectively
as well as a set of edges eij ∈ E where |E| = n · m. Such graph is depicted in
Figure 4 where all edges resemble E. Further assume a correspondence matrix C
with entries cij quantifying the similarity between source element si and target element
tj (c.f. Table 1). Assume also a set of k constraints kj ∈ K, k· ∈ N, |K| = m.

Find a mapping M with elements

mij =

{
0 if eij takes not part in the mapping
1 if eij takes part in the mapping

and
n∑

i=1

mij < kj (∀j = 1, . . . ,m)

52 Fall 2010 Workshop

3 Attribute Classification

Figure 4: Sample 1:k mapping with given K (only black edges)

and maximize the overall similarity of the selected participating elements in the map-
ping.

max

(∑
∀ij

cij ·mij

)
The intended mapping is illustrated in Figure 4, where n source attributes are

matched to m target attributes and each source attribute ni is matched at most once.
sn, for example, is not matched. Each target attribute tj is matched at most the number
of times, the corresponding kj allows to.

The final mapping M is calculated using a global matching algorithm gm on the
correspondence matrix (M = gm(C)). This mapping task can be solved with an ex-
tended version of the Hungarian Algorithm [6] (ha). The original Hungarian Algorithm
solves the assignment problem [10], which does not allow the multi-mappings of multi-
ple source elements to the same target element.

The k constraints are incorporated by duplicating columns of C. The value of kj
determines the number of duplications of the j-th column. Note that this column dupli-
cation requires

∑
kj∈K kj = a additional rows. The resulting matrix is called C ′ having

n rows and m′ = m + a columns.
The Hungarian Algorithm requires a squared matrix and thus, |n − m′| additional

rows or columns representing non-existing source or target elements have to be added
to the matrix for padding. Only one, rows or columns, will be added. Without loss
of generality, this results into a new set of rows (n̄) and columns (m̄) with n̄ = m̄ =
max(n,m′), n ≤ n̄ and m′ ≤ m̄, and entries c′′īj̄ = 0 ∀n < ī ≤ n̄,m′ < j̄ ≤ m̄.
Consequently, the resulting matrix is called C ′′, with all padding entries set to zero.

See Table 2 for an example C ′′ with K = {k1 = 3, k3 = 2, ...}. It does not matter, at
which position the additional columns or rows are inserted.

With this squared correspondence matrix C ′′, the Hungarian Algorithm can be used
to create a 1:k multi-mapping: M ′ = ha(C ′′). However, the result has to be modified.
Since the Hungarian Algorithm involves all source attributes into the mapping, even
those mij for which n < i ≤ n̄ and the final mapping M shall have the original di-

Fall 2010 Workshop 53

Semantics Detection for Data Quality Web Services

Source \ Target Firstname Firstname Firstname Lastname Phone Phone Address
Fullname 0.8 0.8 0.8 0.6 0.1 0.1 0.2
Telephone 0.0 0.0 0.0 0.0 0.9 0.9 0.2

Street 0.2 0.2 0.2 0.4 0.1 0.1 0.9
House Number 0.0 0.0 0.0 0.0 0.7 0.7 0.7

ZIP 0.0 0.0 0.0 0.0 0.5 0.5 0.3
dummy 0.0 0.0 0.0 0.0 0.0 0.0 0.0
dummy 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 2: Extended Correspondence Matrix, now squared

mensions n×m′, M ′ has to be transformed into M . This is done by taking only those
matches that do not have a padding partner. Therefore M = {m′ij : 1 < i ≤ n, 1 < j ≤
m′}.

After the mapping M is finally created, the input records can be examined for dupli-
cates using the similarity measures derived from the semantically classified attributes.

4 Evaluation

Different decisions in the described approach can be taken independently. They are
given in the follwing.

Features The feature selection (c.f. Section 3.1) relies on basic and more advanced
features. Usually, the classifier automatically exploits the more distinguishing and
thus relevant features by itself, however, a higher number of features raises the
chance of having “good” features within the feature vector. But still, features may
be designed for fitting to expected classes and their respective characteristics,
e.g., the “@” character for email addresses. Furthermore, feature development is
always a trade-off between calculation time and distinction quality (e.g., for lookup
features that post HTTP calls, but yield a relatively confident hint for a string being
a name). The calculation time may be reduced by caching and parallelization but
is worth being evaluated.

Featurization The featurization style has influence on the availability of other, promis-
ing features such as aggregate functions (e.g., average length, distinctness of
the attribute values, standard deviation). Feature vectors can be created attribute
value by attribute value or for the whole set or multi-set of attribute values.

Classifier There are plenty of classifiers which classify a given (test) feature vector
against a set of other (trained) feature vectors (c.f. Section 3.2). Naïve Bayes
does this with the help of conditional probabilities, but there are also classifiers
which build up decision trees or use hyperplanes to separate the vector space
(Support Vector Machines). While Naïve Bayes is reasonably fast, other ap-
proaches may take longer and result in better classification quality. The trade-off

54 Fall 2010 Workshop

4 Evaluation

also has to incorporate the fact that a mapping process is performed afterwards
which might reduce the requirement of a highly precise classification.

Mapping Having performed the classification, the correspondance matrix has to be
interpreted and the mapping has to be inferred. The presented extended Hun-
garian Algorithm is a sophisticated approach to enable the 1:k mapping. Faster
algorithms such as a greedy or majority vote algorithm are possible using the
same extension mechanism described in Section 3.3.

In the following, preliminary results are shown for using all of the presented features,
single-value featurization, Naïve Bayes classification and the extended Hungarian Al-
gorithm. German-language address datasets are mostly taken from publicly avail-
able sources (http://fakenamegenerator.com, deutschland-api.de, dbpedia.org)
and confidential corporate datasets. 500 rows are used for training as well as test
datasets. The training dataset comprises 18 address-related classes from very spe-
cific ones (gender, homepage, familyname) to very general ones (number, date). Test
data has always German attribute names, training data has always English attribute
names.

Source Target correct? confidence
plz ZIP yes 1.0

telefon HOUSENUMBER no 0.967
id NUMBER yes 0.822

strasse STREET yes 0.664
nachname FAMILYNAME yes 0.582
vorname GIVENNAME yes 0.475

ort CITY yes 0.457
datum BIRTHDAY yes 0.078

Table 3: Results for classifying a semi-synthetic corporate address dataset against the
global dataset

Table 3 shows the results for matching the corporate dataset against the global
dataset. 7 of 8 attributes are matched correctly. The “telefon” and the “datum” attributes
are only filled sparsely, resulting in wrong or very unconfident matches. When applying
a threshold on the mapping, the match between “datum” and birthday would very likely
be eliminated.

Table 4 shows the results for matching a person dataset with politicians against the
global dataset. 6 of 8 attributes are matched correctly. Pecularities are the presence
of a URL field, which is perfectly matched assumedly due to the very feature checking
for the string containing “http” and the “zusatz” field, containing very few city names.
The “jobs” field is confounded with the street class. Both have similar characteristics
(long strings without numbers). A wrong classification does not necessarily lead to a
reduced quality in the adjacent duplicate detection process. Instead, occupation and
street would end in an akin similarity measure, the street similarity measure might

Fall 2010 Workshop 55

Semantics Detection for Data Quality Web Services

Source Target correct? confidence
url HOMEPAGE yes 1.0

geboren_am BIRTHDAY yes 0.982
zusatz HOUSENUMBER no 0.916

id NUMBER yes 0.804
nachname FAMILYNAME yes 0.583
vorname GIVENNAME yes 0.485

jobs STREET no 0.335
geboren_ort CITY yes 0.104

Table 4: Results for classifying a politician address dataset against the global dataset

contain additional rules to expand common abbreviations such as “str.” to “straße”.
Moreover, the matching has a relatively low confidence and might be removed by a
threshold, anyway.

5 Related Work

There is a large body of prior work both for duplicate detection and for the matching of
different schemas.

Duplicate Detection consists of two separate fields, similarity measures that are
described, e.g., by Navarro [9] and Elmagarmid et al. [2] on the one side and algorithms
to select promising comparison pairs, e.g., the sorted neighborhood method by Monge
and Elkan [5] on the other side. An overview on both can be found in Naumann and
Weis [8].

Schema Matching is the technique of creating and selecting correspondances be-
tween two sets of elements, typically attributes of relations. Rahm and Bernstein give
a survey on different methods for schema matching [11]. Another matching approach,
which inspired this paper, was Naumann et al.’s classification algorithm [7]. It uses
a rich feature set to create an instance-based mapping between two schemas. In-
stance mappings are used by iFuice [12], where knowledge about explicit connections
between different schemas is exploited. However, in the use case of customer data,
those hyperlink connections will not appear.

Bilke and Naumann [1] combine both fields of research and utilize known duplicates
for schema matching. This paper does the opposite and uses schema matching to
eventually improve duplicate detection.

Faruquie et al. [3] present a data cleansing service with an optional duplicate de-
tection component. However, proper thresholds for the pairwise attribute comparison
part of the duplicate detection have to be selected manually. Furthermore, they con-
centrate on argumenting for data cleansing in general and omit details about how to
actually perform the duplicate detection. They present different proposals for how to
transfer the data to the service provider.

There are also some existing web applications that offer data cleansing. Mostly,

56 Fall 2010 Workshop

6 Summary and Roadmap

this especially comprises data verification and enrichment. However, AddressDoctor3,
AdressExpert4 and Uniserv5 are commercial offers that comprise duplicate detection.

6 Summary and Roadmap

Duplicate detection is a crucial part of data cleansing. There are many applications for
industry-scale duplicate detection, but they are not appropriate for small and medium
businesses which need a continuous, once-per-month duplicate detection run. Ser-
vices are a promising approach for these companies, but the existing offers are limited
and cumbersome regarding to the grade of automation.

The presented approach addresses these deficiencies. Input datasets are analyzed
and if there are no semantics given for the data – which is the general case – they
are classified against prepared, domain-specific training data. An extended version of
the hungarian algorithm solves the 1:k mapping problem for this classification and a
mapping is created. Predefined similarity measures are then applied on the different
attributes.

However, the classification and mapping process (c.f. phase 2 in Section 2) is not
yet integrated in the overall duplicate detection workflow. Before deriving similarity
measures and actual detecting duplicates, the classification and mapping process has
to be improved (e.g., by better handling sparse attributes) and thorougly evaluated as
described in Section 4.

Furthermore, the specific characteristics of a data quality service have to be ex-
ploited more. The test data of different customers could help enlarging the number of
classes the service can tell apart. Thus, a feedback system is required. This data can
only be used when being sufficiently privacy preserving. Moreover, different attributes
might not be independent from each other, e.g., when a street is present, it is likely that
also a house number attribute is contained in the customer’s dataset, or a month im-
plies the existence of a day and year specification. Another open point is the selection
of k in the 1:k mapping. This can also be learned when analyzing several customers’
datasets.

References

[1] Alexander Bilke and Felix Naumann. Schema matching using duplicates. Pro-
ceedings of the 21st International Conference on Data Engineering, 2005.

[2] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios. Dupli-
cate record detection: A survey. IEEE Transactions on Knowledge & Data Engi-
neering, 19, 2007.

3http://www.addressdoctor.com/
4http://www.adressexpert.de/
5http://www.uniserv.com

Fall 2010 Workshop 57

References

[3] Tanveer Faruquie, Hima Prasad, Venkata Subramaniam, Mukesh Mohania, Girish
Venkatachaliah, Shrinivas Kulkarni, and Pramit Basu. Data cleansing as a tran-
sient service. In Proceedings of the ICDE, 2010.

[4] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H. Witten. The weka data mining software: an update. SIGKDD Explor.
Newsl., 11(1):10–18, 2009.

[5] Alvaro Monge and Charles Elkan. An efficient domain-independent algorithm for
detecting approximately duplicate database records. In SIGMOD workshop on
data mining and knowledge discovery, May 1997.

[6] James Munkres. Algorithms for the assignment and transportation problems.
Journal of the Society for Industrial and Applied Mathematics, 5(1):32–38, 1957.

[7] Felix Naumann, Ching-Tien Ho, Xuqing Tian, Laura M. Haas, and Nimrod
Megiddo. Attribute classification using feature analysis. In ICDE, page 271, 2002.

[8] Felix Naumann and Melanie Weis. An Introduction to Duplicate Detection. Morgan
& Claypool Publishers, 2010.

[9] Gonzalo Navarro. A guided tour to approximate string matching. ACM Computing
Surveys, 1999.

[10] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial optimization: al-
gorithms and complexity. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1982.

[11] Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic
schema matching. The VLDB Journal, 10(4):334–350, 2001.

[12] Andreas Thor. Automatische Mapping-Verarbeitung von Web-Daten. Dissertation,
Institut für Informatik, Universität Leipzig, 2007.

[13] Tobias Vogel. Self-adaptive data quality web services. In Wolf-Tilo Balke and
Christoph Lofi *, editors, Proceedings of the 22nd Workshop "Grundlagen von
Datenbanken 2010", volume 22, Technische UniversitÃd’t Braunschweig, 38106
Braunschweig, Germany, May 2010. Institute for Information Systems.

58 Fall 2010 Workshop

A Shared Platform for the Analysis of
Virtual Team Collaboration

Thomas Kowark

thomas.kowark@hpi.uni-potsdam.de

The traces of digital collaboration have been shown to provide indicators for benefi-
cial or detrimental developments in project teams and, accordingly, the success of the
corresponding projects. Often such observations are made in controlled settings using
relatively small sample sizes. This is a drawback, as it prevents a generalization of the
findings. Increasing the sample size, however, is often not feasible due to constraints
in time, capacity, or funding.

In this report, we outline a Software-as-a-Service solution that tries to overcome
this limitation by providing an easily accessible service for the analysis of collaboration
behavior that, simultaneously, uses this data to test deduced assumptions against a
continuously increasing database of team collaboration structures. In addition to pre-
senting the high-level architecture of the proposed system, we give an overview of case
studies that are conducted with the help of this system and identify implementation as-
pects that will be part of future research.

1 Introduction

Collaboration and communication are key enablers for the success of project teams.
Especially in early phases of projects spreading knowledge amongst team members
and developing efficient collaboration processes is crucial for later project success [3].
Collaboration, in that sense, comprises all activities that contribute to sharing project-
relevant knowledge between project members. Ideally, these activities are predom-
inantly verbal and non-verbal face-to-face interactions, but to a certain degree they
are manifested in digital artifacts created with the help of groupware tools (e.g., email,
Wikis, or version control systems).

Previous studies have shown that digital collaboration artifacts, even though they
represent only a small portion of overall collaboration activity, contain indicators for
possible project success [12]. A limitation of the cited studies is their relatively small
sample size. The indicators found during those case studies are initially significant
only within the evaluated environment. Generalizing such findings is merely possible if
a much broader database comprised of projects in different, yet comparable, settings is
available. This additional research work is, in most cases, not feasible to be performed
by a single institution.

In this report, we present an approach to overcome this limitation by means of a
Software-as-a-Service (SaaS) solution. The platform is named “analyzeD” and enables

Fall 2010 Workshop 59

A Shared Platform for the Analysis of Virtual Team Collaboration

researchers to upload, anonymize, and analyze digital collaboration artifacts of their
respective case studies. By that, they benefit from the capabilities of the software for
performing their own research, yet simultaneously contribute to a database of digital
collaboration data. This database can, in turn, be used to verify assumptions made
in only small sets of projects by trying to detect similar collaboration patterns in other
projects.

The remainder of this report outlines the current state of the system and gives a
short summary of previous applications. The main focus, however, is a discussion of
aspects that need to be considered during the implementation. In particular, scalability,
data privacy, and a formalized approach to compare different collaboration structures
are topics that require close attention in the future. The report concludes with a pre-
sentation of case studies that use the platform for data evaluation and at the same time
serve as test cases for further development activities.

2 Prior Work

Starting point for the development was a thorough analysis of the d.store platform [13].
It uses Semantic Web technologies to represent concepts of collaboration artifacts,
such as emails or wiki pages, as ontologies. The concepts are linked through as-
sociations, e.g. a person is linked to an email by being its sender. They are also
time-annotated and, accordingly, can be put in correlation with project timelines.

Ontologies define which kind of data can be uploaded to the platform. Gathered
artifacts are combined into so-called team collaboration networks, which provide a uni-
fied representation of the digital collaboration happening within project teams. Data
analysis is possible through visual navigation clients or a SPARQL query interface.

Initially, the platform was used to analyze the collaboration behavior of engineering
design teams in a controlled classroom setting. This setting enabled researchers, for
example, to deduce and test more effective project management models [11]. Building
on the obvious relevance of analyzing computational collaboration artifacts in engineer-
ing design teams, a logical next step was the application in different setups, such as
software engineering projects. Therefore, ontologies representing concepts of group-
ware tools common in software engineering (e.g., version control systems, bug tracker,
or code metrics) were developed along with services for collecting and uploading the
corresponding data [5].

An initial application of the platform in such a setting was performed during the
course of a software engineering curriculum. 80 students of a university lecture were
required to develop a single system in a joint effort. The overall development team
was further split into 13 sub-teams based on responsibilities for certain aspects of
the system. Various cross-cutting concerns and mutual dependencies between some
teams required a high degree of collaboration.

Even though the setting did not allow for statistically significant assertions about
possible detrimental or beneficial digital collaboration patterns, interesting insights could
be drawn from the project. For example, the usage patterns of bug trackers and version
control systems in conjunction with the project timeline provided indicators for prob-

60 Fall 2010 Workshop

3 Related Work

lems with both systems. Interestingly, the corresponding usage patterns indicated the
problems two weeks before they were mentioned by the students. A comprehensive
discussion of the project setting and the findings of the initial case study was recently
accepted for publication [6].

Besides revealing interesting collaboration patterns even during the first application
of the platform in a software engineering project, more conclusions could be drawn dur-
ing the lecture. On a technical level, scalability with regards to networks sizes turned
out to be an issue that requires close attention. The intention to capture all available
aspects of collaboration artifacts and the heavy usage of inference rules created perfor-
mance bottlenecks that prevented ad-hoc analysis of the data. Furthermore, a strictly
technical query interface was considered to be insufficient for intuitive data analysis.

On a meta level, the first case study elucidated that data gathered during such
installments is unsuitable for deriving generalizable assertions about the significance
of certain collaboration patterns for project success or failure. It became apparent
that, in order to create statistical significance, means had to be created to broaden the
database for such analysis without being forced to continuously perform case studies
like the one previously mentioned.

As a consequence, development efforts regarding extensions of the d.store plat-
form were moved towards creating an SaaS solution that not only allows to capture
and analyze collaboration data for single projects, but enables automated comparisons
with different, yet comparable, projects. In order to achieve this goal, the aforemen-
tioned problems regarding scalability and data analysis need to be solved, since with-
out fulfilling such vital requirements, acceptance of the platform as a research tool is
unlikely. Additionally, new issues pushed to the fore: Such an approach also requires
simple handling of data privacy issues, for example by specification of obfuscation
rules. Also a sound formalization of the comparison of different collaboration struc-
tures is inevitable.

3 Related Work

Monitoring and analyzing digital collaboration activities to deduce beneficial or detri-
mental developments within project teams has been subject to prior research.

An approach that aggregates data from different data sources was developed by
Ohira et. al [8]. The Empirical Project Monitor relies on numerous feeder applications
that parse data sources like source code management systems, bug trackers, or email
archives. It provides a number of preset visualizations for this data. Additionally, an
underlying communication model tries to detect flaws within the collaboration behav-
ior based on empirical studies. The main difference to this approach is the creation
process of the communication model used for deviation detection as it is not gener-
ated from an ever increasing database of collaboration data but statically implemented
within the application.

Reiner [9] presented a proposal for a knowledge modeling framework that supports
the collaboration of design teams. Communication information has been deduced from
explicit interactions between members of a design team by a software tool that he

Fall 2010 Workshop 61

A Shared Platform for the Analysis of Virtual Team Collaboration

developed to provide a prototypical implementation for the proposed framework. This
research laid the early foundation for our work but did not address generalization of
the findings made during single projects by validating them in an automated manner
against other gathered data.

Microsoft’s Team Foundation Server [7] is a commercial collaboration tool suite that
allows its users to analyze and compare the collaboration behavior of the teams using
this platform. It is, however, limited to collaboration activities that are performed using
one of the provided tools. If, for example, different version control, bug tracking, or
email systems are used, the corresponding activities cannot be analyzed.

Beyond the analysis of digital collaboration traces through means of IT, E-Research
systems are also an interesting field of related work. Approaches like the one pre-
sented by Abidi et. al [2] enable researchers to jointly work on research topics by dis-
tributing data collection and evaluation activities. Since all involved personas are using
a shared system, collected data and evaluation results are available to each of them.
However, such a system was, to our knowledge, not developed and applied in the area
of virtual team collaboration analysis.

4 Platform Development and Application

In the following, we present the next steps of our research. They comprise activities
regarding the development of the proposed SaaS solution, as well as planning and
execution of case studies in the fields of software engineering and engineering design.

4.1 A Software-as-a-Service Approach to Virtual Collaboration
Analysis

Software development efforts will be concentrated on implementing the analyzeD ar-
chitecture (see Figure 1). The d.store will be an integral part of this software, but by
adding a variety of improvements and services to the initial landscape, we will simplify
setup and access especially for technically inexperienced users. In order to achieve
those improvements in usability, the following extensions are necessary and and will
be implemented:

• A central service for configuration and control of feeder services. This web-
application serves as a service repository, i.e., it lists all available sensor clients
for the supported data sources. Additionally, it provides a single point of access to
enter access data, specify data obfuscation rules and upload the corresponding
digital artifacts to a distinguished d.store instance.

• A visual query interface. Instead of being forced to use a rather technical query
language to analyze the gathered data, this service will provide an interface that
allows creating queries by selecting the attributes of interest and defining basic
outline parameters for the search.

62 Fall 2010 Workshop

4 Platform Development and Application

• A visualization service that is able to generate a variety of diagrams for query
results in a generic manner. Insights gained during an earlier sub-project about
a similar topic will be used to shorten the development time for this particular
application [10].

analyzeD - Virtual Design Observatory

d.store

Configuration and
Control Services

Sensor
Clients

Collaboration
Events

Collaboration
Infrastructure

Engineering Teams

Analysis
Clients

Navigation
Clients

External
Research

Teams

JSON HTML
RDF

JSON
GraphML

JSON

HTML

HTML

RRR

R

R

Figure 1: Architecture overview of the proposed analyzeD platform.

The central configuration service was implemented prototypically, but certain as-
pects like the service repository require further testing and implementation effort. Fur-
thermore, actions towards increased scalability of the service were taken. In a first step
the persistence infrastructure was moved to AllegroGraph1, a native RDF triple store
implementation. Along with a shift from extensive usage of inference rules towards
explicit data representation this prevented execution times for node insertion to grow
exponentially with the number of nodes present within a team collaboration network.
Since related work indicates that columnar in-memory databases are also a viable op-
tion for storing RDF data [1], next steps will include a sample implementation using
state-of-the-art in-memory column databases.

4.2 Case Studies

In order to test the implementation of the platform in different scenarios, two case
studies will be performed during the course of the next academic year.

Software Engineering Building on experiences gained during the first case study in
a software engineering lecture (see Section 2), the platform will be used again in such
a setting. Contrary to the first installment, the exercise will feature two development
teams that compete with each other in developing a customer relationship manage-
ment system. Both teams are split into eight sub-teams and equipped with the same

1http://franz.com/agraph/allegrograph/

Fall 2010 Workshop 63

A Shared Platform for the Analysis of Virtual Team Collaboration

groupware tools. By that, comparability of the respective development teams is greatly
enhanced, and the the case study provides us with the possibility to perform similarity
analysis for the resulting team collaboration networks.

Additionally, first contacts have been established to other universities that are eager
to implement a comparable version of the lecture in their own curriculum and use the
analyzeD platform in order to analyze the resulting collaboration networks.

Engineering Design As part of the HPI-Stanford Design Thinking Research pro-
gram, scientists from the Center for Design Research at Stanford university apply the
platform in an engineering design context. In order to support this project, various steps
will be performed to enable support for the analysis of CAD application usage. Initial in-
vestigation of the logging behavior of tools such as AutoCAD have already taken place
and corresponding log file parsers are in development. The logs contain very detailed
information about the working steps performed during a session. Thus, the definition
of a corresponding ontology representing the identified concepts should contain the
following elements:

• A class representing a CAD model with attributes such as a textual description, a
set of documents belonging to the model, and an array of changes representing
the evolution of the model.

• A class representing a change of the model. This class contains information
about the author of the change, a detailed list of the activities performed, a (com-
puted) score for the severity of the change, and a rating for the current iteration
of the model (e.g., efficiency scores, weight-stability ratio, etc.).

Previous approaches to capture the workflow of CAD designers have struggled
with a lack of semantics in the rare sequence of steps contained within the logs [4]. By
adding the additional information about change severity and a rating for the respective
iteration to our model, we are able to not only analyze what is being done, but also
how it is being done and how successful certain styles of working are. The metrics
for those measurements will be developed in close collaboration with CAD-designers
of our prospective partner companies, as well as engineers of CAD software vendors.
A test bed is provided by the CAD installations at Stanford University Product Real-
ization Laboratory, part of Mechanical Engineering. Additionally, we are planning to
collaborate with Autodesk and/or SolidWorks, primary supplier of CAD solutions such
as AutoCAD as well as with numerous companies currently using AutoCAD.

Outlook The long-term objective of the project is to create a viable means for an-
alyzing projects in a variety of settings based on previously gathered data. This will
create a project management dashboard that indicates if certain developments within
the digital collaboration structures of projects have proven to be beneficial or detrimen-
tal in the past. In order to achieve this goal in a meaningful manner, collaboration data
captured in real industry projects is essential as it lacks most of the artificial bias that
is intrinsic to classroom projects. Therefore, we are currently investigating possibilities

64 Fall 2010 Workshop

5 Summary

to gain access to data and participants of historical projects, as well as integrating the
platform into newly started ones.

5 Summary

In this report, we have presented a vision-of and first steps-towards a platform for the
analysis of digital collaboration activity that aggregates knowledge gathered during in-
dependent case studies to verify the general validity of assumptions about potentially
beneficial or detrimental collaboration patterns. This is achieved by providing a flexible,
easily accessible, and scalable service for the analysis of digital collaboration behavior
for end users that monitors the resulting anonymized team collaboration networks for
similarities. By that, lessons learned during one project can be propagated to members
of completely unrelated projects just by a similarity analysis of their respective collabo-
ration activities. We believe that such a system can greatly aid researchers in various
fields, as it allows them to access a database of comparable projects, which they could
not have created by themselves in reasonable amounts of time, effort, and cost.

References

[1] Daniel J. Abadi, Adam Marcus, Samuel R. Madden, and Kate Hollenbach. Sw-
store: a vertically partitioned dbms for semantic web data management. The
VLDB Journal, 18(2):385–406, 2009.

[2] Syed SR Abidi, Ashraf Abusharek, Ali Daniyal, Mei Kuan, Farrukh Mehdi, Samina
Abidi, Faisal Abbas, Philip Yeo, Farhan Jamal, and Reza Fathzadeh. A service ori-
ented e-research platform for ocean knowledge management. In Proceedings of
the 2010 6th World Congress on Services, SERVICES ’10, pages 32–39, Wash-
ington, DC, USA, 2010. IEEE Computer Society.

[3] Victor R. Basili and Marvin V. Zelkowitz. Analyzing medium-scale software devel-
opment. In ICSE ’78: Proceedings of the 3rd international conference on Software
engineering, pages 116–123, Piscataway, NJ, USA, 1978. IEEE Press.

[4] Andrea Casotto, A. Richard Newton, and Alberto Sangiovanni-Vincentelli. De-
sign management based on design traces. In DAC ’90: Proceedings of the 27th
ACM/IEEE Design Automation Conference, pages 136–141, New York, NY, USA,
1990. ACM.

[5] Thomas Kowark. Towards a service landscape for a real-time project manager
dashboard. Technical report, Proceedings of the 4th Ph.D. Retreat of the HPI
Research School on Service-oriented Systems Engineering, 2010.

[6] Thomas Kowark, Jürgen Müller, Stephan Müller, and Alexander Zeier. An edu-
cational testbed for the computational analysis of collaboration in early stages of

Fall 2010 Workshop 65

References

software development processes. In Proceedings of the 44th Hawaii International
Conference on System Sciences (HICSS), January 2011.

[7] Microsoft. http://msdn.microsoft.com/en-us/vstudio/ff637362, Visual Studio Team
Foundation Server 2010, 2011.

[8] Masao Ohira, Reishi Yokomori, Makoto Sakai, Ken-ichi Matsumoto, Katsuro In-
oue, Michael Barker, and Koji Torii. Empirical project monitor: A system for man-
aging software development projects in real time. In International Symposium on
Empirical Software Engineering, Redondo Beach, USA, 2004.

[9] Kurt A. Reiner. A framework for knowledge capture and a study of development
metrics in collaborative engineering design. PhD thesis, Stanford, CA, USA, 2006.
Adviser-Leifer, Larry J.

[10] Victor Saar. Visualisierung temporaler Eigenschaften im Kommunikationsverhal-
ten global verteilter Entwicklungsteams. Master’s thesis, Hasso Plattner Institute,
Enterprise Platform and Integration Concepts., 2009.

[11] Philipp Skogstad. A Unified Innovation Process Model for Engineering Designers
and Managers. PhD thesis, Stanford University, Center for Design Research,
2009.

[12] Matthias Uflacker, Philipp Skogstad, Alexander Zeier, and Larry Leifer. Analysis of
virtual design collaboration with team communication networks. In Proceedings of
the 17th International Conference on Engineering Design (ICED’09), Vol. 8, pages
275–286, 2009.

[13] Matthias Uflacker and Alexander Zeier. A platform for the temporal evaluation of
team communication in distributed design environments. In CSCWD ’09: Pro-
ceedings of the 2009 13th International Conference on Computer Supported Co-
operative Work in Design, pages 338–343, Washington, DC, USA, 2009. IEEE
Computer Society.

66 Fall 2010 Workshop

Programming Models for Parallel
Heterogeneous Computing

Frank Feinbube

Frank.Feinbube@hpi.uni-potsdam.de

This paper describes my work with the Operating Systems and Middleware group
for the HPI Research School on "Service-Oriented Systems Engineering".

1 Motivation

Many of the computational problems we are facing today are complex and need huge
computational power to be solved. It is well-known that processors will not continue to
get faster, but will get more cores instead. More cores are not only harder to utilize by
an application programmer, but also challenge hardware designers. Thus various new
hardware architectures are designed and evaluated in order to find the ones that will
fulfill the needs of future computer systems. Prototypic configuration boards like Intels
Single Chip Cloud Computer (SCC) are an attempt to deal with the ever-increasing
number of cores by removing essential features of current processors like hardware
cache coherency. Another approach is to accompany common general purpose CPUs
with sophisticated special purpose processing units. These so called Accelerators are
easier to build and very fast for specific application purposes. They are the foundation
for the new trend of hybrid computer systems.

2 Domains of Hybrid Systems

2.1 High Performance Computing

The High Performance Computing (HPC) community has a steady need for an increase
of floating point operations per second (FLOPS) in order to simulate natural processes
with a higher accuracy. Therefore enormous computer clusters are used. These su-
percomputers are not only very expensive to build, but do also need a huge amount of
energy, both for processing and for cooling.

A popular approach to gain more FLOPS while reducing power consumption is to
use GPU computing devices like NVIDIAs Tesla modules. Some of the best-performing
500 HPC clusters already contain a great amount of these devices. They have good
cost per FLOPS ratio and like Cell processors, field-programmable gate arrays (FPGA)
and other special compute accelerators are very energy efficient. They are quite ade-
quate for this application domain and it can be expected that many of the next genera-
tion supercomputers will be heterogeneous systems facilitating GPU compute devices.

Fall 2010 Workshop 67

Programming Models for Parallel Heterogeneous Computing

2.2 Business Servers

Due to ever-increasing application of RFID-technology and clever networks of software
systems, business warehouses collect more and more data every day. These data
sinks are gold mines for business intelligence. In order to exploit useful knowledge
about customers and processes, a big machinery for data mining and information ex-
traction is needed. The performance needs for such analysis applications are far be-
yond the ones of day-to-day online analytical processing (OLAP) query processors.
On the other hand these systems do not have to be as highly available as the business
critical online transaction processing (OLTP) servers. Thus more cost efficient compo-
nents can be used. In order to accompany their mainframes with fast and cost efficient
OLAP processing, IBM presented their IBM Accelerator solution at the IBM System z
University event. The idea is to build a heterogeneous computing systems consisting
of a standard mainframe and an additional server of several blades for very fast, but
less reliable analytic operations on cloned databases.

Another trend is to use special processors to speed up various performance crit-
ical and regularly needed algorithms like (de)compression, XML parsing, encryption
and decryption, and regular expression matching. These so called accelerators are
special hardware devices designed to run sophisticated calculations at high speed.
GPU compute devices can be regarded as another special kind of accelerators. There
are also successful applications of GPU computing in the domain of business intelli-
gence. [4,6,9] Hybrid systems consisting of reliable CPUs supported by various accel-
erators are expected to be the future configuration of servers.

2.3 Desktop Computers

Even in the domain of Desktop computers heterogeneity has become common. The
success of netbooks has confirmed that many end users are interested in cheap and
mobile computers. Since these systems are so energy efficient, they also support the
always-on mentality of these days. The trade-off for low power consumptions is a less
powerful CPU. In contrast to this, many computers are used as entertainment devices
and thus require a good performance, especially to decode and display music and
video streams. To speed up these activities Atom processors are accompanied by on-
die-GPUs like the Intel GMA 3150 GPU or NVIDIAs ION GPU. While these accelerators
are applied for the specific application of video processing, they also can be used to
speed up other classes of algorithms.

That medium-class and high-end computers can not only be used for computer
games and high definition entertainment purposes, but also for realistic simulations
and elaborate calculations has been proven by various BOINC projects (e.g. Fold-
ing@HOME). The parallel algorithms used in these projects have to exploit distributed
parallel heterogeneous systems and thus present a great challenge to the programmer.
On the other hand they are very elegant because they make use of the idle time of the
participants computers that would otherwise be wasted.

68 Fall 2010 Workshop

3 Programming Models

2.4 Mobile and Embedded Systems

Mobile devices like cell phones have severe restrictions on power consumption be-
cause they are only powered by batteries. On the other hand as the success of iPhones
demonstrates, users like fancy user interfaces, smooth visualization and entertaining
applications. To support this functionality many current phones have a powerful proces-
sor and some co-processors. The upcoming smart phones conforming to the Windows
7 Phone specification will even contain a DirectX 9 compatible graphics processor.
These processors may also be used for tasks that are not related to computer graph-
ics. Some applications have shown how GPU compute devices can be used to support
embedded systems liker routers [9] and home entertainment devices [10].

As for the other application domains mobile and embedded systems take advantage
from hybrid approaches because they provide high special purpose performance while
consuming only a small amount of power.

3 Programming Models

"This is the year when applications developed on GPU computing go into production."
said NVIDIA CEO Jen-Hsun Huang. While most accelerators for hybrid systems are
still at a prototypic stage, GPU computing has already achieved a variety of success
stories. Especially calculation-intensive scientific applications seem to fit onto GPU
computing devices very well. They were used to speed-up seismic exploration, weather
modeling, computer vision, and medical imaging. The military applies GPU comput-
ing for advanced image processing and electromagnetic simulations. It is also used
for business intelligence, complex event processing, speech recognition, engineering
modeling, and analysis solutions.

In order to get a deep understanding of the programming model for GPU comput-
ing, we build a prototype that solved the NQueens puzzle for large board sizes on GPU
compute devices. We learned that the CUDA programming model relies on SPMD
kernels that work on a complex memory hierarchy in parallel. While some fundamen-
tal concepts like blocks, threads, and shared memory are made explicit, others like
coalescing, occupancy, and local memory are hidden to the programmer. Understand-
ing the explicit and implicit characteristics of a CUDA kernel execution is essential to
predict the performance of a CUDA application. We presented our experiences at the
ISPDC’2010 (section 5.1).

At the Summer School of the Universal Parallel Computing Research Center (UP-
CRC Illinois) (section 5.2) an overview about the various programming models for
parallel shared memory systems was presented. The topics covered task-based ap-
proaches like Intels Threading Building Blocks (TBB), parallel for-loops like OpenMP,
lambda expressions, vectorization principles, as well as GPU Computing with OpenCL.

OpenCL [1] is a standard introduced by the Khronos Group - a consortium of CPU
and GPU hardware vendors. OpenCL is a programming model that allows to write pro-
grams for CPUs, GPUs and Cell Broadband Engine Architecture (CBEA) processors.
It shares the concept of kernels and memory hierarchy of CUDA. In addition OpenCL

Fall 2010 Workshop 69

Programming Models for Parallel Heterogeneous Computing

introduces the concept of streams. The OpenCL API is more low level than CUDA.
Powerful programming models and APIs like CUDA and OpenCL allow time efficient

reformulation of multi-threaded code for CPUs for GPU computing. While this means
little effort to execute parallel general purpose algorithms on GPUs, these will not utilize
the GPU hardware well. Kirk et al. describe the situation this way: "If the application
includes what we call data parallelism, it is often a simple task to achieve a 10x speedup
with just a few hours of work. For anything beyond that, we invite you to keep reading!"
[3]

We created a survey on best practices for optimizing GPU computing applications
in order to really benefit from the acceleration GPU hardware can offer. This survey
will be published in a special issue of IEEE:Software Journal in 2011 (section 5.3).

Although GPU computing is a mature accelerator category, it is still hard to write
GPU computing code, even harder to utilize the GPU appropriately. Even the highly
experienced developers of the National Supercomputer Center in Shenzhen were only
able to reach 43 % of the theoretical peak performance for their hybrid supercomputer
Nebulea. Nebulea is number two in the top 500 list of supercomputers and consists of
NVIDIA C2050 GPUs. The utilization of 43% was reached for a dedicated implemen-
tation of the embarrassingly parallel LINPACK algorithm. [5]

Hybrid computing and heterogeneous computing need good programming models
and tool support to overcome these difficulties and enable developers to benefit from
these new system architectures. The industry is also interested in recommendations
for hardware changes. Coming up with good programming models and tools for hybrid
systems is hard. This is highlighted by the fact that the well-established sector of
parallel and multi-core computing is still looking for appropriate programming models
and empowering developer tools.

4 Research Plan

The area of my research is on parallel hybrid systems and accelerator technologies.
I aim to help developers to handle the complexity of such system w.r.t. to coding ex-
perience and resulting application performance. Consequently, my focus is on parallel
languages, parallel libraries, and parallel toolkits for hybrid systems.

As high-lighted again at the UPCRC (section 5.2) appropriate tools and program-
ming models for parallel and multi-core computing are still ongoing research topics. In
the field of hybrid systems, programming models and tools have not only to cope with
parallelism, but also with differing execution characteristics of the processors and ac-
celerators in a given system configuration. State-of-the-art programming is done with
CUDA and OpenCL, which extend the C++ language. Especially OpenCL is a very
low-level interface and thus laborious to work with. There are first approaches to re-
duce the burden for the programmer. Lee et al. [11] show that it is possible to use the
OpenMP-API for GPU computing. Most of the other approaches are simple wrappers
for higher-level languages. The problem with the current approaches is that they do not
map onto the accelerators hardware very well, are only suitable for very special subset
of problems, or lead to severe code bloat. This is where I want to work at.

70 Fall 2010 Workshop

5 Recent Activities

In order to accomplish my research goal, the following tasks have to be completed:

1. Identify best practices and patterns for multi-core development and hybrid com-
puting. (section 5.3)

2. Identify hardware capabilities and restrictions of hybrid architectures.

3. Identify common use cases and algorithms for hybrid computing. (section 5.4,
section 5.5)

4. Reduce the complexity for developers using high-level languages by introducing
abstractions and exploiting runtime reflection mechanisms. (first steps in section
5.6)

5. Demonstrate the solution with representative example uses cases and algorithms
(on various platforms).

Until now I worked mainly on milestones one to three. In order to realize step four,
I will start with a selection of examples (section 5.5) and evaluate how each of them
can be applied to a particular architecture. The next step is to apply the optimizations
described in section 5.3 manually and learn which optimizations that can be applied
automatically. The findings will than be formalized and provided as a .NET library.

5 Recent Activities

5.1 Paper presentation at the 9th International Symposium on Par-
allel and Distributed Computing (ISPDC)

I presented my experiences with the NQueens problem and CUDA at the 9th Inter-
national Symposium on Parallel and Distributed Computing in Istanbul, Turkey in July
2010. [8]

The conference serves as a forum for engineers and researches and covers top-
ics from parallel to distributed computing. The keynotes were held by D. Keyes and
Wolfgang Gentzsch. They highlighted the current and future challenges for the high
performance computing (HPC) community.

The focus of the first session was GPU computing. Our presentation started with
an overview of the CUDA programming model. The NQueens problem was introduced
and our parallelization approach was described. The main focus was the application
of various optimizations onto our solution in order to achieve a better utilization of the
card. These optimization led to contrary performance implications on the two available
CUDA-enabled card generations of NVIDIA.

The other sessions discussed models and algorithms, multi-cores, Web Services
and Multi-Agent Systems, Interconnection Topologies, Networks and Distributed Sys-
tems, Grids and P2P Systems, and Scientific Programming.

Fall 2010 Workshop 71

Programming Models for Parallel Heterogeneous Computing

5.2 Visiting the UPCRC Summer School

I was visiting the Summer School of the Universal Parallel Computing Research Center
(UPCRC Illinois). It is a joint research endeavor of the Department of Computer Sci-
ence, the Department of Electrical and Computer Engineering, and corporate partners
Microsoft and Intel. It aims to pioneer and promote parallel computing research and
education.

The school started with an introduction on shared memory parallelism and multi-
core technology by UPCRC Co-Director Marc Snir. UPCRC Principal Investigator
Danny Dig presented parallelism techniques for object-oriented languages and how
refactoring can be applied to transform sequential applications into concurrent ones.
Clay Breshears and Paul Peterson from Intel illustrated how OpenMP and Threading
Building Blocks can be used for parallelizations. In addition they introduced cutting-
edge developer tools by Intel: the Intel Parallel Inspector, the Intel Parallel Amplifier
and the Intel Parallel Advisor. Phil Pennington and James Rapp from Microsoft pre-
sented the C++ Concurrency Runtime and the .NET Task Parallel Library (TPL). María
Garzarán gave an overview on vectorization and described various techniques to apply
them. UPCRC Illinois Co-Director and PI for the world’s first NVIDIA CUDA Center of
Excellence Wen-mei W. Hwu introduced OpenCL. John E. Stone of the Illinois Beck-
man Institute illustrated CUDAs utility with a Electrostatic Potential Maps application.
Marc Snir concluded the school with his Taxonomy of Parallel Programming Models.
As a special final event we were visiting the Petascale Computing Facility at Illinois
which will house the Blue Waters sustained-petaflop supercomputer.

Besides getting a lot of practical experiences with various wide-spread parallel pro-
gramming tools and libraries, I got an overview on application classes and use case for
parallel computing. In addition I learned about the challenging problems for the area
of parallel computing: programming models that are easy to use and powerful in lever-
aging parallel platforms. I also learned about the hardware trends that will push the
shift from parallel to heterogeneous computing and thus will increase the importance
of good programming models and execution platforms.

5.3 Journal Paper for the IEEE Software: Survey on Best Practices
for Optimizations in GPU Computing

Modern graphic cards are able to act as additional compute device beside the pro-
cessor. Parallel computing is therefore no longer a dedicated task for the CPU, the
new trend is heterogeneous computing of main processor and graphics processing
unit (GPU).

Our journal article presents a synthesis of important strategies for utilizing the ad-
ditional graphic processor power. We explain the primary concepts of GPU hardware
and the according programming principles. Based on this foundation, we discuss a
collection of commonly agreed critical performance optimization strategies. These op-
timizations are the key factor for getting true scalability and performance improvements
when moving from a multi-threaded to a GPU-enhanced version of your application.

It will be published in a special issue of IEEE:Software Journal in 2011.

72 Fall 2010 Workshop

6 Conclusion

5.4 Knowledge Sink for Use Cases, Tools and Libraries

While we were creating our survey on best practices (section 5.3), we collected a lot
of literature about GPU computing and related topics. This collection is available at [7].
Besides general topics, there are special collections for use cases of GPU Computing,
as well as a collection of tools and libraries.

5.5 Example Implementations of Representative Use Cases

The hands-on labs at the Summer School of the Universal Parallel Computing Re-
search Center (section 5.2) included a variety of algorithms that can be executed on
parallel platforms. These included matrix-matrix multiplication, convolution, prefix scan,
quicksort, and minimum spanning tree. Starting with these, we created a collection of
representative use cases for parallel computing. We used further literature to extend
the collection. [3, 12] These use cases will be used to evaluate our new programming
models.

5.6 Prototype to Run OpenCL-Code from .NET

The current tools and techniques to use the OpenCL API restrict programmers to write
C++ like code. In order to provide a greater audience with easy access to GPU comput-
ing, Jan-Arne Sobania and I were cooperating to run OpenCL programs using the .NET
Framework. We used a simple parallel loop approach that is known to .NET developers
because the parallel for loop of Microsofts Task Parallel Library (TPL) has become a
part of the .NET 4.0 Framework. Our prototypic implementation demonstrates that we
can provide OpenCL access similar to the TPL via a .NET library. This way it is easy
and intuitive for a .NET developer to benefit for GPU computing. Recently a similar
approach for Java has been made available by ATI. [2]

Based on our work we want to evaluate which of the best practices for optimizations
that are described in section 5.3 can be applied by our .NET library. We expect that
type and meta data information available in the runtime will be useful for that approach.
Ueng et al. [13] demonstrated that coalescing memory access - a very popular opti-
mization - can be applied automatically. Some other best practices have potential for
runtime support as well.

6 Conclusion

This paper introduces the research area of hybrid systems. Section 2 gives an overview
of the application domains for hybrid computing systems. The High Performance Com-
puting (HPC) always aims at more flops and smaller power consumptions. Business
servers use Accelerators for for OLAP and specific application needs. Home com-
puter need to be high-performing entertainment devices that consume very little en-
ergy. Power restrictions are more severe on mobile and embedded devices, but even
in this sector applications become more and more resource intensive. Programming

Fall 2010 Workshop 73

References

models and appropriate developer tools for parallel and multi-core computer systems
are active researched topics. Programming models and tools for the domain of het-
erogeneous and hybrid systems have not only to cope with parallelism, but also with
differing execution characteristics of the processors and accelerators in a given system
configuration. My research aims at help developers to handle the complexity of such
system w.r.t. to coding experience and resulting application performance. I worked on
surveys on best practices and patterns, hardware architectures and uses cases of hy-
brid computing. Currently I am working on a library for a high-level language to access
OpenCL-enabled accelerators. With the help of this library I plan to apply selected
best practice optimizations automatically. The usefulness will be demonstrated using
the collection of use case examples I created. Section 5 provides an overview on my
recent work.

References

[1] The OpenCL Specification - Version 1.1, 6 2010.

[2] Advanced Micro Devices, Inc. Aparapi. http://developer.amd.com/zones/java/
Pages/aparapi.aspx.

[3] David B. Kirk and Wen-mei W. Hwu. Programming Massively Parallel Processors:
A Hands-on Approach. Morgan Kaufmann, 1 edition, 2 2010.

[4] P. B. Volk, D. Habich, and W. Lehner. GPU-Based Speculative Query Process-
ing for Database Operations. In Proceedings of First International Workshop on
Accelerating Data Management Systems Using Modern Processor and Storage
Architectures, ADMS, 10, 9 2010.

[5] Jack Dongorra. Challenges for Exascale Computing. Technical report.

[6] Wenbin Fang, Bingsheng He, and Qiong Luo. Database Compression on Graph-
ics Processors. In , 2010.

[7] Frank Feinbube. GPU Readings List. http://www.dcl.hpi.uni-potsdam.de/

research/gpureadings/.

[8] Frank Feinbube, Bernhard Rabe, Martin von Löwis, and Andreas Polze. NQueens
on CUDA: Optimization Issues. In Proceedings of 9th International Symposium
on Parallel and Distributed Computing, Istanbul, Turkey (ISPDC), 2010, 2010. Is-
tanbul, Turkey (to appear).

[9] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon. PacketShader: a
GPU-accelerated software router. In Proceedings of SIGCOMM ’10: Proceedings
of the ACM SIGCOMM 2010 conference on SIGCOMM, New Delhi, India, pages
195–206, New York, NY, USA, 2010. ACM. New Delhi, India.

74 Fall 2010 Workshop

References

[10] Taskin Kocak and Nicholas Hinitt. Exploiting the Power of GPUs for Multi-gigabit
Wireless Baseband Processing. In Proceedings of ISPDC ’10: Proceedings of
the 2010 Ninth International Symposium on Parallel and Distributed Computing,
pages 56–62, Washington, DC, USA, 2010. IEEE Computer Society.

[11] Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann. OpenMP to GPGPU: a
compiler framework for automatic translation and optimization. In Proceedings
of PPoPP ’09: Proceedings of the 14th ACM SIGPLAN symposium on Principles
and practice of parallel programming, Raleigh, NC, USA, pages 101–110, New
York, NY, USA, 2009. ACM. Raleigh, NC, USA.

[12] Jason Sanders and Edward Kandrot. CUDA by Example: An Introduction to
General-Purpose GPU Programming. Addison-Wesley Professional, 1 edition,
7 2010.

[13] Sain-Zee Ueng, Melvin Lathara, Sara S. Baghsorkhi, and Wen-Mei W. Hwu.
CUDA-Lite: Reducing GPU Programming Complexity. In Proceedings of 21th
International Workshop on Languages and Compilers for Parallel Computing,
Edmonton, Canada (LCPC), 2008, pages 1–15, Berlin, Heidelberg, 8 2008.
Springer-Verlag. Edmonton, Canada.

Fall 2010 Workshop 75

A Study on Mobile Real-Time Middleware

Uwe Hentschel

uwe.hentschel@hpi.uni-potsdam.de

The Fontane project has shown that distributed systems connected via a mobile
phone network become more and more important. This applies to devices of the ev-
eryday life as well as to industrial and medical devices. Mobile systems have charac-
teristics like the available bandwidth which may vary strongly and make high demands
on applications. In the context of the Fontane project exists the requirement to transfer
a streaming electrocardiogram. This extends the demands on mobile systems to the
area of real-time applications. An additional layer, the middleware, could be helpful to
reduce demands on the application by concentrating often required functionality at a
central point. But special characteristics of mobile systems are often not addressed
by middleware typically used for distributed systems with wired connections [8, chap-
ter 11].

Another point is if an application wants to adapt its behavior to the variable band-
width of mobile systems the application have to know first the current value of available
bandwidth. On the one side the direct measurement of the available bandwidth makes
high demands on itself and influences the monitored mobile network. On the other
hand on many mobile nodes like phones the network status is only monitored to be
indicated to human users. This paper gives a short overview of the problem area and
possible proposals to deal with this.

1 Introduction

The popularity of mobile devices, such as laptop computers or mobile phones, is un-
broken within the last years. However, not only such typical mobile devices but also
embedded or medical devices or hybrid forms become more and more part of the ev-
eryday life. The latter can especially be found in the areas of assisted living and vital
signs monitoring of patients with special diseases like diabetes or cardiac insufficiency.

In the majority of cases these devices can be connected to wireless networks.
Particularly within rural areas mobile phone networks provide the only opportunity for
long distance communication. Applications using mobile connections have to deal with
problems which are typical for this type of communication. For example:

• The network connectivity can temporarily and unexpectedly be lost.

• The available transmission bandwidth varies frequently and is typically lower than
within stationary networks.

• The devices have often limited resources in terms of battery power, CPU operat-
ing speed or main memory.

Fall 2010 Workshop 77

A Study on Mobile Real-Time Middleware

Because the communication using mobile networks is one of the most power consum-
ing tasks of mobile devices, they are usually involved in rather short sessions.

Another point of interest is the distributed structure of mobile systems. A patient
monitoring system for example, contains typically measurement and control devices
for each patient and central data storage devices, often called the telemedicine cen-
ter, where medical professionals discover findings. Here mobile devices capture data
and transmit this to a stationary central part. Another example are systems where
autonomous units and a central unit are connected via a mobile network and the au-
tonomous units get their commands from the the central unit. Such system structures
are also called mobile nomadic systems [8, chapter 11] (Figure 1).

Figure 1: Mobile nomadic system

2 Middleware for mobile distributed systems

One main goal of middleware for distributed systems, such as CORBA or Java RMI,
is to provide a higher level of abstraction for the application, hiding the complexity of
the underlying network, protocols, and operating system. In other words the whole
system shall look like a single entity and the distribution should be transparent for
applications. In contrast, middleware for mobile distributed systems shall not hide the
whole complexity of the underlying layers but establish awareness for mobility. This
means that the application developer shall deal with some aspects of mobility, such as
variable transmission bandwidth, possibly lost connectivity, or battery power.

This can be realized using two basic strategies. First, lower layers can provide pa-
rameters typical for mobile connections which allow the application to react to changes
of the network. In this case the application itself is responsible for the mobile con-
nection control. Second, an additional layer evaluates the lower layer parameters and
provides special event functions what can be used by the application. The application
does also not necessarily need to handle the aspects of mobility itself but the developer
shall know that they exist and decide about the strategy to deal with.

78 Fall 2010 Workshop

3 Effects which influence mobile communication

Within the Fontane project, in cases of emergency a streaming electrocardiogram
(ECG) shall be transmitted from the patient’s mobile device to the telemedicine center.
A two channel ECG with 512 samples/sec and 12 bit/sample resolution each channel
requires a transmission bandwidth of about 12 kbps. Such a bandwidth cannot be guar-
anteed as an absolute value but in many cases as mean value within a specific time
period. In general, if real-time application shall be used within a mobile distributed sys-
tem, additional requirements have to be fulfilled by the network and the communication
control. Typical real-time requirements are:

• The compliance with timing boundaries of given tasks, such as the transmission
of a message or a part of the data.

• The predictability of specific operations.

Because of the expected unpredictable effects which influence the transmission pa-
rameters of the mobile distributed network a middleware for such networks cannot
guarantee hard real-time requirements but the middleware can focus on providing soft
real-time guaranties.

3 Effects which influence mobile communication

Todays mobile phone networks in Germany use the frequency ranges about 900 MHz
and 1.8 GHz in the case of GSM (Global System for Mobile Communications) and
about 2 GHz in the case of UMTS (Universal Mobile Telecommunications System). This
section lists environmental conditions that are typically relevant for radio frequencies
in the range above 100 MHz and discusses their influence on different communication
layers.

3.1 Real world effects

The mobile communication between different parties can be influenced by following
effects:

Geographic parameters: Geographic conditions like the distance between transmit-
ter and receiver and their altitude are important because the waves are propa-
gated quasi-optically.

Obstacles within the transmission path: Obstacles formed by buildings, elevations,
vegetation, and animals cause shadowing effects as well as reflection, diffraction,
scattering, and interferences of radio waves.

Atmospheric conditions: Precipitations, such as rain, snow, hail, and fog, attenu-
ate the amplitude of electromagnetic waves. Electrostatic discharges in case of
thunderstorm accompany with strong magnetic fields and are sources of electro-
magnetic disturbance. Inversions, arrangements of air in different layers with low
temperature at the surface of the earth, diffract radio waves.

Fall 2010 Workshop 79

A Study on Mobile Real-Time Middleware

Radio interferences: Interferences caused by other radio services or multipath prop-
agation make reclamation of the original signal on the receiver side difficult.

Architecture of the mobile system: The system architecture has an important influ-
ence on the quality of data transmission. Especially the design of the devices,
and here especially the type and arrangement of antenna and the construction
of enclosure, the positioning of radio frequency components (indoor, outdoor, ...),
and the available or chosen transmission power have to be considered.

Radio cell resources: The limited resources of the radio cell itself can lead to a con-
flict between voice and data communication. Within a data communication the
available transmission bandwidth is shared by all participants.

Radio cell change-over: In the case of a handover, such as inter-cell handover, nor-
mally the receive signal level and/or the signal quality within the new cell will be
better than within the current cell [4]. But the transmission bandwidth available
within the new cell can be different and perhaps lower than within the current cell.

3.2 Transmission layer

The effects that influence the transmission path outside the mobile network result in a
variable receive signal level or signal quality. Indicators of signal quality are typically
the carrier-to-noise ratio (CNR), signal-to-noise ratio (SNR), bit error rate (BER) and
frame error rate (FER). The radio access network reacts typically on such influences
by adapting its transmission parameters; the modulation and coding schema (MCS) for
example, in the case of GPRS (General Packet Radio Service) or EGPRS (Enhanced
GPRS) within a GSM network; or the radio access technology (RAT) in the case of an
inter-RAT handover. This actions, on the other hand, influence the available bandwidth
and the connection visible for the layer above.

3.3 Applications layer

The abstraction at applications level leads to the effect that the exact source which in-
fluences the receive signal cannot be identified. All above mentioned real world effects
result in a variable transmission bandwidth or in the worst case in a lost connection.

Therefore it is useful not only to measure the currently available bandwidth but also
to retrieve information from the transmission layer in order to get a better understanding
of the current transfer situation within the mobile network (see also section 6).

4 End-to-end measurement of available bandwidth

As first approach to measure the available bandwidth within a GSM network a small
client-server-program was implemented. The client is connected to the GSM network
and sends a train of data packets to the server which is reachable from the Internet

80 Fall 2010 Workshop

4 End-to-end measurement of available bandwidth

(Figure 2). Every 30 minutes the client starts a measurement cycle using UDP first
and afterwards TCP.

BTS

GSM Internet

GGSN Node Server

NodeClient

Figure 2: Network Measurement

Within this measurement client and server are not time synchronized. Both of them
use their own high resolution timer. The client puts the transmit timestamps and its
time resolution in the data packets. The server receives the packets and stores the
client timing data and its own measurement data in a file. The assumptions here are:

• The radio link is the link with the smallest capacity and the minimum available
bandwidth along the path.

• All other links along the path do not influence the distance between the packets.

(a) Measured Times (b) Shifted Transmit Times

Figure 3: Time between consecutive measurement packets

The left diagram in Figure 3 shows one of the measurements made. As one can
see the captured transmit time is extremely low within the first six intervals. The first
packets are filled into an empty transmit buffer and therefore the measurement shows
the speed within the client and not within the network. The right diagram shows the
same measurement but the transmit time values are shifted six intervals left in order
to correct the influence of the transmit buffer size. Now one can see that up to the
interval 50 (left half of the diagram) most of the time values from client and server are

Fall 2010 Workshop 81

A Study on Mobile Real-Time Middleware

nearly the same. In the second half the distances between the client and server values
are bigger. Over the whole measurement the time values are spread over more than
one decade. This indicates that some effects, which probably occur on the radio link,
influence the currently transmitted data packets and the packets currently put into the
transmit buffer in the same way. On the other hand, there must be some effects that
have different influence on sender and receiver side.

Within the first measurement cycles many data packets were lost (Figure 4). As
we have found out, the packet loss was caused by connection losses based on inter-
RAT handovers from GSM to UMTS cells or vice versa. After turning-off the multi-RAT
device option, the modem has used only the GSM network and no data packets were
lost. This shows that even if the available bandwidth is relatively high the connection
can temporarily be lost.

Figure 4: Effect of inter-RAT handover

The later experiment runs over a period of two days. The results are displayed in
Figure 5 which shows the relative frequency of the mean values of each measurement
cycle separated by the used transmission protocol.

Figure 5: Transfer rates measured over a period of two days

82 Fall 2010 Workshop

5 Proposals for solution

Both diagrams show two separated groups – a small one at 20 kbps up to 25 kbps
and broader one between 55 kbps and 100 kbps in the case of TCP and 50 kbps and
110 kbps in the case of UDP.

5 Proposals for solution

Depending on the tasks of the mobile devices within mobile nomadic systems, different
approaches exist at applications level to deal with the specific aspects of mobility. Here
two situations will be discussed. First, the mobile node can only be a data provider and
second, the mobile node may act as worker node or autonomous unit.

5.1 Mobile device as passive node

Within this scenario the mobile nodes, such as sensors or patient monitor devices, cap-
ture data, preliminary analyze this data optionally and transmit it then to the stationary
central part of the system. A typical way to adapt the functionality of an application on
the mobile device to variable transmission bandwidths is to adapt the amount of data
to be transmitted. Basically the following two methods are possible:

• Data reduction

• Data compression

Data reduction means to decrease the amount of transmitted data by dividing the
captured data into more and less significant parts and disregarding the less important
ones. On the contrary, data compression means to reduce the size of the data format.
While the first method is lossy in every case, the second one can be lossy or lossless.

An alternative solution can be to buffer the captured data if the available bandwidth
is too small and to send this data at a later time if the available bandwidth is again high
enough.

5.2 Mobile device as active node

Within the second scenario the mobile nodes are instructed by the central part of the
system to achieve tasks. Afterwards the mobile nodes report their results back to the
instructing party. In order to be responsive to variable bandwidth and lost connections
the work can be handed out to more than one mobile nodes. Generally the following
models are feasible:

• Alternative worker nodes

• Redundant worker nodes

Within the first model the instructing party is looking for alternative worker nodes if
the primary node is not reachable. The second model based on the parallel execution
of one task on more than one worker nodes. According to the underlying failure model

Fall 2010 Workshop 83

A Study on Mobile Real-Time Middleware

the instructing party can use the first result or can use more than one result value
to vote for the most probable one. For the result values the methods mentioned in
section 5.1 can be used to react to variable bandwidth.

As an alternative solution the instructing party can transmit more than one task to
a worker node. If the worker could not transmit a result, he can process the next task
and try to transmit the result values together.

6 Adaptation to different conditions

At application level we want to manage the connection and/or the available bandwidth.
There are three different situations which should be considered:

1. No cell change: – The connection is probably stable and only the available band-
width is assumed to vary.

2. Soft handover: – The new connection is established parallel to the current one.
For a short time both connections exist. The new connection provides probably
another bandwidth.

3. Hard handover: – The current connection is closed and afterwards a new con-
nection is established. While the handover process is not finished the connection
is lost and the new connection provides probably another bandwidth.

The required information can be directly measured or can be derived from lower
layer parameters that in the case of mobile phone networks can be captured as status
or monitor values from the modem.

6.1 Measurement of information

At the first glance, measurement of the available bandwidth seems to be an easy and
straightforward way because the required values are directly detected. But this way
raises the following questions which should be always kept in mind:

• How many time does one measurement need?

• How many measurement cycles are required to calculate a mean value?

• How long is the network state stable? (or) How long is the mean value valid?

In addition, there are the costs for transferring data over a public mobile network re-
garding available bandwidth, influence to other data transmissions and money. Based
on this points an effective algorithm is needed in terms of short measurement dura-
tion and low network load and if possible a combination of usual data transfers and
measurement.

In the past, different tools, such as Pathload [6,7], Pathchirp [10,11] or Spruce [12],
were developed to measure parameters of the transmission path or single links within
the path. All mentioned tools are specialized to measure the available bandwidth but

84 Fall 2010 Workshop

6 Adaptation to different conditions

each of them uses its own algorithm. Each tool assumes that FIFO queuing is used
at all routers along the transmission path, cross traffic packets have an infinitely small
size and cross traffic average rate changes slowly and is constant while a single mea-
surement cycle [12]. This tools were evaluated by Han, et al. [5].

In [9] some problems, for example the time variation of link capacity, are discussed
which are especially relevant to end-to-end measurements within mobile phone net-
works, here EGPRS networks.

6.2 Derivation of information

Another approach is to derive information about the available bandwidth from status
values captured from the modem. Therefore a special interface, the AT commands also
known as the Hayes command set, was standardized [1, 3]. But which information is
required? To answer this question, we can, for example, look for conditions that trigger
the handover process. In [4, subclause 3.4] the strategy for an inter-cell handover is
defined as follows:

Intercell handover from the serving cell to a surrounding cell will normally
occur either when the handover measurements show low RXLEV and/or
RXQUAL on the current serving cell and a better RXLEV available from a
surrounding cell, or when a surrounding cell allows communication with a
lower TX power level. This typically indicates that an MS is on the border of
the cell area. ...

The abbreviations used above are defined in [2]:

RXLEV – Received Signal Level TX – Transmit
RXQUAL – Received Signal Quality MS – Mobile Station

The received signal level and the signal quality can be requested using the com-
mand AT+CSQ [3, subclause 8.5]. The signal level is specified over the range from
-51 dBm to -113 dBm in steps of -2 dBm. The signal quality is specified in eight steps
as defined in [4] subclause 8.2.4. One problem with this command is, it is optional!
First inquiries have shown that some modems do not support this command to the full
extent. For example, the Hewlett Packard un2400 and the Huawei V100R001 report
the received signal level but not the signal quality; the Motorola C24 reports both but
instead of the BER the FER is used to characterize the signal quality.

Other AT commands that could be helpful within this context are:

• AT+COPS – Public land mobile network (PLMN) selection [3, subclause 7.3]

• AT+CPSB – Current packet switched bearer [3, subclause 7.29]

• AT+CPWC – Power class [3, subclause 8.29]

• AT+CBC – Battery charge [3, subclause 8.4]

The problem: The implementation of all these commands is also optional!

Fall 2010 Workshop 85

References

In contrast to modems, which are typically used within consumer products, industrial
modems, for example from Sierra Wireless, Sixnet or Huawei, provide usually more
network information about the serving and the neighbor cells. The problem here is that
this AT commands are vendor specific!

Back to the original problem: What do status values of the modem reveal about the
available bandwidth or the connection? All effects that occur within the radio frequency
path influence direct or indirect the received signal level and/or the signal quality. The
network itself react on this influence and changes its transmission parameters with the
objective of being able to correct possible transmission errors on the receiver side. We
can draw conclusions from the status values about possible reasons for variation of
available bandwidth or connection status. On the other hand, effects what occur in-
side the network and influence the available bandwidth cannot be detected with status
values of the modem.

7 Conclusions

Often the application must adapt their behavior to the current quality of mobile com-
munication. A middleware for mobile systems has to establish awareness for mobility
because controlling of available bandwidth and connection status is only meaningful if
the system as a whole is able to react to. This can be done by passing network pa-
rameters through to the application or by providing callback events depending on the
current situation.

On the over hand, if the middleware want to manage the mobile communication it
has to know the current network status and the amount of available bandwidth. The
amount of available bandwidth can, depending on the capabilities of the underlaying
layers, be deduced from status values of the network or directly be measured. In the
case of measurement the effectiveness, especially the accuracy of the captured values
and their duration of validity, as well as the influence on the transfer medium and other
data transfers have to be considered.

With a view to real-time requirements it is important to notice that the middleware
is subject to unpredictability of the underlaying mobile network. Therefore, the middle-
ware cannot guarantee the compliance with hard real-time requirements. Instead, the
middleware should focus on providing soft real-time guarantees.

References

[1] 3GPP TS 27.005 V9.0.0: 3rd Generation Partnership Project; Technical Specifica-
tion Group Core Network and Terminals; Use of Data Terminal Equipment - Data
Circuit terminating Equipment (DTE - DCE) interface for Short Message Service
(SMS) and Cell Broadcast Service (CBS), December 2009.

[2] 3GPP TR 21.905 V10.2.0: 3rd Generation Partnership Project; Technical Specifi-
cation Group Services and System Aspects; Vocabulary for 3GPP Specifications,
March 2010.

86 Fall 2010 Workshop

References

[3] 3GPP TS 27.007 V10.0.0: 3rd Generation Partnership Project; Technical Specifi-
cation Group Core Network and Terminals; AT command set for User Equipment
(UE), June 2010.

[4] 3GPP TS 45.008 V9.3.0: 3rd Generation Partnership Project; Technical Specifi-
cation Group GSM/EDGE Radio Access Network; Radio subsystem link control,
May 2010.

[5] Young-Tae Han, Eun-Mi Lee, Hong-Shik Park, Ji-Yun Ryu, Chin-Chol Kim, and
Yeong-Ro Lee. Experimental Evaluation of End-to-End Available Bandwidth Mea-
surement Tools. In APNOMS’09: Proceedings of the 12th Asia-Pacific network
operations and management conference on Management enabling the future in-
ternet for changing business and new computing services, pages 498–501, Berlin,
Heidelberg, 2009. Springer-Verlag.

[6] Manish Jain and Constantinos Dovrolis. Pathload: a measurement tool for end-
to-end available bandwidth. In Proceedings of the 3rd Passive and Active Mea-
surements Workshop, Fort Collins CO, March 2002.

[7] Manish Jain and Constantinos Dovrolis. End-to-End Available Bandwidth:
Measurement Methodology, Dynamics, and Relation With TCP Throughput.
IEEE/ACM Trans. Netw., 11(4):537–549, 2003.

[8] Qusay H. Mahmoud, editor. Middleware for Communications. John Wiley & Sons,
Ltd, 2004.

[9] Juan Andrés Negreira, Javier Pereira, Santiago Pérez, and Pablo Belzarena. End-
to-end measurements over GPRS-EDGE networks. In LANC ’07: Proceedings of
the 4th international IFIP/ACM Latin American conference on Networking, pages
121–131, New York, NY, USA, 2007. ACM.

[10] Vinay J. Ribeiro, Rudolf H. Riedi, and Richard G. Baraniuk. Locating Available
Bandwidth Bottlenecks. IEEE Internet Computing, 8:34–41, 2004.

[11] Vinay J. Ribeiro, Rudolf H. Riedi, Richard G. Baraniuk, Jiri Navratil, and Les Cot-
trell. pathChirp: Efficient Available Bandwidth Estimation for Network Paths. In
Proceedings Workshop on Passive and Active Measurement PAM2003, March
2003.

[12] Jacob Strauss, Dina Katabi, and Frans Kaashoek. A Measurement Study of Avail-
able Bandwidth Estimation Tools. In IMC ’03: Proceedings of the 3rd ACM SIG-
COMM conference on Internet measurement, pages 39–44, New York, NY, USA,
2003. ACM.

Fall 2010 Workshop 87

Understanding Service Implementations
Through Behavioral Examples

Michael Perscheid

michael.perscheid@hpi.uni-potsdam.de

The understanding of service implementations, with a special focus on internal de-
tails that constitute functionality, is an important aspect during the development of ser-
vices. Actual run-time data supports the comprehension of service implementations
like examples support the explanation of abstract concepts and principles. However,
the required run-time analysis is often associated with an inconvenient overhead that
renders current tools impractical for frequent use.

We propose a practical, lightweight, and incremental approach to dynamic analysis
based on entry points that describe reproducible system behavior. By observing and
enriching such concrete examples of behavioral paths, we investigate new perspectives
on service implementations that improve comprehension of execution semantics. We
are providing perspectives for exploring one execution path in detail, for comparing
multiple paths with each other, and for understanding the internal behavior from the
user’s point of view.

1 Introduction

Developers of object-oriented software systems, including service implementations,
spend a significant amount of time on program comprehension [4]. They require an in-
depth understanding of the code base that they work on; ranging from the intended use
of an interface to the collaboration of objects. Gaining an understanding of a program
by reading source code alone is difficult as it is inherently abstract.

Run-time information supports developers in coping with this complexity. Collected
run-time data reports on the effects of source code and thus helps understanding it. At
run-time, the abstract gets concrete; variables refer to concrete objects and messages
get bound to concrete methods. For example, a program’s run-time helps to answer:
"How is a particular method called?" or "How does the value of a variable change?"

Unfortunately, the overhead imposed by current tools renders them impractical for
frequent use. This is mainly due to two issues; setting up an analysis tool usually re-
quires a significant configuration effort and performing the required in-depth dynamic
analysis is time-consuming. Both issues inhibit immediacy and thus discourage devel-
opers from using these tools frequently.

We propose a new approach to dynamic analysis that enables a feeling of imme-
diacy that current tools are missing. Based on entry points that describe reproducible

Fall 2010 Workshop 89

Understanding Service Implementations Through Behavioral Examples

behavior, we split the costs of dynamic analysis over multiple runs—an initial shal-
low analysis followed by detached in-depth on-demand refinements. For our imple-
mentation, we leverage test cases as such entry points, as they commonly satisfy the
necessary requirements. Triggered by their execution, we observe and enrich behav-
ioral examples to improve the comprehension of execution semantics. We develop the
Path tool suite, which allows developers to explore a specific execution path in detail
(PathFinder), to compare multiple paths with each other (PathMap), and to understand
the internals from the user’s point of view (PathTrace).

The remainder of this paper is organized as follows: Section 2 presents our ap-
proach to dynamic analysis that collects data exactly when needed. Section 3 de-
scribes the Path tool suite. Section 4 demonstrates how program comprehension is
supported by our tools. Section 5 concludes and presents next steps.

2 Dynamic Service Analysis

Dynamic service analysis is a practical, lightweight, and incremental approach to dy-
namic analysis for understanding system and service implementations. It is build on
reproducible entry points such as test cases that act as concrete examples of service
behavior. These behavioral examples concrete the abstract entities of source code
with meaningful information and so support program comprehension.

By executing entry points multiple times, we can split the dynamic analysis costs
over multiple runs. Starting with an initial shallow analysis for navigating behavioral
paths, developers get only a subset of all possible run-time data. When they require
more detailed information such as object states, this additional data is collected in de-
tached on-demand refinements by executing entry points multiple times. This approach
enables a feeling of immediacy that current dynamic analysis concepts are missing.

For an easy setup of analysis tools, our approach can seamlessly be integrated
into current development environments. Developers only have to define their subsys-
tem of interest and a collection of entry points. While the first must be done with the
declaration of packages only once, the latter can be automized if test cases or API
examples are available. Furthermore, by continuously maintaining a coverage relation-
ship between executed entry points and covered methods [12], it is possible to embed
arbitrary methods into meaningful examples at all times.

Figure 1 summarizes our approach. First, reproducible entry points such as test
cases are executed to produce behavioral example paths (Section 2.1). Second, dy-
namic analysis is applied to these examples for exploring a specific path in detail or
comparing multiple paths with each other (Section 2.2). Finally, the meaning of entry
points can be enhanced with links to requirements for recovering traceability informa-
tion automatically (Section 2.3).

2.1 Entry Point Characteristics

Dynamic service analysis requires the ability to reproduce arbitrary points in a program
execution. Therefore, we assume the existence of entry points that specify determinis-

90 Fall 2010 Workshop

2 Dynamic Service Analysis

!"#$%#&'($)*+#&,$

-.'/+0.$1234.2.#&56*#$

7.,&$85,.,$

!.9"+'.2.#&,$

:+#;,$

7'50.5<+4+&($

!"#

$"#

%"#

Figure 1: Dynamic service analysis allows for exploring behavioral paths through ser-
vice implementations. Triggered by the run of entry points (here test cases) (1), we an-
alyze specific or multiple paths (2) to support program comprehension. Furthermore,
by linking entry points and requirements (3), we recover traceability data automatically.

tic program executions. For our implementation, we leverage test cases as such entry
points, as they commonly satisfy this requirement [13]—a test case describes what
the system is expected to do, its execution reveals how it is realized. Moreover, tests
are meaningful behavioral examples of the system and its parts; they can be executed
repeatedly, fast, and without any side effect before and after their execution; and they
are an integral part of several development processes, especially agile processes.

Leveraging test cases as entry points is not a requirement for dynamic service
analysis. Our tools work best if test coverage for the developed application is high,
but resorts to manually specified entry points if no covering test is found. This, how-
ever, requires more knowledge about the system under observation than relying on
test coverage: it is not always trivial to anticipate control flows leading to methods of
interest.

2.2 Step-wise Run-time Analysis

Traditional approaches to dynamic analysis are time-consuming as they capture com-
prehensive information about the entire execution up-front. Low costs can be achieved
by structuring program analysis according to user needs or, more specifically, dividing
the analysis into multiple steps.

Step-wise run-time analysis [8] splits the analysis of a program’s run-time over mul-
tiple runs: A high-level analysis followed by on-demand refinements. A first shallow
analysis focuses on the information that is required for presenting an overview of a

Fall 2010 Workshop 91

Understanding Service Implementations Through Behavioral Examples

program run. Further information about method arguments or instance variables are
not recorded. As the developer identifies relevant details, such data is recorded on-
demand in additional refinement analysis runs. The information required for program
comprehension is arguably a subset of what a full analysis of a program execution
can provide. While our approach entails multiple runs, the additional effort is kept to a
minimum, especially when compared to a full analysis that has no knowledge of which
data is relevant to the user. We reduce the costs by loading information only when the
user identifies interest. This provides for quick access to relevant run-time information
without collecting needless data.

The concept of step-wise run-time analysis is also adaptable to multiple execution
paths. Instead of running only one entry point, several entry points can also be exe-
cuted and analyzed one after another. Only required run-time information is collected
and if necessary summarized with dynamic metrics. In this way, behavioral paths, dif-
ferent states, or coverage data can be compared with each other. Analogous to the
dynamic analysis of a specific path, we collect only initial run-time information for the
task at hand. When more detailed information is required, it can be refined in detached
runs. Thus, dynamic analysis can also be divided into fine-granular and incremental
steps for multiple entry points and their execution paths.

2.3 Link Entry Points, Get Traceability

Additional links between entry points and their primary objectives support program
comprehension as developers can understand the reasons for exemplary system be-
havior. So far, entry points offer examples into system behavior but their real purpose
is hidden in external requirements, the development history, or implementation arti-
facts. Especially, test cases were implemented with a particular reason in mind such
as verifying a specific requirement. With the connection between entry points and re-
quirements (or other development entities), the meaning of subsequently behavioral
paths can be enhanced.

Links between entry points and requirements in combination with dynamic service
analysis allow for recovering traceability information automatically [6]. Requirements
traceability is considered to be important for software understanding as it supports an-
swers for questions such as why a particular source code entity was implemented.
Adapting the concepts of feature localization [2], annotated entry points are executed
and behavioral paths are related to entry points and requirements in question. Af-
terwards a requirement is traced to a source code entity if it has been executed at
least once in a specific entry point that is linked to this requirement. Depending on
the coverage of entry points, large parts of the system can be traced and classified to
requirements automatically.

Future work deals with the automatization of the manual linking step. We are work-
ing on the integration of acceptance test frameworks with dynamic service analysis.
As some acceptance test frameworks store or explicitly represent the relation to tested
requirements, this information can be reused for replacing the manual linking process.
Consequently, we have a fully automatic requirements traceability approach from re-
quirements via dynamic analysis of tests through to traced source code entities.

92 Fall 2010 Workshop

3 An Overview of the Path Tool Suite

Figure 2: PathFinder is our interactive dynamic analysis tool that allows developers to
explore a specific behavioral path through the service (ToDo Web application [9]).

3 An Overview of the Path Tool Suite

The path tool suite realizes the concepts of dynamic service analysis and supports the
understanding of behavior. By means of examples, being triggered by reproducible
entry points, our tools observe, analyze, and present behavioral paths for developers.
At the same time, our tools distribute the costs of dynamic analysis across multiple runs
and so enable a feeling of immediacy when program behavior is explored—a property
that cannot be provided by fully dynamic analysis approaches.

Our tools are combined with each other in order to refine behavioral questions step
by step and from different perspectives. PathFinder (Section 3.1) reveals one specific
behavioral path, its state, and object interactions. PathMap (Section 3.2) summarizes
run-time information with the help of several metrics and presents it inside the system’s
architecture. PathTrace (Section 3.3) connects the user’s and developer’s point of view
as it traces requirements down to source code entities. At the end, all tools are sup-
posed to answer behavioral questions for one or multiple execution paths from several
points of view—a characteristic that is only minimal supported by current tools [5,11].

3.1 PathFinder: Interactive Dynamic Views

PathFinder [8] is our dynamic analysis tool for interactively introspecting the behav-
ior of one specific execution path. Based on a lightweight call graph representation
used for navigation (shallow analysis), developers can state their points of interest and
all further information is computed on demand by re-executing the chosen entry point

Fall 2010 Workshop 93

Understanding Service Implementations Through Behavioral Examples

in background (refinement analysis). We distribute the overhead of dynamic analysis
over multiple runs so that there is no need to collect all data at once. Thereby mem-
ory consumption and performance impacts are kept low. Thus, we have a practical
approach for behavioral views that will be evaluated regarding its improvements for
program comprehension in the near future.

Figure 2 presents PathFinder while a service request of our ToDo Web applica-
tion [9] is processed. The internal behavior is revealed for this specific request and
developers can follow what inside the application happens. If they are interested in
further details, the request is executed again and more detailed information such as
method arguments is collected and presented. Thus, behavioral reachability questions
concerning only one execution path [5,11], for instance, "what happens before execut-
ing the renderContentOn: method?" or "how does the request object change?", can be
answered with the help of PathFinder. Its interactive dynamic views allow for navigating
call and object trees in both forward and backward direction so that developers get in-
sights into the execution and state history without any restrictions. Furthermore, almost
all run-time information including the initial shallow analysis is provided in less than a
second (less than 300 milliseconds for 95% of about 4.400 test cases [8]). These fea-
tures should encourage developers to use PathFinder at least as often as they use
tedious and time-consuming debugging strategies for program comprehension [5].

3.2 PathMap: What We Can Learn from Tests

PathMap summarizes multiple behavioral paths and merges static and dynamic views
of a system under observation. In contrast to PathFinder, it has a stronger focus on
test cases as entry points but the presented concepts are still independent of that fact.
PathMap is integrated into a standard test runner and enhances the value of running
test cases by analyzing their execution, rendering dynamic metrics, and suggesting
meaningful entities, which can be further explored with the aforementioned PathFinder
tool. We investigate new system perspectives that are intended to support several
software engineering tasks such as guiding developers to potential locations for traced
requirements, hot spots, or untested code. Moreover, we compare dynamic paths and
reveal anomalies for more suitable fault localization or hints at design disharmonies.

Figure 3 illustrates the PathMap and the test quality analysis of the Seaside Web
framework [1]. Seaside’s system structure is rendered within a tree map layout where
packages include classes which in turn include method entities. The entire Web frame-
work (more than 3,700 methods) is presented in the space of a 500 pixel square,
which can be explored interactively. Furthermore, the static view can be colorized with
a static metric such as lines of code, complexity or as in this example the developer of
a method. Having analyzed the execution of all test cases, PathMap darken method
entities that has been covered by at least on entry point. As a consequence in this
example, we are able to answer the questions "who has written insufficiently tested
methods?" or "which subsystems need more attention during quality assurance?".

PathMap provides answers to behavioral reachability questions that deal with mul-
tiple execution paths [5,11]. We support the following scenarios:

94 Fall 2010 Workshop

3 An Overview of the Path Tool Suite

Figure 3: PathMap executes multiple entry points and summarizes the analyzed be-
havior within the system’s architecture (Seaside Web framework [1] - Test coverage in
relation to the developer of a method).

Test Quality Combining arbitrary static metrics with coverage information allows for
assessing software quality in terms of application structure and testing activities.

Concerns Traceability Based on the concept of feature localization [2], we trace arbi-
trary concerns to covered entities and support developers in comprehending the
system from different points of view.

Fault Localization With the comparison of passed and failed test cases [10], failures
can be localized more closely to real causes.

Profiling Instead of looking at one execution profile, we summarize multiple execu-
tions and identify hot spots for processing time, number of objects, or method
calls.

3.3 PathTrace: Understanding the User’s Point of View

PathTrace is a semi-automated approach for the post-traceability of requirements that
allows developers to comprehend the system from the user’s point of view. Based on
the concepts of feature localization, we manually link entry points with requirements,
analyze their behavioral paths, and trace requirements to covered source code entities

Fall 2010 Workshop 95

Understanding Service Implementations Through Behavioral Examples

Figure 4: AcceptIt allows for writing acceptance tests in a business-readable domain
specific language so that requirement descriptions and related tests are one and the
same. Based on such entities, PathTrace can automatically recover traceability data.

automatically [6]. Other development tools can use the gathered traceability informa-
tion to improve understanding of user requests and their related implementation details.
Thus, answers for typical software maintenance questions such as "how is this require-
ment implemented?" or "which source code entities are related to the user’s failure
report?" [11] are better supported.

To complete our approach to a fully automatic traceability technique, we are work-
ing on a new acceptance test framework called AcceptIt1. AcceptIt provides a way
of merging requirements and tests into one executable source code entity. In other
words, linking becomes redundant as links are implicitly available. Tests are described
in a business-readable domain specific language (BR-DSL). This BR-DSL is mapped
to ordinary library methods. In consequence, acceptance tests are executable as usual
and readable (maybe also writable) by customers. The difference between an accep-
tance test and a scenario description becomes blurred.

Figure 4 presents the current state of AcceptIt with its BR-DSL, its language ex-
tension, and a part of the source code library (example taken from our ToDo Web
application [9]). On the left side, the "login" scenario as part of a user story is defined
and can be understood without any knowledge of the implementation—given declares
preconditions, when describes actions, and then asserts a specific event or state. On
the right side, the given step is mapped to the corresponding library method and its
implementation. At a later time, libraries should offer a lot of generic mappings so that
they are reusable in several scenarios.

AcceptIt introduces a new kind of entry point. On the one hand PathTrace is ex-
tended to be completely automatic on the other hand PathFinder and PathMap analyze
entry points with clear objectives. So, developers have not only the answer to what a

1The idea is based on Cucumber http://www.cukes.info. Last accessed: October 8, 2010

96 Fall 2010 Workshop

4 Case Study: Fault Localization in Seaside

Figure 5: After selecting and running failing tests (1), PathMap compares test run
results and colorizes suspicious methods (2). Subsequently, PathFinder allows for
exploring a specific path to the cause of a failure (3).

test case describes and how it is realized, they have also its purpose. In the sense of
program comprehension, we can enhance the meaning of behavioral paths.

4 Case Study: Fault Localization in Seaside

For demonstrating dynamic service analysis and our Path tool suite, we have done a
case study about fault localization in the Seaside Web framework [1]. Since fault local-
ization or in other words "debugging" usually requires much knowledge about system
behavior, it is an ideal use case for presenting the benefits of our approach.

We have introduced a defect into Seaside’s Web server—inside the header creation
of buffered responses, we inserted a "Content-Lenght" typo. For that reason, service
requests with buffered responses produced invalid results but streamed responses still
worked correctly. Seaside’s test suite answered with 9 failed and 53 passed test cases
for all response tests. Starting the standard debugger at an failed test led to a violated
assertion within the test itself. This means that the execution history was lost and
the failure cause was not comprehensible. The assertion was thrown for the whole
response object without any pointers to the invalid state. The typo was far away from
the observable malfunction. Such a situation is the rule rather than the exception [14].

Figure 5 shows how the defect could be identified with the help of our Path tools.
First, PathMap replaced the standard test runner, rendered the whole Seaside sys-

Fall 2010 Workshop 97

References

tem within a tree map, executed the response tests, analyzed the behavioral paths of
passed and failed test cases with the "Ochiai" metric [10], and colorized the map with
suspiciousness and confidence values. In short a method has a higher suspicious-
ness (hue towards red value) if it was executed in more failing than passing tests and
a method has less confidence (brighter color) if it was not executed in all failing tests.
Second, the computed values suggested only three methods in full red (100% suspi-
ciousness and 100% confidence). All other methods were paler and not so hot. Third,
for understanding all three methods, we opened PathFinder on a failed test as we ex-
pected that all three methods (same class) were related to each other. PathFinder
showed that the methods writeContentsOn: and writeHeadersOn: were called in se-
quence within writeOn: (here, we ignored the third method as it was only a simple
accessor). While using PathFinder, we navigated the execution history in both direc-
tions and with the help of on-demand refinements we verified assumptions concerning
corrupted object states. For instance, the method argument aStream already included
a valid response code. On closer examination we understood the implementation of
both methods and found the failure’s cause.

5 Summary and Next Steps

A current study [5] reveals that developers ask reachability questions, which are
"searches across feasible paths through a program". The authors show that devel-
opers often failed to understand program behavior and modified the code relying on
false assumptions. Especially, the lack of adequate tool support was a reason for the
developers’ problems with answering reachability questions.

Dynamic service analysis [7] and our Path tool suite enable developers to experi-
ence a feeling of immediacy when they explore program behavior. Run-time views sup-
port exploring run-time behavior and facilitate answering reachability questions such
as: In what context is a particular method used or where is the cause of a failure? Our
approach encourages frequent use of our tools and thus promotes the validation of
assumptions rather than relying on guess work.

Besides an empirical evaluation for program comprehension in the near future, we
are investigating how the concepts of dynamic service analysis can facilitate answers
for behavioral reachability questions. In particular, we expect benefits by extending our
PathFinder to a lightweight back-in time debugger and by summarizing sane behavior
within dynamic contract layers [3]. For instance, we could debug test cases backwards
in time, answer why questions, or verify generated assertions at run-time.

References

[1] S. Ducasse, A. Lienhard, and L. Renggli. Seaside: A Flexible Environment for
Building Dynamic Web Applications. IEEE Software, 24(5):56–63, 2007.

[2] O. Greevy. Enriching Reverse Engineering with Feature Analysis. PhD thesis,
University of Berne, 2007.

98 Fall 2010 Workshop

References

[3] R. Hirschfeld, M. Perscheid, C. Schubert, and M. Appeltauer. Dynamic Contract
Layers. In SAC ’10: Proceedings of the 25th Symposium on Applied Computing,
pages 2169–2175. ACM, March 2010.

[4] A. J. Ko, R. DeLine, and G. Venolia. Information Needs in Collocated Software De-
velopment Teams. In ICSE ’07: Proceedings of the 29th International Conference
on Software Engineering, pages 344–353. IEEE Computer Society, 2007.

[5] T.D. LaToza and B.A. Myers. Developers Ask Reachability Questions. In ICSE
’10: Proceedings of the 32nd International Conference on Software Engineering,
pages 185–194. ACM, 2010.

[6] M. Perscheid. Requirements Traceability in Service-oriented Computing. In Pro-
ceedings of the Fall 2009 Workshop of the HPI Research School on Service-
Oriented Systems Engineering. Hasso-Plattner-Institut, October 2009.

[7] M. Perscheid. Dynamic Service Analysis. In Proceedings of the Joint Workshop
of the German Research Training Groups in Computer Science, pages 204–205.
m verlag mainz, May 2010.

[8] M. Perscheid, B. Steinert, R. Hirschfeld, F. Geller, and M. Haupt. Immediacy
through Interactivity: Online Analysis of Run-time Behavior. In WCRE ’10: Pro-
ceedings of the 17th Working Conference on Reverse Engineering, page to ap-
pear. IEEE, October 2010.

[9] M. Perscheid, D. Tibbe, M. Beck, S. Berger, P. Osburg, J. Eastman, M. Haupt, and
R. Hirschfeld. An Introduction to Seaside. Software Architecture Group (Hasso-
Plattner-Institut), 2008.

[10] R. Santelices, J. A. Jones, Y. Yu, and M. J. Harrold. Lightweight Fault-Localization
Using Multiple Coverage Types. In ICSE ’09: Proceedings of the 31st International
Conference on Software Engineering, pages 56–66. IEEE, 2009.

[11] J. Sillito, G. C. Murphy, and K. De Volder. Asking and Answering Questions dur-
ing a Programming Change Task. IEEE Transactions on Software Engineering,
34(4):434–451, 2008.

[12] B. Steinert, M. Haupt, R. Krahn, and R. Hirschfeld. Continuous Selective Testing.
In XP ’10: Agile Processes in Software Engineering and Extreme Programming,
pages 132–146. Springer, 2010.

[13] B. Steinert, M. Perscheid, M. Beck, J. Lincke, and R. Hirschfeld. Debugging into
Examples: Leveraging Tests for Program Comprehension. In TestCom 2009: Pro-
ceedings of the 21st IFIP International Conference on Testing of Communicating
Systems. Springer-Verlag, November 2009.

[14] A. Zeller. Why Programs Fail: A Guide to Systematic Debugging. Morgan Kauf-
mann, 2006.

Fall 2010 Workshop 99

Modeling Browser-based Mashups by
Means of Meaningful Choreographies

Emilian Pascalau

emilian.pascalau@hpi.uni-potsdam.de

1 Introduction

At the 5th Symposium on Future Trends in Service-Oriented Computing, Peter Lorenz
in the talk "The SAP Vision on Cloud Computing"1 was underling a set of characteristics
that have a great impact on the current cloud based environment (a different world -
as he called it): business models are changing, customer relationship is changing,
software on demand, instant use. "In cloud computing , on demand software is very
different. Users - easy consumption. That’s the story: Instant use, you want to have
this you can use it. No big debate, no hand books, no I don’t go to Waldorf for 4 month
of training [...]. This is gone. We need to change. And we need to change to something
which is simple to use software, instant but powerful. This is not dumb software. [...]
The rest is I would say standard: mobile, everywhere, browsers, various devices all of
those things."2

These characteristics emphasize deep architectural impact, they change the nature
of application and raise questions how to design, model and execute this new type of
applications.

A set of requirements that this new type of applications should comply with can be
distilled from here. A fundamental characteristics is software on demand. The user
sees something and wants to use it, then he must be empowered with proper tools to
be able to use the service by himself, as much as possible. No long and exhausting
training, instant use. If the user has to do it by himself, it must be user friendly. The
user should not have to take care about technical issues.

The Web 2.0, as it has been unveiled by O’Reilly [7], is an advance of technologies
that are applied to build distributed software on the Internet, but also refers to a shift in
people’s perception of the Web and a paradigm shift in how they use it.

Mashups are a novel genre of Web applications that fosters innovation and creativity
in a generative environment, which Zittrain denotes as the “future Internet” [15], and are
probably “one of the more powerful capabilities coming out of the Web 2.0 wave” [11].

A series of approaches that tackle mashups, mostly technical approaches, have
been defined. The widget/gadget based approaches although user friendly are too
restrictive in functionality, e.g. functionality and data can not be composed / aggregated

1http://www.tele-task.de/archive/lecture/overview/5014/
2http://www.tele-task.de/archive/video/flash/10012/

Fall 2010 Workshop 101

Modeling Browser-based Mashups by Means of Meaningful Choreographies

Figure 1: DbWorld excerpt

only under special assumptions and environments. Only a list of predefined services
can be used. Thus the characteristics previously underlined are strongly restricted.

Our objective is to fulfill the characteristics underlined. A browser based approach it
is desirable because as argued in [1] browser based mashups are pure mashups. Be-
side this the browser by nature facilitates the fulfillment of some of the characteristics
emphasized: allows portability, run everywhere, services are accessed in an unique
way, the fundamental interaction with the services is unique, no matter the service, the
users already know how to interact with the services. What is still missing is an intelli-
gent and easy way for the users to design, model, combine in an intelligent and simple
way on demand services, data and behavior, and to execute these collaborations.

The main focus of this technical report is not about the execution of such applica-
tions as the execution has been discussed already (e.g. see [9]) but about the design
of such applications. A use case example that complies completely with the described
problem is the issue of searching and then storing conferences of interest in a calendar.

2 Use Case

For scientists in the filed of IT the DbWorld Mailing List is the well known place where
they can search for an IT conference. A series of information is provided here, but most
important is the subject, deadline and the web page of the event published (see Figure
1 for a small excerpt of the DbWorld service). From a technical perspective DBWorld
does not provide an API to allow programmatically access and interrogation of the
service. Thus with respect to current approaches this services is useless. Google
Calendar is one of the most known Google Apps services. For Google Calendar the
important information are the title of the event, the date and description (see Figure 2).

Opposed to the DbWorld services, Google provides for this service beside the reg-
ular form also an API to access the contents. However we are interested in an uniform
way of dealing with all the services, and also the user should not be required to face
technical issues (i.e. APIs).

The regular way to achieve this goal, of having the conferences stored in Google
Calendar by their deadline, is manually. The user is required to maintain two open tabs
in the browser; even though there might be several entries that comply with a search
term, the user must deal with the events one by one as DBWorld does not provide
built in search functionality, only manual search; it would be difficult to remember all
the information about an event entry, the user will have to move between the two open
tabs several times, in order to store only one event in the calendar.

Recorder/play like tools can’t be used in this scenario either because the applica-
tion must react according to user’s behavior and according to specific search results.

102 Fall 2010 Workshop

3 Enriching choreography models with contextual information

Figure 2: Google Calendar Event Creation

For example a particular search might return 5 entries or another one might return 2
entries. Next session will explain how this model can be model by means of processes
and choreographies enriched with contextual information. These enriched processes
and choreography models can be automatically transformed into rules. The resulting
set of rules constitute the run-able application, the run-able mashup.

3 Enriching choreography models with contextual in-
formation

In order to achieve the desired outcome, to have stored a list of conferences in a
calendar the user, must perform a collaboration between two services. As discussed
in Section 2 between DbWorld and Google Calendar. The user himself/herself is part
of the collaboration as he/she knows which is for example the subject of interest after
which the search has to be performed. The user must interact with the services at
least to search for the conferences. To automate this process of storing conferences
information in a calendar, someone must be able to design and then execute such a
collaboration. This collaboration must handle both user and machine behavior. We call
this type of applications: mashups.

In [9] we have introduced and discussed how mashups can be executed by means
of rules. According to [13] process choreography is used to define cooperation between
process orchestrations. Moreover this collaboration is specified by collaboration rules.
[9] argues that rule-based modeling and execution of mashups are nothing else but
collaboration rules and the mashup itself is a browser-based service choreography.

[13] states that "while domain-specific process choreography standards are impor-
tant in their particular fields, they lack the flexibility to define new types of business-
to-business collaborations that are important for supporting cooperation between com-
panies in todayŠs dynamic market environments. Therefore, new approaches for the
definition and implementation of process choreographies are required".

Fall 2010 Workshop 103

Modeling Browser-based Mashups by Means of Meaningful Choreographies

Figure 3: DbWorld Search Process - Variant 1

Figure 4: DbWorld Search Process - Variant 2

We believe that mashups are exactly such a particular type of choreographies that
require flexibility, they require new means of modeling and execution. Browser based
mashups are created by human users and more over their lifecycle requires the inter-
vention of the user. The user is the one that powers the application, by interacting with
systems, via events, via inputs etc.

Lately, context and context awareness has attracted a lot of attention (i.e. [2, 3]).
Coutaz et al. argues in [2] that context is key in the development of new services.
Furthermore explicit relationship between environment and adaption are the key factors
that will unlock context-aware computing at a global scale [2].

Dey in [3] defines context as any information that can be used to characterize the
situation of an entity. An entity is a person, place, or object that is considered relevant to
the interaction between a user and an application, including the user and applications
themselves. Similarly for Coutaz et al. [2] the context is a structured and unified view
of the world in which the system operates.

The use of contextual information in the field of business processes and workflows
has been already addressed (see for instance [12,14]).

An interesting aspect about the services in the form of web pages is that they allow
the user to define its own process on how to use the service. Figures 3 and 4 exemplify
this aspect. A user could search conferences only based on the subject (Figure 3) or
both based on the subject and deadline (Figure 4). The process is quite intuitive, the
user must insert a search term, which will be checked / compared with the subject,
field. Every entry it is checked in this way. Each entry that matches the check it is
remembered as its information must be stored in the calendar.

The process to create a basic Google Calendar event is depicted in Figure 5.
We use BPMN 2.0 [6] specification to represent our processes. The processes

depicted (Figures 3, 4 and 5) both for the DbWorld and Google Calendar are based on

104 Fall 2010 Workshop

3 Enriching choreography models with contextual information

Figure 5: Create Event in Google Calendar Process

the Figures 1 and respectively 2.
As mentioned earlier we need to design a choreography to model the mashup. The

design is based on the individual processes that we have already described.
In [10] we have argued that context gives concrete meaning to the processes. Con-

text can be taken into account both at design time and also at run time. The approach
we introduced in [10] proposes a solution based on a unified ontology that connects
together context with process ontology thus facilitating a unified way of representation
and reasoning.

To model the context in our models we use the idea introduced by Wieland in [14].
Wieland uses annotations to enrich BPEL models with contextual information.

Figure 6 depicts the simple choreography involved in this scenario. Basically ev-
ery time a conference entry it is identified, then the information is stored as a calendar
event in Google Calendar. Thus based on the processes we have already introduced in
Figure 3 or Figure 4 DbWorld sends a message to Google Calendar service, containing
the entry information. The information contained in the message has been clearly mod-
eled via associated annotation. To be able to automatically store the information into
the correct fields a mapping must be defined. Via annotation the mapping is straight
forward.

Dey defines in [3] a set of major context categories: identity, location, status and
time. These categories are recurrently reused, for example in [14]. In the scenario
presented here, it is an obvious need for defining the location.

For the human user it is very easy to locate Subject field in the page and then to
use that particular column to search for conferences. In addition the fact that the infor-
mation is organized in a table is also very easy to observe for the human user. In the
browser information is presented in an organized way, for example there is a specific
structure used to define a table and to present this information as a table. Thus we
take advantage of this knowledge and we define patterns to be able to map contextual
concepts defined as annotation and then reason about the structure of the page to lo-
cate concepts in the page. This process of reasoning about contextual information and
also about the processes modeled is a cognitive process. For an extensive discussion
about cognitive processes one could refer to [5].

Figure 7 depicts a basic example where an element of a process has been anno-
tated with contextual information. Recall that we use a unified representation for the
concepts no matter that they represent context or process elements. To do so we take
advantage of the approach we introduced in [10]. The check "Subject" element has

Fall 2010 Workshop 105

Modeling Browser-based Mashups by Means of Meaningful Choreographies

Figure 6: Simple DbWorld - Google Calendar Choreography

Figure 7: Element in DbWorld Process Annotated

been annotated with contextual information. This information refers to the Subject

concept and identifies the location as being in a table, in the 3rd column.

The simple choreography depicted in Figure 6 already contains location information
for the two services involved (e.g. http://www.cs.wisc.edu/dbworld/browse.html).

Via a cognitive process which uses the context enriched models as well as a set of
predefined patterns (process that is performed without any other intervention from the
user) the executable rule set that constitutes the run able mashup is created.

Figure 8 depicts an excerpt of such a rule. For a more detailed description about
the run able mashup one can refer to [8,9].

106 Fall 2010 Workshop

3 Enriching choreography models with contextual information

1
2
3 {
4 . . .
5 eventExpression " : {
6 " type " : " c l i c k " ,
7 " t a r g e t " : { " v a r i a b l e " : { " name " : " $X " } }
8 } ,
9 " c on d i t i o n " : [

10 { " d e s c r i p t i o n " : {
11 " type " : " HTMLButtonElement " ,
12 " b ind ing " : { " v a r i a b l e " : { " name " : " $X " } } ,
13 " c o n s t r a i n t s " : [
14 { " p r o p e r t y R e s t r i c t i o n " : { " p roper ty " : " i d " ,
15 " opera tor " : "EQ" ,
16 " value " : " mashSearchButton "
17 }
18 }
19]
20 }
21 } ,
22 { " d e s c r i p t i o n " : {
23 " type " : " INPUT " ,
24 " b ind ing " : { " v a r i a b l e " : { " name " : " $cSearch " } } ,
25 " c o n s t r a i n t s " : [
26 { " p r o p e r t y R e s t r i c t i o n " : { " p roper ty " : " type " ,
27 " opera tor " : "EQ" ,
28 " value " : " t e x t "
29 }
30 } ,
31 { " p r o p e r t y R e s t r i c t i o n " : { " p roper ty " : " i d " ,
32 " opera tor " : "EQ" ,
33 " value " : " mashSearchInput "
34 }
35 } ,
36 { " p roper tyB ind ing " : { " p roper ty " : " value " ,
37 " v a r i a b l e " : { " name " : " $sValue " }
38 }
39 }
40]
41 }
42 } ,
43 { " d e s c r i p t i o n " : {
44 " type " : " TD" ,
45 " b ind ing " : { " v a r i a b l e " : { " name " : " $dbEntry " } } ,
46 " c o n s t r a i n t s " : [
47 { " p roper tyB ind ing " : { " p roper ty " : " f i r s t C h i l d " ,
48 " v a r i a b l e " : { " name " : " $what " }
49 }
50 } ,
51 { " p roper tyB ind ing " : { " p roper ty " : " n e x t S i b l i n g " ,
52 " v a r i a b l e " : { " name " : " $Z " }
53 }
54 }
55]
56 }
57 } ,
58 . . .
59 }

Figure 8: Rule: Perform search in DBWorld

Fall 2010 Workshop 107

References

4 Related work

The approach presented here is similar to the outcome of the Adaptive Service Grid
(ASG)3 platform. The characteristics of the ASG approach are discussed in [4]. In
comparison with the ASG project where the main focus is to discover and compose
services to subprocesses using semantically specified data structures and services,
based on domain ontologies using WSML [4] here the services are already selected by
the human user. In addition this approach strongly takes into account interaction with
the human user, as the human user is the one who drives to some extent the applica-
tion, the mashup. Here we are dealing with special type of environment, where the user
must be able to define its software on demand. The user defines the behavior of the
application via choreographies and processes enriched with contextual information.

5 Conclusions

This report has introduced a choreography based approach which has been enriched
with contextual information in order to model and later directly execute user defined
applications. A new type of applications is addressed here. Applications that are cre-
ated on demand, by the users. These applications combine and aggregate data and
behavior provided by arbitrarily chosen services. Once such an application has been
modeled, it can be of course updated with new information but most important it can
directly executed and can be shared / sold via a marketplace. The approach has of
course its own limitations. One of these limitations is that the approach can access
only information that is accessible via DOM; for example having an image that depicts
the word "Search", but acts as a button, won’t have no other meaning to the application,
than being an actionable button.

Current implementation is able to execute mashups defined by means of run able
rules.

References

[1] B. Bioernstad and C. Pautasso. Let it flow: Building Mashups with Data Pro-
cessing Pipelines. In Proc. of Mashups’07 International Workshop on Web APIs
and Services Mashups at ICSOC’07, number 4907 in LNCS, pages 15–28, 2007.
http://www.jopera.org/files/jopera_mashup07.pdf.

[2] Joelle Coutaz, James L. Crowley, Simon Dobson, and David Garlan. Context is
key. Communications of the ACM, 48(3):49–53, 2005.

[3] Anind K. Dey, Gregory D. Abowd, and Daniel Salber. A Conceptual Framework
and a Toolkit for Supporting the Rapid Prototyping of Context-Aware Applications.
Human-Computer Interaction, 16(2):97–166, 2001.

3http://asg-platform.org/

108 Fall 2010 Workshop

References

[4] Dominik Kuropka, Anja Bog, and Mathias Weske. Semantic Enterprise Services
Platform: Motivation, Potential, Functionality and Application Scenarios. In Pro-
ceedings of the thenth IEEE international EDOC Enterprise Computing Confer-
ence. Hong Kong, pages 253 – 261. IEEE, 2006.

[5] Allen Newell. Unified Theories of Cognition. Harvard Univeristy Press, 1994.

[6] OMG. Business Process Model and Notation (BPMN). FTF Beta 1 for Version 2.0.
http://www.omg.org/spec/BPMN/2.0, August 2009.

[7] T. O’Reilly. What Is Web 2.0. Design Patterns and Business Models for the
Next Generation of Software. Oreillynet.com, September 2005. http://www.

oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html.

[8] Emilian Pascalau and Adrian Giurca. A Lightweight Architecture of an ECA Rule
Engine for Web Browsers. In Proceedings of 5th Knowledge Engineering and
Software Engineering, KESE 2009, volume 486. CEUR-WS, 2009.

[9] Emilian Pascalau and Adrian Giurca. A Rule-based Approach of creating and
executing Mashups. In S. Sharma C. Godart, N. Gronau and G. Canals, editors,
Proceedings of the 9th IFIP Conference on e-Business, e-Services, and e-Society,
I3E 2009, pages 82–95. Springer, 2009.

[10] Emilian Pascalau and Clemens Rath. Managing Business Process Variants at
eBay. In Jan Mendling and Mathias Weske, editors, Proceedings of the 2nd Inter-
national Workshop on BPMN, BPMN2010. Springer, 2010.

[11] Gene Phifer. End-User Mashups Demand Governance (But Not Too Much Gov-
ernance). Technical report, Gartner Research, Sep 2008.

[12] M. Rosemann, J.C. Recker, and C. Flender. Contextualisation of Business Pro-
cesses. International Journal of Business Process Integration and Management,
3(1):47–60, 2008.

[13] M. Weske. Business Process Management: Concepts, Languages, Architectures.
Springer-Verlag Berlin Heidelberg, 2007.

[14] Matthias Wieland, Oliver Kopp, Daniela Nicklas, and Frank Leymann. Towards
Context-aware Workflows. In Proceedings of the Workshops and Doctoral Con-
sortium at CAISE07, 2007.

[15] Jonathan Zittrain. The Future of the Internet And How to Stop It. Yale University
Press New Haven and London, 2008.

Fall 2010 Workshop 109

Multiple Runtime Models and their
Relations for Self-Management

Thomas Vogel

thomas.vogel@hpi.uni-potsdam.de

Software systems operating under highly dynamic and unpredictable conditions must
be adaptive or even self-managing. Several approaches use one architectural model
as a causally connected runtime representation of a managed system for monitoring,
analysis and performing adaptation. These architectural models are often closely re-
lated to the system’s implementation, thus at a low level of abstraction and as complex
as the implementation. This impedes reusability and extensibility of autonomic man-
agers working on these models. Moreover, the models often do not cover different
concerns, like security or performance, and therefore they do not simultaneously sup-
port several self-management capabilities.

In contrast, we propose a model-driven approach that provides multiple causally
connected runtime models reflecting the architecture at different levels of abstraction
for adapting a managed system. Each runtime model focuses on a specific concern
and abstracts from the underlying system and platform leveraging reusability and ex-
tensibility of managers. The different models are maintained automatically at runtime
using model-driven engineering techniques that also reduce development efforts. Be-
sides causally connected architectural models, other kinds of models are generally
used at runtime. Based on the current state of the research field, we present a cat-
egorization of runtime models, conceivable relations between those models, and how
runtime management using multiple models can benefit from megamodel concepts.

1 Introduction

Runtime adaptability or self-manageability is often required for software systems oper-
ating under highly dynamic and unpredictable conditions [14,32]. Self-management is
enabled through a feedback loop [11,32] that usually distinguishes between a managed
system and an autonomic manager. The manager monitors and analyzes a managed
system, and if changes are required, adaptations are planned and executed to the
system. Separating a self-managing system in a manager and a managed system,
reusability and extensibility of managers are potentially supported. However, appropri-
ate representations of a running managed system for managers are required [4,22,42].

To represent a running systems, an architectural runtime model that is causally
connected to a managed system is often used (cf. [4, 9, 20]). The causal connection,
a concept originating from the research field of computational reflection [35], ensures
that changes in the system are reflected in the model (monitoring), and that changes
in the model are reflected in the system (adaptation).

Fall 2010 Workshop 111

Multiple Runtime Models and their Relations for Self-Management

Most approaches, like [12, 22, 42], use one runtime model. Typically, such models
are rather specific to the managed systems’ implementations, complex, at a low level of
abstraction, and they cover different, but mostly one concern, like performance for self-
optimization. In contrast, we argue that it is beneficial to simultaneously have more than
one kind of architectural model at runtime as each of them can be independent of the
system’s platform and implementation, less complex, at a higher level of abstraction,
and it can focus on a specific concern of interest. This supports the reusability of
managers working on these models and can simplify the work of the managers.

Therefore, we proposed a model-driven approach that provides multiple architec-
tural runtime models at different levels of abstraction as a basis for the feedback loop
activities of monitoring, analyzing, planning and executing adaptations [50–54]. Model-
driven engineering techniques, especially the incremental and bidirectional model syn-
chronization, are employed to automatically maintain the runtime models and to reduce
the development efforts for self-managing systems. While at the Fall 2009 Workshop
of the HPI Research School a solution for monitoring and parameter adaptation has
been presented [50], this time a solution for structural adaptation will be discussed.

Moreover, our approach of using multiple runtime models for adaptation raised
questions and led to a discussion about coping with interdependent and related models
at runtime [5]. Therefore, we proposed to use megamodel concepts [55]. Based on a
categorization of runtime models, we demonstrated that multiple models are likely to
be used simultaneously and how megamodel concepts can help in coping with them.

The rest of the report, which summarizes in particular our work published in [51,55],
is structured as follows: Section 2 discusses structural adaptation based on abstract
runtime models. Section 3 presents a categorization of runtime models and how mega-
model concepts help in coping with multiple runtime models and their relations. Finally,
the report concludes and gives an outlook on future work in Section 4.

2 Structural Adaptation and Abstract Runtime Models

The generic architecture of our proposed approach is depicted in Figure 1. A Managed
System realizing the business logic provides Sensors and Effectors that are interfaces
for observing and adapting the system, respectively. A Source Model as a runtime
representation of the system is provided by these interfaces. This model is causally
connected to the system, such that it can be directly used by Autonomic Managers to
perform the feedback loop activities of monitoring and analyzing the system, and of
planning and executing adaptations on the system if changes are required.

However, a source model is usually complex, related to the specific implementa-
tion and platform of a managed system, and thus, rather at a low level of abstraction.
Instead of working on models, like the source model, that are oriented to the solution
space of a system, autonomic managers should rather work on models providing views
related to problem spaces. For example, a manager responsible for self-optimization
is primarily interested in optimizing the system performance and not in details about
the implementation or other concerns, like failures or security. Raising models from so-
lution to problem spaces leverages the reusability of managers that focus on problem
spaces shared by different managed systems.

112 Fall 2010 Workshop

2 Structural Adaptation and Abstract Runtime Models

Plan

Autonomic Manager

ExecuteMonitor

Analyze

architectural element
model
monitoring

defined by
uses

Knowledge

Managed System

Sensors Effectors

adaptation

Model Transformation Engine

Target Model

Source ModelMetamodel

Metamodel

TGG Rules Factories

Figure 1: Generic Architecture

Therefore, several so called Target Models are derived from a source model at
runtime. Each target model abstracts from the source model and potentially from the
underlying system platform, and it provides a specific view on a system required for an
addressed concern of interest, like performance in the case of self-optimization. Thus,
target models are less complex than a source model and they are rather related to
problem spaces.

Based on these different characteristics of source and target models as outlined in
Table 1, managers preferably should use target models instead of a source model to
perform the feedback loop activities. This requires that each target model is causally
connected to the source model. Thus, changes in the source model are reflected in
target models for monitoring, and vise versa for adaptation. Model-driven engineer-
ing (MDE) techniques are applied to maintain different target models at runtime and
to realize causal connections between each target model and the source model. A
Model Transformation Engine [23, 25] based on Triple Graph Grammars (TGGs) [46]
incrementally synchronizes changes of the source model to the target model, and vice
versa. This requires that each model conforms to potentially different user-defined
Metamodels and that all models share the same meta-metamodel. TGG Rules specify
declaratively at the level of metamodels how two models as instances of the corre-
sponding metamodels are synchronized with each other.

Source Model Target Model
Complex Less Complex

Lower Level of Abstraction Higher Level of Abstraction
Platform-Specific Platform-Independent
Solution Space Problem Space

Table 1: Characteristics of Source and Target Models

Fall 2010 Workshop 113

Multiple Runtime Models and their Relations for Self-Management

Synchronizing source model changes to target models for monitoring is not critical
since target models are at higher levels of abstraction than a source model. During
synchronization, concepts represented in a source model but not in a target model
are simply discarded. This causes the intended abstraction. Recently, this monitoring
approach [50,52,54] has been extended with structural adaptation capabilities.

Generally, there are two ways for adapting software. Parameter adaptation modifies
variables of a program and structural adaptation changes the software architecture by
adding, removing or replacing components and connections among components [38].
Using our approach for parameter adaptation requires that values of variables need
to be synchronized from target models to a source model. As variables are generally
of primitive data types, there is usually a bijective mapping between variables in the
source and in the target models, which facilitates parameter adaptation as described
in [50, 51]. Thus, there is no abstraction gap between source and target models re-
garding adaptable parameters. In contrast, we encountered and met at least three
challenges for structural adaptation [51]:

(1) Refinement for Adaptation: Performing adaptations based on target models
that are at higher levels of abstraction than a source model, changes performed by
autonomic managers are also at a higher level of abstraction. The abstraction gap
between a target and a source model can lead to a relation between both models that is
only partial and not necessarily bijective. Consequently, a bidirectional synchronization
between both models is hindered since information about how to refine abstract target
model changes to the concrete source model could be missing. Such information has
been discarded during monitoring to cause the intended abstraction of target models
from the source model.

To overcome the refinement problem, Factories as depicted in Figure 1 are em-
ployed. If target model changes cannot be synchronized to a source model due to
missing information, factories are invoked through a target model to perform these
changes on the source model where the abstraction gap does not occur, followed by
synchronizing these source model changes to the target models. Thus, factories are a
pragmatic extension of the model transformation engine for the adaptation case if the
abstraction gap between source and target models is too large. In MDE, this problem is
generally discussed [29,49] and in case of structural adaptations, it is similar to refining
a software architecture [21,40].

(2) Restrictions to Adaptation: Another challenge is the interface between a man-
ager and a target model. The interface has to define the kind of changes that are
allowed on an abstract target model and how they are performed. As a target model
abstracts from a managed system, it can theoretically allow a variety of changes that
however could not be executed on the system, for example due to stronger system
constraints. Moreover, a target model can be changed by directly adding, removing
or modifying model elements, associations among elements, or attribute values, or by
invoking operations provided by elements.

This challenge has to be met for each target metamodel by specifying adaptation
operators that determine a set of specific actions a manager can perform on elements
of corresponding target metamodel instances. A similar solution for this challenge is
applied in the Rainbow framework [22].

114 Fall 2010 Workshop

2 Structural Adaptation and Abstract Runtime Models

(3) Ordering of Adaptation Steps: Finally, the last challenge considers structural
adaptations involving a set of atomic changes or steps that have to be synchronized at
once from the target to the source model and even to the system. Rather than propa-
gating each single target model change to the source model and system by triggering
the model transformation engine, a set of changes should be propagated by one run of
the engine. Usually, there exists dependencies among atomic steps, like a component
should only be started when it is appropriately configured. Thus, the order of changes
matters and the order of changes performed on a target model might differ from the
order of performing corresponding changes to the source model or to the system. Not
suitable orders might affect the consistency of a system.

Using our approach, three options are available to order adaptation steps. First,
a manager can trigger the synchronization to the source model and managed sys-
tem on demand between sets of atomic changes performed on a target model. All
changes done before the triggering are executed on the system, which can be followed
by further changes and triggers. Second, the design of TGG rules can influence the or-
der of synchronizing model changes in one run. For example, a rule for synchronizing
changes of a certain type can be designed in a way that it can only be applied if another
rule and therefore a change of another type has been applied before. Thus, changes
within one synchronization run can be coordinated by this option. Third, a set of source
model changes performed by the model transformation engine is generally ordered for
executing them on the system, which depends on the type of each change. At first,
components that should be stopped are stopped, then connections and components
are removed, new components are deployed, connections are created, parameter val-
ues are set, and finally, components are started. Thus, a basic ordering of adaptation
steps is supported by the last option, while it is possible to determine more specific
orders at design time by modeling appropriate transformation rules (cf. second option)
or at runtime by triggering intermediate synchronizations (cf. first option).

Having met these challenges, our approach supports parameter and structural
adaptation in addition to monitoring. The whole approach has been implemented on
top of the mKernel infrastructure [10] that provides sensors and effectors for managing
software systems being realized with Enterprise Java Beans 3.0 (EJB)1 technology for
the GlassFish v22 application server. The metamodels, models and model-driven en-
gineering techniques are based on the Eclipse Modeling Framework (EMF)3, though
the whole infrastructure can run decoupled from the Eclipse workbench.

Our approach of simultaneously using multiple runtime models for self-adaptive sys-
tems raised questions and led to a discussion about coping with these models at run-
time since they are not independent from each other [5]. For example, any adaptation
being triggered due to the performance state of a running system, which is reflected by
one runtime model, might violate architectural constraints being reflected in a different
model. Thus, there exists relations, like trade-offs or dependencies, between different
concerns or models, which have to be considered for runtime management. In this
context, we proposed concepts of megamodels as discussed in the following section.

1http://jcp.org/aboutJava/communityprocess/final/jsr220/index.html (Sep 30, 2010)
2https://glassfish.dev.java.net/ (Sep 30, 2010)
3http://www.eclipse.org/modeling/emf/ (Sep 30, 2010)

Fall 2010 Workshop 115

Multiple Runtime Models and their Relations for Self-Management

3 Runtime Models, Relations and Megamodels

Based on the current state of the research field of runtime models, especially the past
Models@run.time workshops [1], we present a categorization of runtime models. The
categories demonstrate that multiple models are likely to be simultaneously employed
at runtime since different kinds of models serve different purposes. The categoriza-
tion as shown in Figure 2 supports the generality of our claim to use multiple models.
Therefore, models are categorized according to their purposes and what they repre-
sent. Usually, runtime models (M1) of all categories are instances of metamodels (M2)
that are specified by meta-metamodels (M3), which leverages typical model-driven en-
gineering techniques, like model transformation, at runtime (cf. [47,51,54]).

Figure 2: Categories of Runtime Models

Implementation Models describe the running system and they are similar to models
used in the field of reflection that employs causally connected models based on the
system’s solution space (cf. [9]). Examples are models used in reflective programming
languages [31,34], or coupled to platforms like CORBA [15] or EJB [51,54] (cf. Source
Model in Section 2). Such models can be class or object diagrams and scenario-
based sequence diagrams covering the interaction between objects or generally traces
of a system [26, 31, 37]. Finally, behavioral models in the form of statecharts, state
machines, or generally automatons are also used [27,30,36].
Configuration and Architectural Models also describe the running system, but at
higher levels of abstraction than Implementation Models. Thus, they are often causally
connected to the system. Such models are rather related to problem spaces by reflect-
ing the current system configuration or architecture [22,41,42,48,51,54]. Thus, these
models are often similar to component diagrams, which are enhanced with elements or
attributes to address non-functional properties as a basis for runtime analysis [22,54].
At a even higher level of abstraction, process or workflow models are also feasible to
provide a business-oriented view [44]. Moreover, model types of the Implementation
Models category are also conceivable in this category, but at a higher level of abstrac-
tion. Overall, models of this category enable the self-awareness of a self-adaptive
system and they are the basis for the feedback loop (cf. Target Models in Section 2).
Context and Resource Models describe the operational environment and context
of a running system, which is especially required for systems that react to changes in
their context. To represent a context, a variety of models can be used: semi-structured

116 Fall 2010 Workshop

3 Runtime Models, Relations and Megamodels

tags and attributes, object-oriented or logic-based models [45], some form of variables,
like key value pairs [41, 45], or even feature models [2]. Moreover, the operational
environment consists of logical or physical resources a running system requires or
currently uses for operation.
Configuration Space and Variability Models define potential variants of a running
system, while Configuration and Architectural Models reflect the currently used variant.
Thus, models of this category specify the system’s configuration space and variability
and they are used for finding adaptation points and options in a running system. Exam-
ples for such models are component type diagrams [24,51], feature models originating
from software product lines [13, 17, 41], or aspect models for Configuration and Archi-
tectural Models [19,41].
Rules, Strategies, Constraints, Requirements and Goals may refer to any model
of the other categories. Models in this category specify, among others, when and how
a running system should be adapted. These models are reconfiguration strategies
usually in some form of event-condition-action rules [2, 16, 22], or they are based on
goals a running system should achieve and on utility functions guiding the adapta-
tion [17, 41, 43]. Moreover, for runtime validation and verification, constraints on mod-
els of the other categories regarding functional and non-functional properties are em-
ployed. Constraints can be expressed in the Object Constraint Language (OCL), like
in [28,54], or formally in some form of Linear Temporal Logic (LTL), like in [27]. Though
constraints can be seen as requirements that are checked at runtime, recently the idea
of requirements reflection has emerged, which explicitly considers requirements as
adaptive runtime entities that can be reflected in goal models, like KAOS [6].

The presented categories show the different roles of models at runtime and demon-
strate that different kinds of models, also depending on the specific approach, are likely
to be simultaneously employed. However, employing several models, these models are
usually not isolated from each other, but they rather compose a network of models.

For example, Morin et al. [41] employ an architectural runtime model reflecting the
running system, a feature model describing the system’s variability, a context model
describing the system’s environment, and a so called reasoning model that can take
the form of event-condition-action rules. These rules specify which feature should be
(de-)activated on the architectural model depending on the context model. Thus, the
employed models are related with each other and all of them are used for adaptation.

Another example is our approach presented in Section 2 using multiple target mod-
els that belong to the category of Configuration and Architectural Models. Each target
model provides a view on the same managed system, but each one is focused on a
different concern, like performance or failures. Adaptation of the system to optimize
performance based on a performance target model can however interfere with other
concerns covered by other target models. Thus, different concerns or their models are
related with each other by means of trade-off or dependency relations. These rela-
tions have to be considered at runtime to balance competing concerns. Further kind of
relations that are conceivable between runtime models are described in [55].

A similar issue of considering multiple models and relations between models occurs
in the model-driven development of software. Starting from abstract models describ-
ing the requirements of a software, these models are systematically transformed and

Fall 2010 Workshop 117

Multiple Runtime Models and their Relations for Self-Management

refined to architectural, design, and implementation models until the source code level
is reached [20, 39]. Thus, a multitude of development models and relations between
those models exist and they have to be managed. Therefore, the idea of megamodels
has emerged. Basically, a megamodel is a model that contains models and relations
between those models or between elements of those models [3,7,8,18].

Since existing approaches using models at runtime rather deal with multiple models
and relations among those models in an ad-hoc manner, we proposed to use mega-
model concepts at runtime to systematically address these issues [55]. Megamodel
concepts can provide benefits for self-managing systems as megamodels are defined
by metamodels, which leverages MDE techniques for managing models and relations.

Moreover, megamodels for the model-driven software development serve organiza-
tional and utilization purposes that should also be utilized at runtime. Organizational
purposes are primarily about coping with the complexity of multiple models. Therefore,
megamodels help in structuring and organizing different models together with their
relations by storing and categorizing them. Likewise, megamodel concepts can be em-
ployed at runtime to organize and describe runtime models and their relations in the
domain of self-managing systems since several related models can be simultaneously
employed (cf. Section 2). This results in a kind of registry for models.

Utilization purposes of megamodels are about navigation and automation. Mega-
models can be the basis for navigating through models by using relations between
models. Thus, starting from a model and following relations, all related models can be
reached in a model-driven manner. Navigating between models at runtime is essential
for self-managing systems using multiple related models. Automation aims at increas-
ing the efficiency by treating relations between models as executable units that take
models as input and produce models as output. Therefore, a megamodel containing
multiple of such units can be considered as an executable and automated process.

Thus, megamodels make relations between runtime models explicit and therefore,
amenable for automated analyses. As an example, a megamodel can be used to
automatically perform an impact analysis of model changes to other related models.
Therefore, relations can be used to synchronize model changes to related models and
these synchronized models are then analyzed to investigate the impact of the initial
changes. This can be used at runtime to validate or verify a planned adaptation on
different models before the managed system is actually adapted. This idea might be
applicable to the different target models in our approach presented in Section 2.

4 Conclusion and Future Work

In this report our approach of simultaneously using multiple runtime models for adaptive
and self-managing systems has been discussed. Our approach and the presented
categorization of runtime models demonstrate that multiple runtime models are likely
to be used simultaneously. Moreover, initial ideas of applying megamodel concepts to
cope with multiple runtime models that are related with each other have been outlined.

As future work, the following points are considered. A solution for coordinating sev-
eral autonomic managers working on different models is required to balance competing
adaptations. Moreover, extending our approach to a distributed setting, which includes

118 Fall 2010 Workshop

References

mechanisms to synchronize distributed models, is currently work in progress. An initial
prototype that incrementally synchronizes distributed models sharing the same meta-
model has been realized on top of the Open Message Queue4 middleware. This pro-
totype must be enhanced with support for transactions and model versioning to en-
sure consistency. Moreover, the design of autonomic managers will be elaborated by
investigating which runtime models can be used for which management tasks, and
how the models and tasks can be structured. Therefore, our categorization of runtime
models and the generic architecture for self-managing systems proposed by Kramer
and Magee [33] might be the starting points. Furthermore, our categorization of run-
time models should be refined by including other preliminary classification approaches,
like [4, 9, 20]. Finally, when using runtime models as interfaces within the architecture
of autonomic managers, and for monitoring and adapting managed systems, the se-
mantics of runtime models and operations on these models must be clearly defined.
Ontologies and work on model-driven interoperability form a basis for this issue.

References
[1] Workshop on Models@run.time. http://www.comp.lancs.ac.uk/~bencomo/MRT/, 2006-2009.
[2] M. Acher, P. Collet, F. Fleurey, P. Lahire, S. Moisan, and J.-P. Rigault. Modeling Context and Dynamic Adaptations with

Feature Models. In Proc. of the 4th Intl. Workshop on Models@run.time, vol. 509 of CEUR-WS.org, pp. 89–98, 2009.
[3] M. Barbero, M. D. D. Fabro, and J. Bézivin. Traceability and Provenance Issues in Global Model Management. In ECMDA-

TW’07: Proc. of 3rd Workshop on Traceability, pp. 47–55, 2007.
[4] N. Bencomo. On the Use of Software Models during Software Execution. In Proc. of the ICSE Workshop on Modeling in

Software Engineering, pp. 62–67. IEEE, 2009.
[5] N. Bencomo, G. Blair, R. France, F. Munoz, and C. Jeanneret. 4th International Workshop on Models@run.time. In Models

in Software Engineering, Workshops and Symposia at MODELS 2009, vol. 6002 of LNCS, p. 119–123. Springer, 2010.
[6] N. Bencomo, J. Whittle, P. Sawyer, A. Finkelstein, and E. Letier. Requirements reflection: requirements as runtime entities.

In Proc. of the 32nd ACM/IEEE Intl. Conference on Software Engineering (ICSE), pp. 199–202. ACM, 2010.
[7] J. Bézivin, S. Gérard, P.-A. Muller, and L. Rioux. MDA components: Challenges and Opportunities. In 1st Intl. Workshop on

Metamodelling for MDA, pp. 23–41, 2003.
[8] J. Bézivin, F. Jouault, and P. Valduriez. On the Need for Megamodels. In Proc. of the OOPSLA/GPCE Workshop on Best

Practices for Model-Driven Software Development, 2004.
[9] G. Blair, N. Bencomo, and R. B. France. Models@run.time. IEEE Computer, 42(10):22–27, 2009.

[10] J. Bruhn, C. Niklaus, T. Vogel, and G. Wirtz. Comprehensive support for management of Enterprise Applications. In Proc. of
the 6th ACS/IEEE Intl. Conference on Computer Systems and Applications, pp. 755–762. IEEE, 2008.

[11] Y. Brun, G. D. M. Serugendo, C. Gacek, H. Giese, H. Kienle, M. Litoiu, H. Mueller, M. Pezze, and M. Shaw. Engineering
Self-Adaptive Systems through Feedback Loops. In Software Engineering for Self-Adaptive Systems, vol. 5525 of LNCS, pp.
1–26. Springer, 2009.

[12] M. Caporuscio, A. D. Marco, and P. Inverardi. Model-based system reconfiguration for dynamic performance management.
Journal of Systems and Software, 80(4):455 – 473, 2007.

[13] C. Cetina, P. Giner, J. Fons, and V. Pelechano. Autonomic Computing through Reuse of Variability Models at Runtime: The
Case of Smart Homes. IEEE Computer, 42(10):37–43, 2009.

[14] B. H. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee, and et al. Software Engineering for Self-Adaptive Systems: A
Research Road Map. In Software Engineering for Self-Adaptive Systems, vol. 5525 of LNCS, pp. 48–70. Springer, 2009.

[15] F. Costa, L. Provensi, and F. Vaz. Towards a More Effective Coupling of Reflection and Runtime Metamodels for Middleware.
In Proc. of 1st Intl. Workshop on Models@run.time, 2006.

[16] J. Dubus and P. Merle. Applying OMG D&C Specification and ECA Rules for Autonomous Distributed Component-based
Systems. In Proc. of 1st Intl. Workshop on Models@run.time, 2006.

[17] A. Elkhodary, S. Malek, and N. Esfahani. On the Role of Features in Analyzing the Architecture of Self-Adaptive Software
Systems. In Proc. of the 4th Intl. Workshop on Models@run.time, vol. 509 of CEUR-WS.org, pp. 41–50, 2009.

[18] J.-M. Favre. Foundations of Model (Driven) (Reverse) Engineering : Models – Episode I: Stories of The Fidus Papyrus and
of The Solarus. In Language Engineering for Model-Driven Software Development, number 04101 in Dagstuhl Seminar
Proceedings. IBFI, Schloss Dagstuhl, 2005.

[19] N. Ferry, V. Hourdin, S. Lavirotte, G. Rey, J.-Y. Tigli, and M. Riveill. Models at Runtime: Service for Device Composition and
Adaptation. In Proc. of the 4th Intl. Workshop on Models@run.time, vol. 509 of CEUR-WS.org, pp. 51–60, 2009.

4https://mq.dev.java.net/ (Sep 30, 2010)

Fall 2010 Workshop 119

References

[20] R. France and B. Rumpe. Model-driven Development of Complex Software: A Research Roadmap. In Proc. of the ICSE
Workshop on Future of Software Engineering (FOSE), pp. 37–54. IEEE, 2007.

[21] D. Garlan. Style-Based Refinement for Software Architecture. In Joint Proc. of the 2nd Intl. Software Architecture Workshop
and Intl. Workshop on Multiple Perspectives in Software Development, pp. 72–75. ACM, 1996.

[22] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste. Rainbow: Architecture-Based Self-Adaptation with
Reusable Infrastructure. IEEE Computer, 37(10):46–54, 2004.

[23] H. Giese and S. Hildebrandt. Incremental Model Synchronization for Multiple Updates. In Proc. of the 3rd Intl. Workshop on
Graph and Model Transformation. ACM, 2008.

[24] H. Giese, A. Seibel, and T. Vogel. A Model-Driven Configuration Management System for Advanced IT Service Management.
In Proc. of the 4th Intl. Workshop on Models@run.time, vol. 509 of CEUR-WS.org, pp. 61–70, 2009.

[25] H. Giese and R. Wagner. From Model Transformation to Incremental Bidirectional Model Synchronization. Software and
Systems Modeling, 8(1), 2009.

[26] T. Gjerlufsen, M. Ingstrup, J. Wolff, and O. Olsen. Mirrors of Meaning: Supporting Inspectable Runtime Models. IEEE
Computer, 42(10):61–68, 2009.

[27] H. J. Goldsby, B. H. Cheng, and J. Zhang. AMOEBA-RT: Run-Time Verification of Adaptive Software. In Models in Software
Engineering: Workshops and Symposia at MoDELS 2007, vol. 5002 of LNCS, pp. 212–224. Springer, 2008.

[28] C. Hein, T. Ritter, and M. Wagner. System Monitoring using Constraint Checking as part of Model Based System Manage-
ment. In Proc. of 2nd Intl. Workshop on Models@run.time, 2007.

[29] T. Hettel, M. J. Lawley, and K. Raymond. Model Synchronisation: Definitions for Round-Trip Engineering. In Proc. of the 1st
Intl. Conference on Model Transformation, pp. 31–45, 2008.

[30] E. Höfig, P. H. Deussen, and H. Coskun. Statechart Interpretation on Resource Constrained Platforms: a Performance
Analysis. In Proc. of the 4th Intl. Workshop on Models@run.time, vol. 509 of CEUR-WS.org, pp. 99–108, 2009.

[31] F. Jouault, J. Bézivin, R. Chevrel, and J. Gray. Experiments in Run-Time Model Extraction. In Proc. of 1st Intl. Workshop on
Models@run.time, 2006.

[32] J. Kephart and D. Chess. The Vision of Autonomic Computing. IEEE Computer, 36(1):41–50, 2003.
[33] J. Kramer and J. Magee. Self-Managed Systems: an Architectural Challenge. In Proc. of the ICSE Workshop on Future of

Software Engineering (FOSE), pp. 259–268. IEEE, 2007.
[34] A. Kuhn and T. Verwaest. FAME - A Polyglot Library for Metamodeling at Runtime. In Proc. of the 3rd Intl. Workshop on

Models@run.time, pp. 57–66. Technical Report COMP-005-2008, Lancaster University, 2008.
[35] P. Maes. Concepts and experiments in computational reflection. SIGPLAN Not., 22(12):147–155, 1987.
[36] S. Maoz. Model-Based Traces. In Proc. of the 3rd Intl. Workshop on Models@run.time, pp. 16–25. Technical Report COMP-

005-2008, Lancaster University, 2008.
[37] S. Maoz. Using Model-Based Traces as Runtime Models. IEEE Computer, 42(10):28–36, 2009.
[38] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C. Cheng. Composing Adaptive Software. IEEE Computer, 37(7):56–64,

2004.
[39] S. J. Mellor, K. Scott, A. Uhl, and D. Weise. MDA Distilled: Principles of Model-Driven Architecture. Addison-Wesley, 2004.
[40] M. Moriconi, X. Qian, and R. Riemenschneider. Correct Architecture Refinement. IEEE Transactions on Software Engineer-

ing, 21(4):356–372, 1995.
[41] B. Morin, O. Barais, J.-M. Jézéquel, F. Fleurey, and A. Solberg. Models@Run.time to Support Dynamic Adaptation. IEEE

Computer, 42(10):44–51, 2009.
[42] P. Oreizy, N. Medvidovic, and R. N. Taylor. Architecture-based Runtime Software Evolution. In Proc. of the 20th Intl. Confer-

ence on Software Engineering, pp. 177–186. IEEE, 1998.
[43] A. J. Ramirez and B. H. Cheng. Evolving Models at Run Time to Address Functional and Non-Functional Adaptation Re-

quirements. In Proc. of the 4th Intl. Workshop on Models@run.time, vol. 509 of CEUR-WS.org, pp. 31–40, 2009.
[44] M. Sanchez, I. Barrero, J. Villalobos, and D. Deridder. An Execution Platform for Extensible Runtime Models. In Proc. of the

3rd Intl. Workshop on Models@run.time, pp. 107–116. Technical Report COMP-005-2008, Lancaster University, 2008.
[45] D. Schneider and M. Becker. Runtime Models for Self-Adaptation in the Ambient Assisted Living Domain. In Proc. of the 3rd

Intl. Workshop on Models@run.time, pp. 47–56. Technical Report COMP-005-2008, Lancaster University, 2008.
[46] A. Schürr. Specification of graph translators with triple graph grammars. In Proc. of the 20th Intl. Workshop on Graph-

Theoretic Concepts in Computer Science, vol. 903 of LNCS, pp. 151–163. Spinger, 1994.
[47] H. Song, G. Huang, F. Chauvel, and Y. Sun. Applying MDE Tools at Runtime: Experiments upon Runtime Models. In Proc.

of the 5th Intl. Workshop on Models@run.time, vol. 641 of CEUR-WS.org, pp. 25–36, 2010.
[48] H. Song, Y. Xiong, F. Chauvel, G. Huang, Z. Hu, and H. Mei. Generating Synchronization Engines between Running Systems

and Their Model-Based Views. In Models in Software Engineering, Workshops and Symposia at MODELS 2009, vol. 6002
of LNCS, pp. 140–154. Springer, 2010.

[49] P. Stevens. Bidirectional model transformations in QVT: semantic issues and open questions. Software and Systems
Modeling, 9(1):7–20, 2010.

[50] T. Vogel. Models at Runtime for Monitoring and Adapting Software Systems. Technical Report 31, Proceedings of the 4th
Ph.D. Retreat of the HPI Research School on Service-oriented Systems Engineering, Hasso Plattner Institute, University of
Potsdam (Fall 2009 Workshop), 2010.

[51] T. Vogel and H. Giese. Adaptation and Abstract Runtime Models. In Proc. of the 5th ICSE Workshop on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS), pp. 39–48. ACM, 2010.

[52] T. Vogel, S. Neumann, S. Hildebrandt, H. Giese, and B. Becker. Incremental Model Synchronization for Efficient Run-time
Monitoring . In Proc. of the 4th Intl. Workshop on Models@run.time, vol. 509 of CEUR-WS.org, pp. 1–10, 2009.

120 Fall 2010 Workshop

References

[53] T. Vogel, S. Neumann, S. Hildebrandt, H. Giese, and B. Becker. Model-Driven Architectural Monitoring and Adaptation for
Autonomic Systems. In Proc. of the 6th Intl. Conference on Autonomic Computing and Communications, pp. 67–68. ACM,
2009.

[54] T. Vogel, S. Neumann, S. Hildebrandt, H. Giese, and B. Becker. Incremental Model Synchronization for Efficient Run-Time
Monitoring. In Models in Software Engineering, Workshops and Symposia at MODELS 2009, vol. 6002 of LNCS, pp. 124–
139. Springer, 2010.

[55] T. Vogel, A. Seibel, and H. Giese. Toward Megamodels at Runtime. In Proc. of the 5th Intl. Workshop on Models@run.time,
vol. 641 of CEUR-WS.org, pp. 13–24, 2010.

Fall 2010 Workshop 121

Recent Developments in JCop –
Context-oriented Concurrency Control

and Compiler Optimization

Malte Appeltauer

Software Architecture Group
Hasso-Plattner-Institut

malte.appeltauer@hpi.uni-potsdam.de

Context-oriented Programming is a technique for dynamic adaptation of software
systems. In the course of our research project we applied the approach to the Java
programming language, adapted to specific properties of statically typed languages,
and evaluated in several application domains including server-based and distributed
applications. Our main goal is to provide programming language and tool support to
meet the needs for dynamic adaptation of complex, distributed systems. This report
presents our recent research results on context-oriented programming: a case-study to
support context-dependent concurrency control and a implementation study on novel
virtual machine support for dynamic invocation in Java 7.

1 Introduction

In object-oriented programming, functionality is encapsulated in methods that can be
refined through inheritance mechanisms such as overriding. Inheritance supports be-
havior specification in fixed hierarchies. However, dynamic variations cannot be explic-
itly represented this way. Context-oriented Programming (COP) adds an orthogonal
dimension to inheritance by addressing the explicit representation of behavioral vari-
ations and their dynamic composition. In COP, behavioral variations are functionality
that should be executed in addition or instead of the base functionality. Behavioral
variations are encapsulated into layers that can be de-/activated at runtime.

In the course of our research project we applied concepts of COP to the Java pro-
gramming language. We evaluated this approach with several case studies, including
mobile and ubiquitous computing [6], user interface applications [4], and distributed,
server-based systems. Based on our experiences developing applications in these
domains, we developed new layer declaration features and adaptation scopes. We im-
plemented our concepts in prototypes and compiler-based language extensions [3, 6].
JCop [5], our current context-oriented Java language extension, fuses features of
context- and aspect-oriented programming to support event-based COP and provides
first-class context objects. Besides several applications, we implement an RMI (remote
method invocation) framework supporting distributed programming with JCop.

Fall 2010 Workshop 123

Recent Developments in JCop –
Context-oriented Concurrency Control and Compiler Optimization

In this paper we will report on our research activity in the past six month. Part of
this work is to compare the expressiveness of JCop to alternative languages concerned
with separation of concerns and dynamic adaptation. As an example, we introduce a
DSL for concurrency control that we are currently implementing with JCop.

The JCop compiler translates source code to Java bytecode. This process contains
a transformation of a JCop AST (abstract syntax tree) into a Java AST. JCop’s dynamic
adaptation constructs are henceforth internally represented by Java elements.

Since Java’s support for dynamic adaptation has been limited until Java 6, a perfor-
mance bottleneck of our compiler implementation is run-time maintenance and lookup
of layers. We describe an implementation study, in which we use the upcoming Invoke-
Dynamic bytecode instruction – to be supported by the standard Java virtual machine
starting with the release of Java 7 – to implement layered method dispatch. We com-
pare the resulting implementation approach with that of the existing JCop compiler.

The rest of the report is structured as follows. Section 2 presents our approach
of context-oriented concurrency control. Section 3 describes Java’s new feature In-
vokeDynamic and its application within the JCop compiler implementation. Section 4
summarizes the paper and discusses next steps.

2 Context-oriented Concurrency Control

Throughout this research project, we apply our new language mechanisms to several
use cases to validate their usability. Currently, we are evaluating COP mechanisms
for concurrency control1. With the wide-scale deployment of multi-core processors
and the accompanying demand for parallel software, concurrency control receives in-
creasing attention. Classic concurrency control guards critical resources with locking
mechanisms [10] such as semaphores [9] and monitors [14]. However, handling these
primitives in large systems can be difficult since they require a low-level implementa-
tion rather than policy specification. Some alternative approaches, such as view-based
concurrency control, attempt to overcome this limitation.

2.1 View-based Concurrency

Literature describes approaches dedicated to provide a more abstract perspective on
concurrency rules that, for example, support specification on object interface level. The
views approach [8] introduces a new concept to access resources. A view declares
both a partial object interface and a list of incompatible object views. A partial object
interface lists a subset of the object’s methods and fields; a thread must hold the given
view to access the part of the object’s interface protected by the view.

Concurrency control is provided by enforcing incompatibility specification of views.
Two views are incompatible if two different threads cannot simultaneously hold both
views on the same object. With that, views can statically detect many data races.
Views have been implemented as domain-specific language (DSL) extension to Java.

1This is joint work with Alexander Schmidt

124 Fall 2010 Workshop

2 Context-oriented Concurrency Control

1 view read {
2 incompatible write, rezize;
3 size, capacity, array : readonly;
4

5

6

7 get(int i);
8 capacity();
9 }

10

11 public void someMethod() {
12 acquire (this@read) {
13 someValue = get(somePos);
14 }
15 }

public layer Read
without Write, Resize {
public int getSize() {return size;}
public int getCapacity() {return capacity;}
public int[] getArray() {return array;}

public int get(int i) {...}
public int capacity() {...}

}

public void someMethod() {
with(Read) {
someValue = get(somePos);

}
}

Figure 1: Implementations of partial resource interfaces using the views DSL [8] (left)
and JCop (right).

Figure 1 (left) presents an example for a view read that provides access to three fields
and a method get. To access get, one needs to acquire read for the dynamic extend
of a method block.

2.2 JCop Approach

We are currently developing a JCop-based context-oriented concurrency control sub-
suming a dedicated views-like DSL. COP resembles most language features intro-
duced by views, given a COP language that supports the specification of layer incom-
patibilities. Views, as units of modularization of partial interfaces, correspond to layers.
Views contain class members that are accessible by a thread that acquires the view,
much like partial methods and fields are activated with their enclosing layer. Hence,
we are using layers as a means to realize a views-like resource representation. In
addition to partial method definitions that adapt base methods at run-time, layers in
JCop can also contain layer-local methods that are only accessible if their enclosing
layer is active. An object that attempts to access such method outside an activation of
the method’s layers will cause a run-time exception. We are employing this features to
define partial object interfaces. A view can define incompatibilities to other views using
the incompatible keyword. The specification of layer (resource) incompatibilities can
be expressed by feature descriptions [17]. A declaration of feature descriptions for lay-
ers has already been developed for the Lisp-based ContexL [7]; we will adopt this work
and carry the ideas forward to JCop. The right listing of Figure 1 declares the layer
Read to be incompatible with Write and Resize using the without keyword. The views
DSL allows for restricting field access to none, readonly, and readwrite. In our JCop
implementation, we only allow indirect control the field access through the accessor
methods. For instance, to declare access to size, capacity, and array to be read only,
the layer shown in Figure 1 (right) provides getter methods. Figure 1 compares a view-
and layer-based implementation of a resource interface. It shows the declaration of a
layer Read that excludes the joint activation with Write and Resize.

View allocation boils down to layer activation and can be expressed – with a slight

Fall 2010 Workshop 125

Recent Developments in JCop –
Context-oriented Concurrency Control and Compiler Optimization

extension – by JCop’s with statement. Like JCop, the statement acquire(this@read)
in Figure 1 (left) acquires read for its dynamic extent. However, read is only activated
for a specific object (this) within this control flow. In JCop, a layer Read would be
activated for all objects within the dynamic extent. We will support a finer-grained layer
composition mechanism that allows for instance specific layer activations within control
flows.

At present, our context-oriented concurrency control implementation is not com-
plete and requires some further refinements of JCop. The restriction of a layer acti-
vation to one thread at time – which is the core requirement of concurrency control
– cannot be specified by JCop at present. One solution that we are pursuing in our
ongoing work is to declare a layer to be atomic, meaning that its activation is mutual
exclusive.

3 Compiler Optimization

JCop is implemented as a JastAdd [12] compiler extension, offering a convenient syn-
tax extension and generating plain Java bytecode. JCop’s layer-aware method dispatch
performs a thread-local lookup of the appropriate partial method to be called in a com-
position object. This lookup is implemented by means of plain Java such as thread local
objects, hash tables, and inheritance. The upcoming Java 7 release includes a pow-
erful extension to the language’s meta programming facilities: the invoke dynamic (ID)
instruction2 [15]. With ID and the accompanying Java compiler extensions, it is possi-
ble to generate method calls that are resolved at run-time by user-provided code. In
other words, ID introduces the ability to specify arbitrary method lookup semantics –
including changing late-bound methods.

In previous work [2], we conducted several micro-benchmarks to measure possi-
ble performance decreases of our implementation of layer-aware method lookup. Re-
sults showed a certain execution overhead of layer-aware lookup compared to a naïve
Java implementation of the same behavior. Optimization possibilities of the internal
Java representation generated by our compiler are restricted. Especially, thread-local
access to layer composition is expensive even when caching mechanisms are used.
Therefore, we investigated the applicability of Java’s new dedicated support for dy-
namic invocation to our JCop compiler implementation. In the following we present a
working implementation of layered method dispatch using ID as an alternative to the
current JCop architecture. The implementation is a hand-made proof-of-concept style
feasibility study; an adoption of the compiler generation has to be implemented in future
work.

3.1 Invoke Dynamic Bytecode Instruction

The ID instruction, defined in Java specification request 292, supports the insertion
of late-bound method calls in Java code that the VM resolves at run-time, using user-

2http://jcp.org/en/jsr/detail?id=292

126 Fall 2010 Workshop

3 Compiler Optimization

provided resolution logic3. In Java source code, a method call of the form

1 InvokeDynamic.<T>message(arg1, arg2, arg3)

denotes sending a message, passing the given arguments, and interpreting the result
as having the type T. No assumptions about the arguments are made; it is not the case
that arg1 is necessarily interpreted as the message receiver.

Each such dynamic call corresponds to precisely one CallSite object carrying infor-
mation about the invocation. Most importantly, a CallSite instance stores the particular
method to which the site is bound. Since that method is not known prior to run-time,
the programmer is required to provide a so-called bootstrap method per class contain-
ing dynamic invocations. The VM will invoke the bootstrap method as it encounters
dynamic calls for the first time during execution. Bootstrap methods are responsible for
creating and returning the respective CallSite instances, and they can also bind those
call sites to target methods. While the application is running, it is possible to re-bind
call sites by assigning new target methods.

The method messageImpl() simply prints the passed int to standard output. The
first parameter from the ID call, this, is implicitly used as the receiver of the virtual
method call. Note that this does not have to be the case: had the ID call site been
bound to a static method instead, it would have had to accept two parameters as given
in the ID instruction in go().

Even though the binding is established once the bootstrap method returns the ini-
tialized CallSite, this does not mean that it is fixed. It is always possible to send
setTarget() to the CallSite to bind it to a new target method.

3.2 Implementing Layer-aware Method Lookup

JCop’s method dispatch has been described in previous publications [1, 3]. In the
following, we will sketch up that implementation and describe an ID-based implemen-
tation, and discuss the conceptual differences in both approaches. We show both
implementations along the classic COP example of a class Person that provides a lay-
ered method toString for which a partial method is defined in the layer Address [13].
The JCop implementation of this example is shown in Figure 2, where the address
layer is implemented as a member of Person4.

3.2.1 JCop Mapping

During compilation, a JCop program’s AST (abstract syntax tree) is transformed into a
plain Java AST that contains additional auxiliary classes and methods. Since our ex-
perimental ID-based implementation only supports this core features, we only refer to
core COP features that have been developed in our previous work on ContextJ [3] in-
cluding layer and partial method definitions as class members and control-flow specific
layer composition blocks. For illustration, Figure 2 shows a source code representation

3For details on the API that we describe here, we refer to http://java.sun.com/javase/7/
docs/api/java/dyn/package-summary.html.

4JCop supports layer definition within classes and as top level module [5].

Fall 2010 Workshop 127

Recent Developments in JCop –
Context-oriented Concurrency Control and Compiler Optimization

1 public class Person {
2 private String name, address;
3 public Person(String name, String addr) {
4 this.name = name;
5 this.address = addr;
6 }
7 public String getAddress() {
8 return this.address;
9 }

10 public String toString() {
11 return name;
12 }
13 layer Address {
14 public String toString() {
15 return proceed() + ", " + getAddress();
16 }
17 }
18 }

public class App {
void m() {
Person p = new Person("Bob");
with(Address) {
System.out.println(p.toString());

}
}

}

Figure 2: Person example in JCop.

1 public class Person {
2 ...
3 public String toString() {
4 Composition c = Composition.getCurrent();
5 return c.first().Person$$toString(this, c);
6 }
7 public String toString(Address l, Composition c) {
8 String addr = ", " + getAddress();
9 return c.next(l).Person$$toString(this, c) + addr;

10 }
11 public String toString$$base() {
12 return getName();
13 }
14 }
15
16 public class App {
17 void m() {
18 Person p = new Person("Bob");
19 Composition comp = Composition.getCurrent();
20 Composition old = comp.addLayer(Address);
21 try {
22 System.out.println(p.toString());
23 }
24 finally {
25 Composition.setCurrent(old);
26 }
27 }
28 }

public class Layer {
...
public String Person$$toString(Person tar,

Composition c) {
return tar.toString$$base();

}

public class ConceteLayer extends Layer {
...
public String Person$$toString(Person tar,

Composition c) {
return c.next(this).Person$$toString(tar, c);

}
}

public class Address extends ConcreteLayer {
...
public String Person$$toString(Person tar,

Composition c) {
return tar.toString(this, c);

}
}

public class Composition {
...

}

Figure 3: Internal representation of layer-aware method dispatch in JCop.

of the generated byte code for our Person example. For brevity, the following listings
do not present the Composition methods getCurrent() and setCurrent(Composition)
that provide access to the thread local composition object, first() and next() that al-
low for its traversal, and addLayer(Layer) that adds a layer to a composition. Layers are
transformed into classes; each application-specific layer is a subtype of ConcreteLayer,
which in turn inherits from Layer. They provide delegation methods for their partial
methods; the actual behavior of partial methods are implemented by layer methods
which are defined in their corresponding class and called by their delegation methods.
At run-time, a composition object holds references to activated layers. It is accessed
upon layered method execution to decide to which of the method’s variations execution
should be delegated. The lookup algorithm is implemented as follows:

128 Fall 2010 Workshop

3 Compiler Optimization

1 public class Person {
2 ...
3
4 public String toString() {
5 InvokeDynamic.<void>Person$$toString(this);
6 }
7 public String toString$$Address() {
8 InvokeDynamic.
9 <void>#"proceed:Person$$toString:Address"(this)

10 + ", " + getAddress();
11 }
12 public String toString$$base(){
13 return getName();
14 }
15 }
16
17 public class App {
18 void m() {
19 Person p = new Person("Bob");
20 with(Address);
21 System.out.println(p.toString());
22 without(Address);
23 }
24 }
25
26 public class Layer extends Layer {
27 ...
28 }
29
30 public class ConcreteLayer extends Layer {
31 ...
32 }
33
34 public class Address extends ConcreteLayer {
35 public MethodHandle[] getPartialMethods() {
36 ...
37 }
38 public String getName() {
39 ...
40 }
41 }
42
43
44
45

public class Composition {
private static Hashtable<String, CallSite> cSites =
new Hashtable<String, CallSite>();

...
public static void with(Layer layer) {
Composition.getCurrent().addLayer(layer);
updateTarget(layer);
updateProceedChain(next(layer));

}
public static void updateTarget(Layer l) {
for(MethodHandle handle : l.getHandles()) {
CallSite cs = cSites.get(handle.toString());
if(cs != null) {
MethodType handleType = handle.type();
MethodType rType =
MethodType.methodType(handleType);
String mName = cs.name() + "_" + name;
MethodHandle target = MethodHandles.lookup().
findVirtual(cs.callerClass(), mName, rType);
cs.setTarget(target);

}
}

}
private static updateProceedChain(Layer layer){
// implementation similar to updateTarget();

}
private static CallSite createCallSite(Class c,

String name, MethodType type) {
CallSite cs = new CallSite(c, name, type);
MethodHandle h = MethodHandles.lookup()
.findVirtual(c, name, type.dropParameterTypes(0,1));
callSites.put(h.toString(), cs);
Layer first = Composition.getCurrent().first();
updateTarget(first.getName(), h);
return cs;

}
public static void register(Class c) {
MethodType bt =
MethodType.methodType(CallSite.class, Class.class,
String.class, MethodType.class);

MethodHandle bm = MethodHandles.lookup().findStatic(
Composition.class, "createCallSite", bt));
Linkage.registerBootstrapMethod(c, bm);

}
}

Figure 4: Representation of layer-aware method dispatch using INVOKEDYNAMIC.

• If no layer is active, a composition only consists of one Layer element denoting
the base layer. For each layered method m declared in class C, Layer provides
a delegation method that simply calls m’s base definition (which is declared in its
corresponding class).

• If the first layer in the composition provides a partial method for m, it contains a
delegation method that calls the partial method representation in C.

• If the current layer does not provide a partial method, the composition list must be
traversed. Since the current layer does not override m’s delegation method, the
definition of the super class ConcreteLayer is executed, which simply delegates
the call to the next layer of the composition.

Layer activation is implemented by two static methods that replace the with/without
blocks and allow to add and remove items from the list.

3.2.2 INVOKEDYNAMIC Implementation

In the JCop implementation, every execution of a layered method performs the afore-
mentioned layer-aware method dispatch. Thus, behavioral variations are adapted as

Fall 2010 Workshop 129

Recent Developments in JCop –
Context-oriented Concurrency Control and Compiler Optimization

late as possible. This design decision allows for the definition of flexible, “late bound”
lookup mechanisms such as event-based layer activation [5].

However, this strategy might cause performance penalties if methods are frequently
executed with the same composition chain. Furthermore, this late-bound lookup is
not required to support basic COP features. Alternatively, the lookup table can be
manipulated on composition change, for which we can employ ID. We developed an ID-
based version of layer lookup for Java for which we adapted our JCop implementation.
Figure 4 presents the source code of our running example using ID. We modified JCop
lookup logic as follows:

• Layered methods delegate to an ID object, instead of performing a composition
lookup. On first execution, a bootstrap method creates a CallSite object that is
stored in a thread-local hash map in Composition.

• Layers provide a MethodHandle list for their partial methods instead of delegation
methods. This list can be collected and generated at compile time using static
analysis.

• Composition statements (with/without) trigger recomposition in terms of updat-
ing call site target objects. First, all partial method call sites defined by layers
included in the new composition are collected. The required call sites are gath-
ered using the hash table of Composition, where the MethodHandle objects of
the layers are used as keys. Finally, a new MethodHandle pointing to the partial
method definition (methods with suffix ‘_<layer name>’) is set as target for the
call sites.

• The proceed pseudo method is also implemented by ID calls and points to the
next partial method of the composition. Their target objects are redirected by
calling the methods with and without.

The complete ID-based COP implementation consists of some more classes that
are not shown here for brevity. The application-specific implementation presented in
Figure 4 contains boilerplate code, such as defining layer classes and method handles
for their partial methods, dynamic invocation statements and explicit layer (de)activation
statements that developers should not have to care about. However, such code could
be eventually be generated by a JCop compiler.

4 Summary and Next Steps

Context-oriented programming is an approach for dynamic adaptation. In previous
work, we developed JCop, a Java language extension providing COP’s core features
and additional support for declarative, event-based adaptation. In this report, we de-
scribe a case-study implementing context-oriented concurrency control and a compiler
optimization employing a novel Java virtual machine support for dynamic invocation.
Next steps will focus on tool support and evaluation of JCop.

130 Fall 2010 Workshop

References

Language Evaluation In addition to our case studies, we will apply JCop to a large
scenario including implementation of new application features, refactorings, and
testing. We will validate this application development process with respect to
modularity metrics and code comprehension.

Formal Semantics We will provide a JCop language specification and a formal se-
mantics. Related work already describes a semantics for cj, a minimal COP lan-
guage for the delMDSoc environment [11,16]. Cj’s features are similar to JCop’s
core features but its declarative adaptation mechanism and first-class context ob-
jects have not been considered, yet.

Enhanced Tool Support We will enhance JCop’s tool support. COP and other ap-
proaches to multi dimensional separation of concerns allow for more concise
and declarative specifications of dynamic crosscutting concerns than pure object-
orientation. For instance, COP extends object-oriented method dispatch to con-
sider context information in addition to the method’s signature and receiver. This
new dimension requires development tools that support comprehension of pro-
gram behavior and source code navigation.

References

[1] Malte Appeltauer. ContextJ – Context-oriented Programming for Java. In Proceed-
ings of the 3rd Ph.D. Retreat of the HPI Research School on Service-oriented Sys-
tems Engineering, number 27. Hasso-Plattner-Institut, Potsdam, Germany, 2009.

[2] Malte Appeltauer, Robert Hirschfeld, Michael Haupt, Jens Lincke, and Michael
Perscheid. A Comparison of Context-oriented Programming Languages. In COP
’09: International Workshop on Context-Oriented Programming, pages 1–6, New
York, NY, USA, 2009. ACM Press.

[3] Malte Appeltauer, Robert Hirschfeld, Michael Haupt, and Hidehiko Masuhara.
ContextJ - Context-oriented Programming for Java. Computer Software of The
Japan Society for Software Science and Technology, 1:20, 2010.

[4] Malte Appeltauer, Robert Hirschfeld, and Hidehiko Masuhara. Improving the De-
velopment of Context-dependent Java Applications with ContextJ. In COP ’09:
International Workshop on Context-Oriented Programming, pages 1–5, New York,
NY, USA, 2009. ACM Press.

[5] Malte Appeltauer, Robert Hirschfeld, Hidehiko Masuhara, Michael Haupt, and
Kazunori Kawauchi. Event-specific Software Composition in Context-oriented
Programming. In Proceedings of International Conference on Software Com-
position, Lecture Notes in Computer Science, pages 50–65, Berlin, Heidelberg,
Germany, 2010. Springer-Verlag.

Fall 2010 Workshop 131

References

[6] Malte Appeltauer, Robert Hirschfeld, and Tobias Rho. Dedicated Programming
Support for Context-aware Ubiquitous Applications. In UBICOMM 2008: Pro-
ceedings of the 2nd International Conference on Mobile Ubiquitous Computing,
Systems, Services and Technologies, pages 38–43, Washington, DC, USA, 2008.
IEEE Computer Society Press.

[7] Pascal Costanza and Theo D’Hondt. Feature Descriptions for Context-oriented
Programming. In Steffen Thiel and Klaus Pohl, editors, Software Product Lines,
12th International Conference, SPLC 2008, Limerick, Ireland, September 8-12,
2008, Proceedings. Second Volume (Workshops), pages 9–14. Lero Int. Science
Centre, University of Limerick, Ireland, 2008.

[8] Brian Demsky and Patrick Lam. Views: Object-Inspired Concurrency Control.
In Jeff Kramer, Judith Bishop, Premkumar T. Devanbu, and Sebastián Uchitel,
editors, ICSE 2010, Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering - Volume 1, pages 395–404. ACM, 2010.

[9] Edsger W. Dijkstra. Cooperating sequential processes. Technical Report EWD-
123, Technical University Eindhoven, Eindhoven, the Netherlands, 1965.

[10] Edsger W. Dijkstra. Solution of a problem in concurrent programming control.
Communications of the ACM, 8(9):569, September 1965.

[11] Michael Haupt and Hans Schippers. A Machine Model for Aspect-Oriented Pro-
gramming. In Erik Ernst, editor, ECOOP 2007, 21st European Conference on
Object-Oriented Programming, volume 4609 of Lecture Notes in Computer Sci-
ence, pages 501–524, Berlin, Heidelberg, Germany, August 2007. Springer-
Verlag.

[12] Görel Hedin and Eva Magnusson. JastAdd: An Aspect-oriented Compiler Con-
struction System. Science of Computer Programming, 47(1):37–58, 2003.

[13] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-oriented Pro-
gramming. Journal of Object Technology, 7(3):125–151, March-April 2008.

[14] Charles A. R. Hoare. Monitors: an operating system structuring concept. Com-
munications of the ACM, 17(10):549–557, 1974.

[15] John R. Rose. Bytecodes meet combinators: invokedynamic on the jvm. In
VMIL’09: Proceedings of the Third Workshop on Virtual Machines and Interme-
diate Languages, pages 1–11, New York, NY, USA, 2009. ACM.

[16] Hans Schippers, Dirk Janssens, Michael Haupt, and Robert Hirschfeld.
Delegation-based Semantics for Modularizing Crosscutting Concerns. ACM SIG-
PLAN Notices, 43(10):525–542, 2008.

[17] Arie van Deursen and Paul Klint. Domain-Specific Language Design Re-
quires Feature Descriptions. Journal of Computing and Information Technology,
10:2002, 2001.

132 Fall 2010 Workshop

Towards Service-Oriented,
Standards- and Image-Based Styling of

3D Geovirtual Environments

Dieter Hildebrandt

dieter.hildebrandt@hpi.uni-potsdam.de

The server-side, service-oriented rendering of massive 3D geovirtual environments
(3DGeoVEs) has the potential to enable users with lightweight clients to access high
quality, image-based visual representations of the environments without having to down-
load massive amounts of geodata. Image post-processing (IPP) is a well-known con-
cept that allows for decoupling the process of generating an image from applying en-
hancement processes to already generated images. Moreover, several visual effects
are implemented most efficiently and effectively as image post-processes. However, so
far no proposals exist for providing image post-processing of 2D images of projective
views of visual representations of 3DGeoVE in a SOA and based on standards.

In this paper, we investigate how IPP functionality and the functionality of styling of
visual representations of 3DGeoVE based on IPP can be provided in a SOA based on
standards. First, we introduce the concepts of IPP and styling. Then, we present an
analysis of different characteristics of styling and IPP and design dimensions relevant
when building a system for styling and IPP. From the analysis, we derive a set of re-
quirements for a concept and system providing IPP and styling functionality based on
IPP. We present a preliminary concept for a system meeting the identified requirements
and report on initial implementation and evaluation results.

1 Introduction

The server-side, service-oriented rendering of massive 3D geovirtual environments
(3DGeoVEs) has the potential to enable users with lightweight clients to access high
quality, image-based visual representations of the environments without having to down-
load massive amounts of geodata. Image post-processing (IPP) [2] is a well-known
concept that allows for decoupling the process of generating an image from applying
enhancement processes to already generated images. Moreover, several visual effects
are implemented most efficiently and effectively as image post-processes. In a service-
oriented architecture (SOA), providing the functionality of image post-processors as
dedicated, loosely coupled services as an application of the principle of separation
of concerns offers several advantages. These services easily can be reused and re-
composed with further services to form different distributed applications, the increased
modularity has the potential to improve the maintainability and flexibility of the resulting
systems, and existing applications and services can be extended to take advantage

Fall 2010 Workshop 133

Towards Service-Oriented,
Standards- and Image-Based Styling of 3D Geovirtual Environments

of image post-processing functionality without having to implement the functionality
themselves. Providing this functionality based on open standards such as approved
by the W3C and the Open Geospatial Consortium (OGC) [7]) facilitates building effec-
tive, open and interoperable systems. However, so far no proposals exist for providing
image post-processing of 2D images of projective views of visual representations of
3DGeoVE in a SOA and based on standards.

In this paper, we investigate how IPP functionality and the functionality of styling of
visual representations of 3DGeoVE based on IPP can be provided in a SOA based on
standards. First, we introduce the concepts of IPP and styling. Then, we present an
analysis of different characteristics of styling and IPP and design dimensions relevant
when building a system for styling and IPP. From the analysis, we derive a set of re-
quirements for a concept and system providing IPP and styling functionality based on
IPP. We present a preliminary concept for a system meeting the identified requirements
and report on initial implementation and evaluation results.

This paper is structured as follows. In Section 2, we introduce the fundamentals of
IPP and styling. We present an analysis of characteristics and design dimensions of
IPP and styling and a set of derived requirements in Section 3. The preliminary design
of the concept is presented in Section 4, initial implementation and evaluation results
in Section 5. Section 6 concludes this paper with a summary, conclusions and next
steps.

2 Fundamentals

2.1 Image Post-Processing

Digital image processing encompasses processes whose inputs and outputs are im-
ages and, in addition, encompasses processes that extract attributes from images,
up to and including the recognition of individual objects [9]. In the context of com-
puter graphics, performing image processing after rendering is called image post-
processing (IPP) [2]. We define IPP effect as a unit of image post-processing with
a specific functionality and purpose. IPP effects can be efficiently implemented on
current graphics processing units (GPUs) [2]. The concept of IPP can be applied for
different applications. In this paper, we focus on the use of IPP for styling 2D images of
projective views of 3DGeoVE. On the contrary, in general, styling can be implemented
without the use of IPP.

As input and output for IPP, 2D images representing G-buffer [23] can be used. For a
projective view of a visual representation of a 3DGeoVE, a G-buffer encodes per pixel
a specific type of information such as color, depth, normal, and material properties.
Figure 1 depicts example G-buffer containing different, exemplary types of information.

In this context, several characteristics and benefits of IPP are important. IPP al-
lows for decoupling the process of generating an image from applying enhancement
processes to already generated images. Moreover, several visual effects are imple-
mented most efficiently and effectively as image post-processes. The complexity of
representing a perspective view in an image and applying IPP to the image depends

134 Fall 2010 Workshop

2 Fundamentals

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 1: Examples of different types of information encoded per pixel in a G-buffer:
(a) depth, (b) normal, (c) albedo (color texture), (d) ambient lighting, (e) diffuse lighting,
(f) specular lighting, (g) object ID, (h) colorCode (encoding semantics of objects with a
color), (k) shadowMap (depth of scene as seen from a light source), and (i) projective
texture (a texture to be applied to the scene via projective texturing).

Fall 2010 Workshop 135

Towards Service-Oriented,
Standards- and Image-Based Styling of 3D Geovirtual Environments

only on the image dimensions and not the complexity of the scene [16]. Furthermore,
images as inputs and outputs for IPP are conceptually simple, robust, commonly used
and supported. Additionally, image formats exist (e.g., JPEG, PNG) that are standard-
ized, commonly used and supported, and storage and processing efficient. Using the
G-buffer concept [23], multiple information layers of a 3D model (e.g., 3D position, nor-
mal, color, and object ID of surface elements) can be encoded into 2D images. Thus,
images can be used as an alternative representation for 3D models that sample 3D
models in a discreet and multidimensional way and reduce the diversity and hetero-
geneity of their original representations (e.g., points, triangles, NURBS, voxel) to a
simpler, unified representation.

2.2 Styling

According to the OGC, the importance of the visual portrayal of geographic data cannot
be overemphasized. The skill that goes into portraying data (whether it be geographic
or tabular) is what transforms raw information into an explanatory or decision-support
tool. Fine-grained control of the graphical representation of data is a fundamental
requirement for any professional mapping community [19, 21]. In this context, styling
can be defined as the mapping of data to geometry and/or appearance attributes.

The are efforts from the OGC to standardize the styling of 2D and 3D portrayal of
geospatial data in a SOA. Symbology Encoding (SE) [21] represents a language for
defining rendering parameters for specific features and coverages. SE describes the
symbolizer (line, polygon, point, text, raster) to use for rendering the feature geometry,
which appearance parameters to consider, and for which scale this styling is applicable.
The Styled Layer Descriptor (SLD) Profile for WMS [19] allows for user-defined styling.
Together with the GetMap request an SE-encoded SLD description is transmitted inline
or as URL reference. Therefore, the Web Map Service (WMS) [8] interface is extended
for retrieving the feature types of a layer. In contrast to styling the 2D portrayal from a
WMS, until now no OGC standard exists that defines the styling of 3D portrayal from a
Web 3D Service (W3DS) [24] and the Web View Service (WVS) [12,13]. Nevertheless,
Haist et al. [14] and Neubauer et al. [22] propose separate extensions for the SLD and
SE for 3D portrayal.

Within the visualization pipeline [11], functionality for styling can be conceptually
located in the filtering, mapping, rendering or even after the rendering stage. Widely-
used is styling in the mapping stage (M-styling). The already introduced concepts of
SLD and SE for 2D and 3D portrayal in the context of standardization apply styling in
the mapping stage. However, styling can also applied in or even after the rendering
stage (R-styling). For styling 2D images of projective views, IPP can be applied in or
after the rendering stage.

3 Analysis

In this Section, we analyze different characteristics of styling and IPP and design di-
mensions relevant when building a system for styling and IPP. From the analysis, we

136 Fall 2010 Workshop

3 Analysis

derive a set of requirements for a concept and system providing IPP and styling func-
tionality based on IPP.

Granularity of IPP Effects On the lowest level, images can be processed by iterating
in one pass over all pixel of the target image and applying an algorithm for calculating
for each pixel the resulting value from the input images (e.g., alpha blending of two
input images). On a higher level, specific effects can only be calculated by combining
several basic passes and using outputs of passes as inputs for other passes (e.g.,
image abstraction by structure adaptive filtering [18]).

Programmable vs. Configurable When the processing of IPP is offered as a ser-
vice, it can be programmable and/or configurable. The processing is programmable if a
service consumer can provide the service with an algorithmic description of the effect
that service provider is supposed to execute. The focus is on offering processing as a
service. The Web Coverage Processing Service (WCPS) [4] is an example of such a
service that offers processing of coverages. The processing is configurable if a service
provider already implements and offers one more IPP effects. The service consumer
can choose from the offered effects and can configure their behavior. In this case, the
service provider offers IPP effect implementations as well as processing as a service.

IPP Effect Composition (Service Interface) Services that provide the functionality
of IPP and IPP-based styling must provide an interface to service consumers that al-
lows accessing this functionality. The interface must allow specifying which IPP effects
in what configuration are to be applied to what geospatial data and what output images
are required.

For specifying how input images are transformed by a set of IPP effects into output
images, the concept of data flow graphs (DFG) [27] is commonly used. Nodes repre-
sent IPP effects and directed edges the flow of data between the nodes. The resulting
graphs are directed acyclic graphs (DAG) with the tendency to form a tree with the in-
puts as leafs and the result as root node. This concept is used in commercial software
products such as Adobe Pixel Bender [1] and Apple Quartz Composer [3].

For styling 2D portrayal in the mapping stage (M-styling), the OGC proposes the
concepts of SLD and SE. In essence, these concepts allow a service consumer to
specify which symbolizer from a predefined list in what configuration is to be applied
to which features (selected as layers of features with a set of predefined selection
operators). As a simpler alternative, image generating services (such as the WMS)
allow choosing a style from a predefined list of styles for each layer that is selected for
portrayal.

Semantic-based and Selective Styling and Application of IPP Efficient and effec-
tive communication of geospatial information in 3DGeoVEs typically requires that for
subsets of the geospatial data specific, adequate representations are choosen. The
mapping of geospatial data to visual representations is accomplished by styling. It fol-
lows that, generally, effective styling requires that different styling can be applied to

Fall 2010 Workshop 137

Towards Service-Oriented,
Standards- and Image-Based Styling of 3D Geovirtual Environments

different subsets of the geospatial data. As an example, to guide the viewers gaze to a
focus area in a visual representation, the focus area could be visually highlighted and
represented in detail (e.g., by applying photorealistic rendering techniques) whereas
the surrounding context area would be represented abstracted and with less detail
(e.g., by selectively applying non-photorealistic rendering techniques).

Geospatial data is commonly organized in features and collections of features called
layers. When using a semantic data model such as CityGML [10], features are enriched
with semantic information. Layers of features or individual features can be selected
explicitly or rule-based (e.g., all features within a buffer region from a road or with a
specific semantics or thematic attribute) and styled individually. For selecting features
from collections of features, the OGC proposes a dedicated filter language [28]. When
applying IPP for styling, additional methods for selection become viable. Applying IPP
to the whole scene or on spatial regions across feature and layer boundaries can be
accomplished efficiently and effectively.

Architecture From an architectural perspective, in a SOA, the functionality of IPP
and IPP-based styling can be located in three places:

1. Integrated with the service that provides images as input to the IPP (e.g., WVS),

2. Provided as a dedicated service that receives input images from other services
or the calling service consumer and provides the service consumer with output
images, or

3. Integrated with the interaction service [15] that a human user directly interacts
with.

From the analysis we derive the following set of requirements for a concept and
system that provides IPP and styling based on IPP in a SOA based on standards:

• Standardization: The service interface and employed data models and encodings
in the interface should adhere to or build on existing open standards.

• Granularity of IPP Effects: Service consumers can specify IPP on low-level (e.g.,
single-pass IPP effect) and high-level granularities (e.g., multi-pass IPP effects).

• Programmable vs. Configurable: Service providers can provide IPP effect imple-
mentations and their processing to service consumers. Service consumers can
algorithmically specify IPP effects, and transmit the specification to the service
provider for execution.

• Architecture: The IPP functionality must be accessible as a dedicated service
and integrated in a image rendering service (i.e., the WVS). Integrating IPP in
the interaction service is not recommended unless unavoidable to keep the inter-
action service as lightweight as possible and the IPP functionality reusable as a
service.

138 Fall 2010 Workshop

4 Design

• Selective Application of IPP: Subsets of geodata for styling must be selectable on
the level of parts of space and features, individual features, layer, whole scene.

• IPP Effect Composition (Service Interface): Services providing IPP functionality
must provide an interface based on data flow graphs. Services providing func-
tionality for styling based on IPP must provide an interface that is based on SLD
and SE.

4 Design

In this Section, we briefly sketch the preliminary concept for services providing the
functionality of IPP and IPP-based styling.

A service consumer can specify IPP with a data flow graph (DFG) expressed in
XML. A DFG is directly suitable for being processed by the service provider. For speci-
fying IPP-based styling, the current proposals for SLD and SE are extended to support
the specific characteristics of IPP-based styling. The SLD/SE-based styling description
is more abstract than the DFG-based description, while the latter is more expressive.
We assume that the SLD/SE-based styling description can be mapped to a DFG-based
description that then can be directly processed.

Service providers can offer a predefined set of IPP effect implementations that can
be referenced in DFG-based and SLD/SE-based IPP descriptions. Additionally, service
providers allow users to provide their own executable code for IPP effects. We plan to
evaluate both the open standards OpenGL Shading Language (GLSL) and OpenCL
for this purpose.

The IPP and IPP-based styling is implemented as a library that is used for imple-
menting a dedicated service and for integration in the WVS. The dedicated service is
based on the OGC’s generic Web Processing Service (WPS) [25] proposal.

We have identified a first collection of general-purpose, reusable IPP effects that
enable the composition of web view services for 3DGeoVEs operating on G-buffer
images. The collection includes:

• 3D image synthesis effects generate the base G-buffer.

• Shadow mapping synthesize effects generate and apply shadow maps [29] in
screen-space.

• Ambient occlusion synthesis effects generate approximated ambient light inten-
sities in screen-space (SSAO, [26]).

• Non-photorealistic image processing effects emphasizes edges and remove de-
tail from surfaces [2,18].

• Depth-of-field effects infiltrate an artificial object-based focus area in the view [2].

• Projective texture effects superimpose projective textures on the given view [2].

• Highlighting effects emphasize the silhouette of selected objects.

Fall 2010 Workshop 139

Towards Service-Oriented,
Standards- and Image-Based Styling of 3D Geovirtual Environments

• Generic G-buffer and image converter, blending, and convolution operators.

5 Implementation and Evaluation

In this Section, we briefly report on the initial implementation and evaluation of the
concept for services providing the functionality of IPP and IPP-based styling.

As a basis, we implemented a library for specifying and executing IPP based on
data flow graphs in C++. Second, we implemented a set of exemplary low-level and
high-level IPP effects in C++, OpenGL and GLSL. A list of the implemented IPP effects
is presented in Figure 2.

We implemented ambient occlusion synthesis effects that generate approximated
ambient light intensities in screen-space (SSAO, [26]). For evaluation, we implemented
two different techniques: [17,20] and [5,6].

We implemented non-photorealistic image processing effects that emphasize edges
and remove detail from surfaces [18]. For evaluation, we implemented two different
techqniues. The first NPR technique “NPR1” is based on image abstraction by struc-
ture adaptive filtering [18], and requires only one color image as input.

The second NPR technique, “NPR2 ColorBlend and EdgeEnhance”, requires as
input two color images, depth, and diffuse lighting. The two color images are intended
to be both appearance representations of the 3D scene. However, the first one is
expected to be a more abstract representation than the second one. In our implemen-
tation and evaluation, the first color image represents a color coding of semantics of
the scene objects. Each pixel in the image is assigned a color that is based on the
semantics of the object that the pixel belongs to. We used a color scheme that was
inspired by common 2D web mapping applications. For the second color image, in our
evaluation, we used the output of the first technique NPR1 based on image abstrac-
tion. The two color code images are then blended (via mix) based on the distance of
each fragment from the virtual camera. Optionally in this blend, the second image is
modulated by the first image to preserve its effect. The effect of the blending is that
the more detailed representation dominates fragments near the virtual camera while,
optionally, the color coding is still visible. This representation is gradually blended with
the more abstract representation that dominates fragments farther from the camera.
Subsequently, the diffuse lighting is applied to the new appearance image that results
from the blend. Finally, edges in the image are detected using discontinuities in the
depth and color code images. Found edges are enhanced by darkening respective
fragments.

For evaluating the implementation, we performed experiments. We build a graph
specifying a complex IPP (Figure 3) using the implemented IPP effects. As input to
the graph, the ten G-buffers depicted in Figure 1 are used. Intermediate G-buffer pro-
cessing results of the data flow graph are presented in Figure 4. The final result (color
buffer) is displayed in Figure 5. Figure 2 reports on the processing time for the individ-
ual effects. The experiment is performed on a Core2Duo E6600 with 2.4Ghz, nVidia
GTX 260. Measurements were performed on G-buffer resolutions of 800x600 and av-
eraging the timings of 5.000 processing calls. The timings indicate that even complex

140 Fall 2010 Workshop

5 Implementation and Evaluation

Cx, A, DD, N OID, Mask

Category Effect Input SelektoA.Mod G.Mod T.Mod Output View-indepen Semantik-abh Anwendung/Funktion

Integration CompositeDepth IS0, IS1 Depth x x x ISr x Integration
CompositeDepthOID IS0, IS1 Depth, x x x ISr x
CompositeDepthPT IS0, IS1 Depth, x x x ISr x
CompositeDepthBBox

Abstraktion NPR_FlowAbs C - - - - C o
NPR_AbstractCity o

Realismus SSAO_Crysis C - x - - o Realismus
SSAO_HBAO - x - - o
Bloom/HDR

FNC / Highlight Colorize C, OID OID x - - C x Highlight
DepthOfField

Augmenting ProjTexturing x - - …
MeshRender x x x

Environment Fog x - - - Env
Rain x x x - Env

Low-Level Image Crop IS x x x IS x
Scale IS x x x IS x
ColorAdjust C x - - C x

Tools ScreenSpaceNormals D - - - - N x

GeoVis / Thematic HeightColorize C, D D x - - C x

Avg Processing Time (ms) View Number of
Category Effect Effect Mode/Subtype/Config Single Accum Accum. Independ. Passes G.Mod A.Mod T.Mod C R U

G,A,T
Integration Composite Depth and ObjectId Selector 0,26 0,26 x 1

Blend Add 0,22 0,22 x 1
Hardlight 0,22 x 1

Abstraction NPR1 Image Abstraction 16,80 16,80 o 6

NPR2 ColorBlend and EdgeEnhance 2,77 2,77 o 1-2

Photorealism SSAO Mittring (half res) 3,88 4,74 10,05 o 3
Mittring (full res) 5,60 o 3
Bavoil (s=8, d=16) 9,72 12,71 o 3
Bavoil (s=8, d=16, halfres) 5,30 o 3
Bavoil (s=24, d=32) 32,63 o 3
Bavoil (s 3 d 4) 3 20 o 3Bavoil (s=3, d=4) 3,20 o 3

ShadowMapping Hard Shadows 0,35 1,59 o 2
PCSS 2,84 o

Focus and Context Highlight Halo (r=2) 1,07 1,57 0,92 - 3
Halo (r=7) 1,40 - 3
Halo (r=20) 2,26 - 3
Background Grey 0,27 x 1
Brightness 0,30 x 1
ColorOverlay 0,26 x 1

Depth of Field 1,01 1,01 - 5

Augmentation ProjectiveTexturing 0,40 0,40 x 1

Low Level Processing ColorAdjust 0,22 0,22 - 1

Convolution Gauss (r=3) 0,64 1,06 0,85 x 2
Gauss (r=10) 1,48 x 2
Box (r=3) 0,75 1,19 x 2
Box (r=10) 1,64 x 2
Unsharp Masking (Laplace) 0,27 0,31 x 1
Unsharp Masking (Sobel) 0,34 x 1

Environmental Fog not implemented yet
Rain not implemented yetRain not implemented yet
Water not implemented yet

Figure 2: Overview of the implemented IPP effects, their average processing time
(measured on Core2Duo E6600 with 2.4Ghz, nVidia GTX 260, resolution 800x600),
view independence characteristic, and number of passes.

Fall 2010 Workshop 141

Towards Service-Oriented,
Standards- and Image-Based Styling of 3D Geovirtual Environments

D
ep

th
D

e
p
th

 C
o

n
v
e
rt

e
r

S
S

A
O

S
h
a
d
o
w

M
a
p
p
in

g

B
le

n
d

 (
A

d
d
)

N
P

R

(I
m

a
g

e

A
b
s
tr

a
c
ti
o

n
)

B
le

n
d

 (
M

u
l)

N
P

R

(C
o
lo

rB
le

n
d
 &

E
d
g
e
E

n
h
a
n
c
e
)

P
ro

je
c
ti
v
e

T
e

x
tu

ri
n

g
D

e
p
th

 o
f
F

ie
ld

C
o
m

p
o
s
it
e

H
ig

h
lig

h
t

C
o
lo

r
A

d
ju

s
t

B
le

n
d
 (

M
u
l)

N
or

m
al

A
lb

ed
o

(C
ol

or
)

A
m

bi
en

t
Li

gh
tin

g

D
iff

us
e

Li
gh

tin
g

Sp
ec

ul
ar

Li

gh
tin

g

O
bj

ec
t I

D

C
ol

or
 C

od
e

Sh
ad

ow
 M

ap

Pr
oj

ec
tiv

e
Te

xt
ur

e

d
e

p
th

n
o

rm
a

l

d
e

p
th

d
e

p
th

s
h

a
d

o
w

M
a

p

a
m

b
ie

n
tL

ig
h

t
d

if
fu

s
e

L
ig

h
t

s
p

e
c
u

la
rL

ig
h

t

a
m

b
ie

n
tO

c
c
lu

s
io

n

s
h

a
d

o
w

lo
c
a

lL
ig

h
t

g
lo

b
a

lL
ig

h
t

g
lo

b
a

lL
ig

h
t

c
o
lo

r

c
o

lo
r

c
o

lo
r

c
o

lo
rC

o
d

e

n
o

rm
a

l

d
e

p
th

c
o
lo

r

d
e

p
th

p
ro

je
c
ti
v
e

T
e

x
tu

re

d
e

p
th

c
o
lo

r

c
o

lo
r1

d
e

p
th

c
o

lo
r2

o
b

je
c
tI

d

c
o

lo
r

d
e

p
th

o
b

je
c
tI

d

c
o
lo

r

c
o
lo

r

Figure 3: Data flow graph of a complex IPP effect composition using the implemented
IPP effects build for the evaluation experiment.

142 Fall 2010 Workshop

5 Implementation and Evaluation

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4: Intermediate G-buffer processing results of the data flow graph. (a) color as
the most important input appearance data, (b) output of the NPR (Image Abstraction)
node, (c) output of the SSAO node, (d) output of the Shadow Mapping node, (e) output
of the first Blend (Mul) node, (f) output of the NPR (ColorBlend and EdgeEnhance)
node, (g) output of the Projective Texturing node, (h) output of the Depth of Field node,
(i) output of the second Blend (Mul) node, (j) output of the Color Adjust node, (k) output
of the Composite node, (l) output of the Highlight node.

Fall 2010 Workshop 143

Towards Service-Oriented,
Standards- and Image-Based Styling of 3D Geovirtual Environments

Figure 5: Final result (color buffer) of processing the data flow graph build for the
evaluation experiment.

144 Fall 2010 Workshop

6 Summary, Conclusions, and Next Steps

IPP-based styling can be performed at interactive frame rates on current consumer
hardware. As expected, IPP effects have the tendency to take more time the more
complex they are (in terms of algorithmic and memory access complexity per pixel)
and the more passes they require. Surprisingly, the SSAO (screen-space ambient oc-
clusion) effect turned out to be comparatively costly with respect to its contribution to
the final result.

6 Summary, Conclusions, and Next Steps

In this paper, we investigated how IPP functionality and the functionality of styling of
visual representations of 3DGeoVE based on IPP can be provided in a SOA based on
standards. We introduced the concepts of IPP and styling and presented an analy-
sis of different characteristics of styling and IPP and design dimensions relevant when
building a system for styling and IPP. From the analysis, we derived a set of require-
ments for a concept and system providing IPP and styling functionality based on IPP.
We presented a preliminary concept for a system meeting the identified requirements
and reported on an initial implementation and evaluation results.

The first results indicate that IPP functionality and the functionality of styling of vi-
sual representations of 3DGeoVE based on IPP can be provided in a SOA based on
standards. Furthermore, IPP-based styling promises to offer powerful ways of styling
visual representations with interactive frame rates decoupled from the process of im-
age generation.

My next steps include extending the SLD/SE for IPP, integrating IPP and IPP-based
styling in the WVS and offering it as a dedicated service, and allowing service con-
sumers to specify IPP effects by providing executable code.

References

[1] Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110,
USA. Adobe Pixel Bender Developer’s Guide, 2010.

[2] Tomas Akenine-Möller, Eric Haines, and Natty Hoffman. Real-Time Rendering. A.
K. Peters, Ltd., Natick, MA, USA, third edition, 2008.

[3] Apple Inc., 1 Infinite Loop, Cupertino, CA 95014. Apple Quartz Composer User
Guide, July 2007.

[4] Peter Baumann, editor. OGC Web Coverage Processing Service (WCPS), Ver-
sion 0.0.3. Open Geospatial Consortium Inc., July 2006.

[5] Louis Bavoil and Miguel Sainz. Image-Space Horizon-Based Ambient Occlusion.
In Wolfgang Engel, editor, ShaderX7 - Advanced Rendering Techniques, pages
425–444. Charles River Media, 2009.

Fall 2010 Workshop 145

References

[6] Louis Bavoil, Miguel Sainz, and Rouslan Dimitrov. Image-Space Horizon-Based
Ambient Occlusion. In SIGGRAPH 2008 Talks. ACM, New York, NY, USA, 2008.

[7] Open Geospatial Consortium. Open Geospatial Consortium (OGC) Website.
URL, http://www.opengeospatial.org/, 2009. Accessed 16.10.2010.

[8] Jeff de la Beaujardiere, editor. OpenGIS Web Map Server Implementation Speci-
fication, Version 1.3.0. Open Geospatial Consortium Inc., March 2006.

[9] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Prentice
Hall International, Upper Saddle River, N.J., third edition, 2008.

[10] Gerhard Gröger, Thomas H. Kolbe, Angela Czerwinski, and Claus Nagel, editors.
OpenGIS City Geography Markup Language (CityGML) Encoding Standard, Ver-
sion 1.0.0. Open Geospatial Consortium Inc., August 2008.

[11] R.B. Haber and D. A. McNabb. Visualization Idioms: A Conceptual Model for
Scientific Visualization Systems. In B. Shriver, G. M. Nielson, and L. Rosenblum,
editors, Visualization in Scientific Computing, pages 74–93, Los Alamitos, 1990.
IEEE Computer Society Press.

[12] Benjamin Hagedorn, Dieter Hildebrandt, and Jürgen Döllner. Towards Advanced
and Interactive Web Perspective View Services. In Developments in 3D Geo-
Information Sciences, Lecture Notes in Geoinformation and Cartography, Berlin,
Heidelberg, November 2009. Springer.

[13] Benjamin Hagedorn, Dieter Hildebrandt, and Jürgen Döllner. Web View Service
Discussion Paper, Version 0.6.0. Open Geospatial Consortium Inc., February
2010.

[14] Jörg Haist, Hugo Miguel Figueiredo Ramos, and Thorsten Reitz. Symbology En-
coding for 3D GIS - An Approach to Extending 3D City Model Visualization to GIS
Visualization. In Urban Data Management Symposium, pages 121–131, October
2007.

[15] Dieter Hildebrandt and Jürgen Döllner. Service-oriented, standards-based 3D
geovisualization: Potential and challenges. Journal on Computers, Environment
and Urban Systems, 34(6):484–495, November 2010. GeoVisualization and the
Digital City - Special issue of the International Cartographic Association Commis-
sion on GeoVisualization.

[16] Dieter Hildebrandt, Benjamin Hagedorn, and Jürgen Döllner. Image-Based, Inter-
active Visualization of Complex 3D Geovirtual Environments on Lightweight De-
vices. In 7th International Symposium on LBS and Telecartography, 2010.

[17] Vladimir Kajalin. Screen-Space Ambient Occlusion. In Wolfgang Engel, editor,
ShaderX7 - Advanced Rendering Techniques, pages 413–424. Charles River Me-
dia, 2009.

146 Fall 2010 Workshop

References

[18] Jan Eric Kyprianidis and Jürgen Döllner. Image Abstraction by Structure Adaptive
Filtering. In Ik Soo Lim and Wen Tang, editors, EG UK Theory and Practice of
Computer Graphics, pages 51–58. Eurographics Association, 2008.

[19] Markus Lupp, editor. Styled Layer Descriptor Profile of the Web Map Service
Implementation Specification, Version 1.1.0. Open Geospatial Consortium Inc.,
June 2007.

[20] Martin Mittring. Finding next gen: CryEngine 2. In ACM SIGGRAPH 2007
courses, SIGGRAPH ’07, pages 97–121, New York, NY, USA, 2007. ACM.

[21] Markus Müller, editor. Symbology Encoding Implementation Specification, Version
1.1.0. Open Geospatial Consortium Inc., July 2006.

[22] Steffen Neubauer and Alexander Zipf. Suggestions for Extending the OGC Styled
Layer Descriptor (SLD) Specification into the third Dimension - An Analysis of
possible Visualization Rules for 3D City Models. In Urban Data Management
Symposium, Stuttgart, Germany, October 2007.

[23] Takafumi Saito and Tokiichiro Takahashi. Comprehensible rendering of 3-D
shapes. SIGGRAPH Computer Graphics, 24(4):197–206, 1990.

[24] Arne Schilling and Thomas H. Kolbe, editors. Draft for Candidate OpenGIS Web
3D Service Interface Standard, Version 0.4.0. Open Geospatial Consortium Inc.,
2010.

[25] Peter Schut, editor. OpenGIS Web Processing Service, Version 1.0.0. Open
Geospatial Consortium Inc., June 2007.

[26] Perumaal Shanmugam and Okan Arikan. Hardware accelerated ambient occlu-
sion techniques on GPUs. In Proceedings of the 2007 symposium on Interactive
3D graphics and games, I3D ’07, pages 73–80, New York, NY, USA, 2007. ACM.

[27] Michael A Shantzis. A Model for Efficient and Flexible Image Computing. In
SIGGRAPH 94 Proceedings of the 21st annual conference on Computer graphics
and interactive techniques, volume 28, pages 147–154, New York, NY, USA, 1994.
ACM Press.

[28] Peter Vretanos, editor. OpenGIS Filter Encoding 2.0 Encoding Standard, Version
2.0.0. Open Geospatial Consortium Inc., March 2010.

[29] Lance Williams. Casting curved shadows on curved surfaces. In Proceedings
of the 5th annual conference on Computer graphics and interactive techniques,
volume 12 of SIGGRAPH ’78, pages 270–274, New York, NY, USA, 1978. ACM.

Fall 2010 Workshop 147

Modeling and Verification of
Self-Adaptive Service-Oriented Systems

Basil Becker

basil.becker@hpi.uni-potsdam.de

Service-oriented architecture enables more flexible IT solutions. At the level of
the architecture the runtime binding of service contracts, starting new component in-
stances and terminating components result in a dynamic assembly and runtime recon-
figuration of complex open IT landscapes. As new services contracts can be added
at runtime as well, the dynamics goes even further and permit that the IT landscapes
evolves at the level of its components as well as service contracts. In this report I
will shortly outline which problems concerning modeling and verification arise in the
domain service-oriented systems and identify requirements which an approach that
targets these problems has to fulfill. Further I will give a rough overview of the state of
the art for the formal verification and modeling of service-oriented systems.

1 Introduction

Service-oriented architecture enables more flexible IT solutions. At the level of the ar-
chitecture the runtime binding of service contracts, starting new component instances
and terminating components result in a dynamic assembly and runtime reconfiguration
of complex open IT landscapes. As new services contracts can be added at runtime as
well, the dynamics goes even further and permit that the IT landscapes evolves at the
level of its components as well as service contracts. In the service-oriented approach
orchestration describes a collaboration with a single dedicated coordinator that enacts
the collaboration between the other parties. The choreography interaction scheme in
contrast support the free interplay of different roles within a collaboration.

The service-oriented approach in contrast to standard component-based architec-
tural models employs collaborations describing the interaction of multiple roles in form
of service contracts (cf. [1,8]). Current approaches for modeling service-oriented archi-
tectures, however, do either only support scenarios where the dynamics and evolution
are restricted to static collaborations with fixed service contracts [1] or an appropriate
rigorous formal underpinning for the model for the conceptually supported dynamics
is missing. While orchestration is often described by business processes or activity
diagrams [22, 26, 27, 29], for choreography it is less clear which kind of behavioral de-
scription is best suited [29].

Further, service-oriented systems differ from classical component-based systems
as they reside in so called open-world setting [3]. The term open-world setting or
open-world assumption expresses the observation that the assumption of a known

Fall 2010 Workshop 149

Modeling and Verification of Self-Adaptive Service-Oriented Systems

and unchanging border between system and environment is no longer valid in todays
software systems.

Proposals for the formal verification of service-oriented architectures are even more
restricted and do only support scenarios where the evolution has been so restricted that
checking a bounded formal model is sufficient [12].

Therefore, the current proposals for modeling and verification do not support the
beforehand outlined dynamics and evolution of IT landscapes with orchestration and
choreography but only checking specific configurations.

Given a fixed system configuration you can of course use tests to detect compati-
bility problems.

Systems can be distinguished concerning the degree and the type of dynamism
they allow. Typically one distinguishes static, top-down and bottom-up style systems
(cf. [10]). In a static system the system’s structure – i.e. which components exist in
the system and how are the components connected to each other – does not change
at run-time. Adaptive systems – i.e. systems that change their structure at run-time –
can be further separated into top-down and bottom-up adaptation. In a system that fol-
lows the top-down adaptation approach, few components determine in which way other
components, contained in the systems, have to change. These changes can range
from mode changes, internal to a component, to changes to the system’s structure,
including the addition and removal of components. Further top-down adaptive systems
can be organized in several layers, which form a hierarchy. In contrast to a top-down
adaptive system a bottom-up adaptive systems does not have a small set of special
component, that are responsible for applying changes, but each single component it-
self has the capabilities to change it’s mode and establish and terminate connections
to other components. In a bottom-up adaptive system the desired behavior emerges
from the behaviors of the system’s components.

Going back to service-oriented systems one easily notes that the concepts of top-
down and bottom-up adaptive systems appear in this architectural style, too. In the
literature on service-oriented systems the top-down approach is called orchestration
and the bottom-up approach is called choreography.

Following for service-oriented systems we have two major influences: the open
world assumption and the relationship to adaptive systems. These two influences lead
to the observation, that, in general, a system can have an infinite number of structural
configurations. This is because in an adaptive system the structure is not fixed and can
be changed almost arbitrarily. Further, the open world assumption states that at any
time new component-types can be introduced into the system and contained types can
be removed. In the following we will use the term service landscape for the set of all
available service- and component-types and landscape configuration for an instance
of a specific service landscape.

Given such a complex scenario it can be easily seen that standard verification and
validation techniques – i.e. simulation, testing, monolithic formal verification – fail due
to the systems’ complexity. While in case of in-house service-oriented architectures
testing can thus provide some coverage in case the dynamics and evolution of IT land-
scapes is restricted to the tested cases, for more dynamic scenarios the high if not
unbounded number of possible configurations results in a low coverage. Furthermore,

150 Fall 2010 Workshop

2 Requirements

in case of more advanced scenarios such as cross-organizational service-oriented ar-
chitectures, digital ecosystems [19] or ultra-large-scale systems [20], no overarching
governance exists and thus the open and dynamic character of these systems pre-
vents that all possible combinations of components and service contracts can be sys-
tematically tested before they could become active. Thus testing is only applicable to
service-oriented systems if the landscape configuration can be fixed for some reasons,
otherwise the test coverage will be much too low.

Similar arguments hold for simulation. A simulation run can only cover one specific
execution trace of the system and hence the results of the simulation can hardly be
generalised for the whole system. Formal verification – as a monolithic approach –
also is not applicable to the class of systems we are interested in, as to the best of our
knowledge, no technique exists that can cope with the additional complexity introduced
by the infinite number of possible structural configurations.

In my thesis I will concentrate on the aspect of service choreographies. The func-
tional correctness of choreographies is especially important because often choreogra-
phies are used for the communication between two companies and according to [29]
any failure in the communication has direct influence to the companies’ operational
business. Further, with ultra-large-scale systems [20] services-oriented architectures
will become more important in the domain of safety-critical systems. For this domain
verification is strictly required. Nevertheless, the approach I will develop in my thesis is
also applicable to service orchestrations.

2 Requirements

Given the above description we have to develop a technique that is applicable to
service-oriented systems and that is scalable. A technique is considered scalable if
it is able to verify – where verification includes testing, simulation and formal verifica-
tion – a potentially extremely large landscape configuration. However, recalling the fact
that landscape configurations are not fixed in a service oriented system, we also have
to verify landscape configurations that are reachable from a given one.

In order to be applicable to service-oriented systems an approach has to be able to
cope with the fact that no consistent, global view of the system is available at any time.
Further new systems constituents can be introduced into the system uncoordinatedly.
Both facts result in situations where no one is aware of neither the currently valid ser-
vice landscape nor the landscape configuration representing the system’s current state.
However in order to test whether, e.g., a component works properly the developer has
to know with which other components the new one can possible interact.

2.1 Modeling

Verification of software systems always requires a rigorous modeling beforehand the
verification can start. Beside the system the specification the system has to fulfill have
to be modelled, too. Thus, every verification approach requires a suitable modeling
approach that provides the information needed by the verification technique.

Fall 2010 Workshop 151

Modeling and Verification of Self-Adaptive Service-Oriented Systems

For the modeling aspects the requirements that have to be met by appropriate mod-
eling approaches are similar to the requirements that have to hold for the verification.
A modeling approach has to be scalable, i.e. it has to be possible to express poten-
tially large landscapes and landscape configurations. Further, an approach also has
to be applicable to the modeling of service-oriented systems. Applicability of a mod-
eling approach is especially important if the system gets modified after it has been
deployed. Again the non-existent consistent view of the system’s state and thus the
improper knowledge of the system’s constituents is the limiting factor. If a modeling
approach requires a complete model of the system to extend the system’s model, such
an approach will not be applicable to service-oriented systems.

3 State of the Art

Modeling using roles and focusing on collaborations rather than components is not
new: Since the 1970s the OOram Software Engineering method [23] has been de-
veloped which provides a clear distinction between roles and objects and separates
different collaborations in form of role models. The idea of contracts, which has been
introduced in [15], also already supports a number of participants and in addition re-
sults in some contract obligations the classes that take over the role of the participants
have to fulfill. Also a less clear historical connection between roles/collaborations and
design pattern [14] exists, which is reflected today by the fact that design patterns can
be modeled in UML using collaborations. The use of collaborations for the modeling
of services has been proposed by several authors (cf. [8, 25]) as well as all proposals
for a UML Profile and Meta-Model for Services [1, 7, 18]. In [25] static but hierarchic
UML collaborations and the distinction between the collaboration and the collaboration
use are presented. However, the authors omit the definition of the roles’ behavior. An
approach not using UML that overcomes this limitation is presented in [8] which uses
sequence diagrams for potentially incomplete early behavior specifications. The UML
Profile [1] is conceptually similar to [25]. It further extends [25] also supporting behavior
specifications for the different roles.

UML class diagrams for the structure and graph transformations for the behavior
modeling are also employed in [4] to model service-oriented architectures, but in con-
trast to our approach services are not modeled as collaborations. We can conclude
that none of the modeling concepts supports dynamic collaborations as addressed in
this work.

The use of UML collaborations for the modeling of services has been proposed by
several authors (cf. [1, 25]). In [8] also collaborations have been used but not UML
collaborations. However, none of the three modeling concepts supports dynamic col-
laborations. In [25] static but hierarchic collaborations and the distinction between the
collaboration and the collaboration use are presented. Further the authors omit the
definition of the roles’ behavior. This has been done in [8] but only partially - Broy
et al. use sequence diagrams for the behavior specification. [1] is similar to [25] but
extends [25] with behavior specifications for the different roles.

All the presented collaboration concepts could be seen as advancements of the

152 Fall 2010 Workshop

3 State of the Art

idea of contracts, which has been introduced in [15]. A contract consists of a number
of participants each of them having some contract obligations to fulfill. Contracts also
support the idea of roles that have to be mapped to classes. Again contracts only
support a constant number of participants and do not provide support for adding or
removing participants to contracts at run-time.

The OOram Software Engineering method (cf. [23]), which has been developed
since the 1970s, already used the distinction between roles and objects. Whereas
roles and objects are often counted to the object oriented paradigm, OOram assigned
each role a specific behavior and used behavior synthesis to derive the final behavior.
Obviously the behavior synthesis is a hard task and can only be generalized for a
restricted set of problems

To our best knowledge no work exists which especially addresses the problem to
verify dynamic collaborations, however, a number of related approaches for the verifi-
cation of service-oriented systems exist. Model checking has been employed to check
business process models with varying number of active process instances. In [11],
for example, standard BPEL models are enriched by resource allocation behavior to
ensure the correct detection of deadlocks and safety violations for web services com-
positions under resource constraints. In [9] an approach dedicated to the compositional
verification of middleware based software architectures is presented. The verification
of a software architecture is divided into the verification of properties, which hold for the
middleware and those, which hold for the complete architecture. However the approach
does not cover structural dynamics and is restricted to finite state systems.

For systems with structural dynamics like our earlier work [6] some work has been
published, which does not cover dynamic collaborations to their full extent: An ap-
proach which has been successfully applied to verify service-oriented systems [4] is
the one of Varró et al. It transforms visual models based on graph theory into a model-
checker specific input [28]. A more direct approach is GROOVE [24] by Rensink where
the checking works directly with the graphs and graph transformations. DynAlloy [13]
extends Alloy [16] in such a way that changing structures can be modeled and an-
alyzed. For operations and required properties in form of logical formulae it can be
checked whether given properties are operational invariants of the system. In [17] a
petri net variant is employed for the modeling and verification of some issues of an
intelligent transportation system and it is suggested to use classical model checking
techniques. Real-Time Maude [21], which is based on rewriting logics, is the only ap-
proach we are aware of covering structural changes as well as time. The tool supports
the simulation of a single behavior of the system as well as bounded model checking
of the complete state space, if it is finite. However, all these approaches do not fully
cover the problem as they require an initial configuration and only support finite state
systems (or systems for which an abstracted finite state model of moderate size exist).

There are only first attempts that address the verification of infinite state systems
with dynamic structure: In [2] graph transformation systems are transformed into a
finite structure, called Petri graph which consists of a graph and a Petri net, each of
which can be analyzed with existing tools for the analysis of Petri nets. For infinite
systems, the authors suggest an approximation. The approach is not appropriate for
the verification of the coordination of autonomous vehicles even without time, because

Fall 2010 Workshop 153

References

it requires an initial configuration and the formalism is rather restricted, e.g., rules must
not delete anything. Partner graph grammars are employed in [5] to check topological
properties of the platoon building. The partner abstraction is employed to compute
over approximations of the set of reachable configurations using abstract interpretation.
However, the supported partner graph grammars restrict not only the model but also
the properties, which can be addressed a priori.

4 Goals of the Thesis

In my thesis I want to achieve the following goals: First, I want to develop a formal mod-
eling technique that allows the exact specification of service-oriented systems without
suffering from restrictions concerning applicability or scalability. Thus the specification
technique to develop should be able to cope with the special requirements that have to
be met, when developing service-oriented systems, such as reuse of already existing
parts and reduced knowledge of development activities going on in parallel. Further,
the formal modeling technique will be mapped to the standardized modeling language
SoaML by the Object Management Group (OMG).

Second I want to deliver a reasoning scheme for compositional reasoning about
service-oriented systems, modeled using the above modeling and specification tech-
nique. I will give some general restrictions the specified systems have to meet, to be
suited for the reasoning scheme. The benefit of the developed compositional approach
is that only partial knowledge of the current landscape configuration and service land-
scape is required. Further, it is possible to reuse verification results, which significantly
reduces the verification task’s complexity.

Third, I give a concrete way for the development of service-oriented systems that
conforms to both the modeling and specification technique and the compositional rea-
soning scheme. I will introduce a verification technique that is able to verify possible
infinite state rule based systems and that can be used together with the reasoning
scheme. However, the compositional reasoning scheme is independent of the devel-
oped verification technique. Any other suited technique can be used as well.

References

[1] Jim Amsden, Pete Rivett, Kolk Henk, Fred Cummins, Jishnu Mukerji, Antoine Lon-
jon, Cory Casanave, and Irv Badr. UML Profile and Metamodel for Services, June
2007. http://www.omg.org/docs/ad/07-06-03.pdf.

[2] Paolo Baldan, Andrea Corradini, and Barbara König. A Static Analysis Technique
for Graph Transformation Systems. In Proc. CONCUR, volume 2154 of LNCS,
pages 381–395. Springer, 2001.

[3] Luciano Baresi, Elisabetta Di Nitto, and Carlo Ghezzi. Toward Open-World Soft-
ware: Issue and Challenges. Computer, 39(10):36–43, 2006.

154 Fall 2010 Workshop

References

[4] Luciano Baresi, Reiko Heckel, Sebastian Thöne, and Daniel Varro. Modeling and
Validation of Service-Oriented Architectures: Application vs. Style. In ESEC/FSE-
11: Proceedings of the 9th European software engineering conference held jointly
with 11th ACM SIGSOFT international symposium on Foundations of software
engineering, pages 68–77, New York, NY, USA, 2003. ACM.

[5] Jörg Bauer and Reinhard Wilhelm. Static Analysis of Dynamic Communication
Systems by Partner Abstraction. In Proceedings of the 14th International Sympo-
sium, SAS 2007, Kongens Lyngby, Denmark, August 22-24, 2007, volume 4634
of Lecture Notes in Computer Science, pages 249–264. Springer Berlin / Heidel-
berg, 2007.

[6] Basil Becker, Dirk Beyer, Holger Giese, Florian Klein, and Daniela Schilling.
Symbolic Invariant Verification for Systems with Dynamic Structural Adaptation.
In Proc. of the 28th International Conference on Software Engineering (ICSE),
Shanghai, China. ACM Press, 2006.

[7] Gorka Benguria, Philippe Desfray, Bob Covington, Arne J. Berre, Stephan Roser,
Christian Hahn, Michael Pantazoglou, Dumitru Roman, Miahi Moldovan, James
Odell, and Andreas Ditze. UML Profile and Metamodel for Services - for Heteroge-
neous Architectures (UPMS-HA), June 2007. http://www.omg.org/docs/ad/2007-
06-02.pdf.

[8] Manfred Broy, Ingolf Krüger, and Michael Meisinger. A formal model of services.
ACM Trans. Softw. Eng. Methodol., 16(1):5, 2007.

[9] Mauro Caporuscio, Paola Inverardi, and Patrizio Pelliccione. Compositional Veri-
fication of Middelware-Based Software Architecture Descriptions. In Proceedings
of the 19th International Conference on Software Engineering ESEC04, 2004.

[10] Betty H. Cheng, Rogerio de Lemos, Holger Giese, Paola Inverardi, Jeff Magee,
Jesper Andersson, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, Gio-
vanna Di Marzo Serugendo, Schahram Dustdar, Anthony Finkelstein, Cristina
Gacek, Kurt Geihs, Vincenzo Grassi, Gabor Karsai, Holger M. Kienle, Jeff Kramer,
Marin Litoiu, Sam Malek, Raffaela Mirandola, Hausi A. Müller, Sooyong Park,
Mary Shaw, Matthias Tichy, Massimo Tivoli, Danny Weyns, and Jon Whittle. Soft-
ware Engineering for Self-Adaptive Systems: A Research Roadmap. In Betty H.
Cheng, Rogerio de Lemos, Holger Giese, Paola Inverardi, and Jeff Magee, ed-
itors, Software Engineering for Self-Adaptive Systems, volume 5525 of Lecture
Notes in Computer Science, pages 1–26. Springer, 2009.

[11] Howard Foster, Wolfgang Emmerich, Jeff Kramer, Jeff Magee, David Rosen-
blum, and Sebastian Uchitel. Model checking service compositions under re-
source constraints. In Ivica Crnkovic and Antonia Bertolino, editors, Proceedings
of the 6th joint meeting of the European Software Engineering Conference and
the ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering, 2007 Dubrovnik, Croatia, September 3-7, 2007, pages 225–234. ACM,
2007.

Fall 2010 Workshop 155

References

[12] Howard Foster, Sebastian Uchitel, Jeff Magee, and Jeff Kramer. LTSA-WS: a
tool for model-based verification of web service compositions and choreography.
In ICSE ’06: Proceedings of the 28th international conference on Software engi-
neering, pages 771–774, New York, NY, USA, 2006. ACM.

[13] Marcelo Fabian Frias, Juan Pablo Galeotti, Carlos Lopez Pombo, and Nazareno
Aguirre. DynAlloy: Upgrading Alloy with actions. In Proc. of International Confer-
ence of Software Engineering, pages 442–451. ACM, 2005.

[14] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns, Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[15] Richard Helm, Ian M. Holland, and Dipayan Gangopadhyay. Contracts: specifying
behavioral compositions in object-oriented systems. In Norman Meyrowitz, edi-
tor, Object-oriented Programming Systems, Languages and Applications (OOP-
SLA/ECOOP’90), Ottawa, Canada, October 21-25 1990, volume 25 of ACM SIG-
PLAN notices, pages 169–180, New York, NY, USA, October 1990. ACM.

[16] Daniel Jackson. Alloy: a lightweight object modelling notation. ACM Transactions
on Software Engineering and Methodology, 11(2):256–290, 2002.

[17] Fabrice Kordon. Mastering Complexity in Formal Analysis of Complex Systems:
Some Issues and Strategies Applied to Intelligent Transport Systems. 10th IEEE
International Symposium on Object and Component-Oriented Real-Time Dis-
tributed Computing (ISORC’07), 00:420–427, 2007.

[18] Ingolf Krüger and Vina Ermagan. A UML2 Profile for Service Modeling. In Gregor
Engels, Bill Opdyke, Douglas Schmidt, and Frank Weil, editors, Proceedings of
the ACM/IEEE 10th International Conference on Model Driven Engineering Lan-
guages and Systems (MoDELS), volume 4735 of Lecture Notes in Computer Sci-
ence, Nashville, TN, USA, 2007. Springer Berlin / Heidelberg.

[19] David G. Messerschmitt and Clemens Szyperski. Software Ecosystem: Under-
standing an Indispensable Technology and Industry. The MIT Press, 2005.

[20] Linda Northrop, Peter H. Feiler, Richard P. Gabriel, Rick Linger, Tom Longstaff,
Rick Kazman, Markus Klein, and Douglas Schmidt. Ultra-Large-Scale Systems:
The Software Challenge of the Future. Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA, 2006.

[21] Peter C. Olveczky and Jose Meseguer. Specification and Analysis of Real-
Time Systems Using Real-time Maude. In Tiziana Margaria and Michel Wer-
melinger, editors, Proceedings on Fundamental Approaches to Software En-
gineering (FASE2004), volume 2984 of Lecture Notes in Computer Science.
Spinger-Verlag Heidelberg, 2004.

[22] Chris Peltz. Web Services Orchestration and Choreography. Computer, 36:46–
52, 2003.

156 Fall 2010 Workshop

References

[23] Trygve Reenskaug, Per Wold, and Odd Arild Lehne. Working With Objects - The
OOram Software Engineering Method. Manning Publications, 1996.

[24] Arend Rensink. Towards Model Checking Graph Grammars. In Michael Leuschel,
S. Gruner, and S. Lo Presti, editors, Workshop on Automated Verification of Criti-
cal Systems (AVoCS), Technical Report DSSE–TR–2003–2, pages 150–160. Uni-
versity of Southampton, 2003.

[25] Richard Torbjorn Sanders, Humberto Nicolas Castejon, Frank Kraemer, and Rolv
Braek. Using UML 2.0 Collaborations for Compositional Service Specification.
In Model Driven Engineering Languages and Systems, volume 3713 of Lecture
Notes in Computer Science, pages 460–475. Springer Berlin / Heidelberg, 2005.

[26] Wil M.P. van der Aalst, Lachlan Aldred, Marlon Dumas, and Arthur H.M. ter Hofst-
ede. Design and Implementation of the YAWL System. In Anne Persson and Janis
Stirna, editors, Advanced Information Systems Engineering, volume 3084 of Lec-
ture Notes in Computer Science, pages 281–305. Springer Berlin / Heidelberg,
2004.

[27] Wil M.P. van der Aalst, Arthur H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow Patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

[28] Daniel Varro. Automated formal verification of visual modeling languages by model
checking. Software and System Modeling, 3(2):85–113, May 2004.

[29] Mathias Weske. Business Process Management. Springer, 2007.

Fall 2010 Workshop 157

Parsing Behavior: The Hierarchical
Nature of Concurrent Systems

Artem Polyvyanyy

Artem.Polyvyanyy@hpi.uni-potsdam.de

Behavioral models are the conceptual models that capture operational principles of
real-world or designed systems. A behavioral model defines the state space of a system
and the way the system can operate within its state space. A concurrent system allows
for several threads of computation to execute simultaneously in the system. Parsing is a
technique for discovering the structure of a behavioral model. The result of a parsing
is a hierarchical decomposition of a model into logically independent units of behavior.
In this paper, we report on two parsing techniques applicable for two different types of
behavioral models. Sect. 1 discusses a technique for parsing workflow graphs, whereas
Sect. 2 is devoted to parsing ordering relations. Finally, in Sect. 3, we sketch how
these two parsing techniques can be related to provide a solution to the problem of
structuring unstructured acyclic control flow specifications of concurrent systems under
the behavioral equivalence notion which preserves the level of observable concurrency
in the resulting structured model.

1 Parsing Workflow Graphs

Concurrent systems are often modeled using some kind of a directed flow graph, which
we call a workflow graph, e.g., these are systems modeled in BPMN, EPC, UML activity
diagrams, Petri nets, etc. A workflow graph can be parsed into a hierarchy of subgraphs
with a single entry and single exit (SESE fragments, or fragments). Such a fragment
can be addressed as a logically independent part of a concurrent system, in which the
semantics of the fragment must be clarified based on the semantics of the respective
modeling language. The result of the parsing procedure is a parse tree, which is the
containment hierarchy of all fragments of a workflow graph.

The Refined Process Structure Tree (RPST) is a technique for workflow graph parsing
which has various applications, e.g., translation between process languages, control-
flow and data-flow analysis, process comparison and merging, process abstraction,
process comprehension, model layout, and pattern application in process modeling.
The RPST has a number of desirable properties: The resulting parse tree is unique
and modular, where modular means that a local change in the workflow graph only
results in a local change of the parse tree. Furthermore, it is finer grained than any
known alternative approach and it can be computed in linear time. Finally, the RPST of
a workflow graph is the set of its canonical fragments, where a fragment is said to be
canonical if it does not overlap on the set of edges with any other fragment of the graph.

Fall 2010 Workshop 159

Parsing Behavior: The Hierarchical Nature of Concurrent Systems

In [17], we proposed an alternative way to compute the RPST that is simpler than the
one developed originally [20]. In particular, the computation is reduced to constructing
the tree of the triconnected components [5,18] of a workflow graph in the special case
when every node has at most one incoming or at most one outgoing edge.

A triconnected graph is a graph such that if any two nodes are removed from the
graph, the resulting graph stays connected. A pair of nodes whose removal renders the
graph disconnected is called a separation pair. Triconnected components of a graph are
again graphs, smaller than the given one, that describe all separation pairs of the graph.
Each triconnected component belongs to one out of four structural classes: A trivial (T)
component consists of a single edge. A polygon (P) component represents a sequence
of components. A bond (B) stands for a collection of components that share a common
separation pair. Any other component is a rigid (R) component.

In this report, we only sketch the simplified procedure for construction of the RPST,
whereas for the details we refer the reader to [17]. The simplified procedure for comput-
ing the RPST of a workflow graph can be summarized as follows: First, we normalize a
workflow graph by splitting nodes that have more than one incoming and more than one
outgoing edge into two nodes. We then compute the RPST of the normalized workflow
graph, which coincides with its tree of the triconnected components, cf., Sect. 3.1 in [17].
Finally, we project the RPST of the normalized workflow graph onto the original graph
and obtain its RPST.

Figure 1(a) shows a workflow graph and its triconnected components. Triconnected
components are defined by dotted boxes, i.e., a triconnected component is composed
of edges that are inside or cross the boundaries of the corresponding box. The workflow
graph in Figure 1(a) is composed of two non-trivial triconnected components: P1
and B1. Note that names of components hint at their structural class. Figure 1(b)
shows the tree of the triconnected components of the graph in Figure 1(a), which is an
alternative representation of all triconnected components of a graph. Each node of the
tree represents a triconnected component that is composed of components that are its
descendants in the tree.

z ts
g

h

j

k
y

i

B1 P1

(a)

g

h

P1

B1 k

ji

(b)

s
g

h

j

ki

B2
P1

l

P2 B1

t
m

*y *z *z*y

(c)

Figure 1: (a) A workflow graph and its triconnected component subgraphs, (b) the tree of the triconnected
components of (a), and (c) the normalized version of (a) and its triconnected component subgraphs

Figure 1 demonstrates the concept of node-splitting. If the splitting is applied to node y
of the graph in Figure 1(a), it results in the new graph given in Figure 1(c) with three
fresh elements: nodes ∗y and y∗, and edge l. After splitting nodes y and z in the
graph in Figure 1(a), the graph in Figure 1(c) is a normalized version of the graph in

160 Fall 2010 Workshop

2 Parsing Ordering Relations

Figure 1(a).
After normalization, the simplified algorithm for constructing the RPST proceeds

by computing the tree of the triconnected components of the normalized graph. This
tree coincides with the RPST of the normalized graph, cf., [17]. Next, this tree must
be projected onto the original graph by deleting all the edges introduced during node-
splittings. The deletion of the edges may result in fragments which have a single child
fragment. This means that two different fragments of the normalized graph project onto
the same fragment of the original graph. We thus clean the tree by deleting redundant
occurrences of such fragments. The final stage of the algorithm for computing the RPST
of the workflow graph in Figure 1(a) is exemplified in Figure 2.

g k

j

l m

P2

P1

B1

h i

B2

(a)

g k

jP2

P1

B1

h i

B2

(b)

g k

j

h i

B2

P1

B1

(c)

z ts
g

h

j

k
y

i

B1 P1

B2

(d)

Figure 2: (a) The tree of the triconnected components of the workflow graph in Figure 1(c), (b) the tree
from (a) without the fresh edges l and m, (c) the RPST of the workflow graph in Figure 1(a), and (d) the
workflow graph from Figure 1(a) and its canonical fragments

The tree of the triconnected components of the normalized graph, cf., Figure 1(c),
consists of four triconnected components: P1, B1, P2, and B2. Figure 2(a) shows the
corresponding tree of the triconnected components. One can see the RPST without
trivial fragments that correspond to the fresh edges l and m in Figure 2(b). Observe
that P2 now specifies the same set of edges as B2. Therefore, we omit P2, which is
redundant, to obtain the tree given in Figure 2(c). This tree is the RPST of the original
graph that is given in Figure 1(a). Finally, Figure 2(d) visualizes the graph again together
with its canonical fragments. In comparison with the triconnected decomposition shown
in Figure 1(a) and Figure 1(b), by following the described procedure we additionally
discovered canonical fragment B2. P1, B1, and B2 are all the canonical fragments of
the workflow graph. For the proof of the fact that resulting tree is indeed the RPST of
the original graph we refer the reader to [16].

2 Parsing Ordering Relations

Concurrent systems can be described with the help of ordering relations between pairs
of tasks or pairs of occurrences of tasks. There exist different notions of ordering
relations, e.g., unfolding relations, cf., [4,11,12], behavioral profile [21], relations of the

Fall 2010 Workshop 161

Parsing Behavior: The Hierarchical Nature of Concurrent Systems

α mining algorithm [19], etc. These relations are, essentially, behavioral abstractions
that capture core behavioral characteristics of a system at different levels of detail.
Examples for such behavioral characteristics are causality, conflict, and concurrency. In
this section, we discuss a technique of parsing ordering relations that can be applied
to any given notion of ordering relations. The parsing decomposes ordering relations
into clans, each with clear behavioral characteristics specific to the employed notion of
ordering relations. To make parsing possible, we give a structural characterization to
ordering relations, i.e., ordering relations are treated as a generalization of a directed
graph.

The adjacency array representation of a directed graph D = (V,E) is a coloring of
a set E2(V) = {(v1, v2) | v1, v2 ∈ V, v1 6= v2}, where E ⊆ E2(V), with two colors, e.g., 0
and 1. Therefore, an adjacency array of a directed graph can be given by an indicator
function IE : E2(V) → {0, 1}. The notion of a two-structure is a generalization of the
notion of a graph [3]. A two-structure allows an arbitrary coloring of the set E2(V). A
two-structure is an ordered pair S = (N,R) such that N is a nonempty finite set of
nodes, and R is an equivalence relation on E2(N).

A two-structure can be seen as a complete directed graph with labeled (colored)
edges, where α : E2(N)→ C is a coloring function corresponding to the edge classes
such that e1 R e2, if and only if α(e1) = α(e2); C is a set of colors. Observe that a coloring
function α is not unique, as the choice of colors can be arbitrary.

Given the ordering relations, we treat them as a two-structure where nodes are tasks,
over which relations are defined, and colors of edges encode different types of relations.
An equivalence class of the equivalence relation of such a two-structure represents all
ordering relations of the same type, e.g., causality.

a c

b d

(a)

a c

b d

(b)

a c

b d

(c)

a c

b d

(d)

a c

b d

(e)

Figure 3: (a),(d) Directed graphs, and (b),(c),(e) two-structures

A directed graph that is defined by the pair (V,E), where V = {a, b, c, d} and
E = {(a, c), (c, a), (a, b), (c, b), (c, d)}, is shown in Figure 3(a), whereas Figure 3(b)
presents one of the possible corresponding two-structures (N,R). The two-structure
has two equivalence classes of edges, where one class contains edges E (drawn with
solid edges) and the other one contains edges E2(N) \ E (drawn with dotted edges).
Figure 3(c) shows the same two-structure using a simplified notation, i.e., symmetric
edges are drawn as two-sided arrows. Notice that the correspondence between the
two-structure and the graph is rather arbitrary, as one can also accept the two-structure
as such that corresponds to the graph in Figure 3(d) by exchanging the roles of its
equivalence classes. Alternatively, one can define a correspondence by using larger
sets of colors, e.g., the 2-structure given in Figure 3(e) uses four equivalence classes.

162 Fall 2010 Workshop

2 Parsing Ordering Relations

One of the central notions of the theory of two-structures is the notion of a clan. Let
S = (N,R) be a two-structure. A node n ∈ N distinguishes nodes m, k ∈ N , if and only
if (n,m) and (n, k) are of different colors or (m,n) and (k, n) are of different colors. A
clan of a two-structure S = (N,R) is a set X ⊆ N , such that for all x, y ∈ X and for all
z ∈ N \X holds (z, x) R (z, y) and (x, z) R (y, z).

Let S = (N,R) with |N | > 1 and P be a partition of E2(N) induced by R. It follows
immediately that ∅, N , and the singletons {n}, n ∈ N , are clans of S. These clans
are the trivial clans of S. S is complete, if and only if |P | = 1. S is linear, if and only
if |P | = 2 and there exists a linear order (n1, . . . , n|N |) of elements of N , such that the
edges {(ni, nj) | i < j} form an equivalence class of R and the edges {(nj, ni) | i < j}
form an equivalence class of R. S is primitive, if and only if it contains at least three
nodes and all clans in S are trivial.

Construction principles of a two-structure are defined by its decomposition into
factors and a quotient that gives the relations between the factors. Let S = (N,R) be a
two-structure. A partition χ = {X1, . . . , Xk} of N into nonempty clans is a factorization
of S. The quotient of S by a factorization χ is a two-structure S/χ = (χ,Rχ), where
(X1, Y1) Rχ (X2, Y2), if and only if (x1, y1) R (x2, y2) for some xi ∈ Xi, yi ∈ Yi, Xi, Yi ∈ χ.
A decomposition (SX1 , . . . , SXk

;S/χ) of S consists of the factors SXi
with respect to a

factorization χ = {X1, . . . , Xk} and the quotient S/χ.
A nonempty clan X of S is prime, if and only if for all clans Y of S holds that X and

Y do not overlap. We denote by C(S) the set of all clans of S. We denote by P(S) the
set of all prime clans of S. A prime clan is maximal, if it is maximal with respect to
inclusion among proper prime clans of S, where a clan is proper if it is a proper subset
of N . We denote by Pmax(S) the set of all maximal prime clans of S; if |N | = 1, then
Pmax(S) = {N}.

The maximal prime clans Pmax(S) of a two-structure S form a partition of N , i.e., the
domain of each two-structure can be partitioned by the domains of its maximal prime
clans. For each two-structure S, the quotient S/Pmax(S) is either primitive, or complete,
or linear, cf., [3].

By iteratively discovering maximal prime clans and deriving the quotient for each
factor that corresponds to an element of the decomposition one builds a hierarchy of
quotients. Such a hierarchy is unique for a given two-structure and can be seen as its
structural characterization.

a

b

c d

e

(a)

b

c

a

d

e

P1

C1

C1 L1

L1

(b)

b

c

a

d

e

P1

C1 L1

(c)

b

P1

a

c

C1

d e

L1

(d)

Figure 4: (a) A two-structure, (b) clans of (a), and (c),(d) the hierarchy of clans of (a)

Fall 2010 Workshop 163

Parsing Behavior: The Hierarchical Nature of Concurrent Systems

Figure 4 exemplifies the decomposition of a two-structure. Figure 4(a) shows a two-
structure which is composed of five nodes and has four equivalence classes on edges.
Partition χ = {{a}, {b, c}, {d, e}} is factorization of this two-structure. Two-structures
induced by subsets of nodes {a}, {b, c}, and {d, e} are, respectively, a trivial, a complete,
and a linear clan of the original two-structure. Clan P1 (of class primitive), cf., Figure 4(b),
is the quotient of the two-structure by factorization χ; observe that clan names hint at
their class. Finally, Figure 4(c) organizes clans in a hierarchy; each quotient and each
nontrivial clan is enclosed in a dotted box with rounded corners, whereas containment
of boxes represents the parent-child relation of quotients and clans. Figure 4(d) shows
a tree representation of the decomposition.

3 Structuring Acyclic Concurrent Systems

Concurrent systems modeled as graphs can have almost any topology. However, it is
often preferable that they follow some structure. In this respect, a well-known property of
concurrent systems is that of (well-)structuredness [6], meaning that for every node with
multiple outgoing arcs (a split), there is a corresponding node with multiple incoming
arcs (a join), such that the set of nodes between the split and the join form a SESE
fragment. For example, Figure 5(a) shows an unstructured system, while Figure 5(b)
shows an equivalent structured system. Note that Figure 5(b) uses short-names for
tasks (a, b, c . . .), which appear next to each task in Figure 5(a). We assume a simple
modeling language, i.e., a concurrent system is composed of tasks, events, gateways,
and sequence flow edges. We allow exclusive and parallel gateways. Our modeling
language can be seen as a basic subset of BPMN.

Pay by

cash

Pay by

cheque

Update

account

Approve
R1

P1

Reject payment

request

Inform

customer
B1

P2

P3

a

b

c

d

e f

i ot

u

v

w

x y z

(a)

b

a

P3

i ov w x y z

P1

B1

P2

B2 B3

c

d

e f

(b)

Figure 5: (a) Unstructured concurrent system and (b) its equivalent structured version

This section sketches the main idea of the solution to the problem of automatically
transforming acyclic concurrent systems, whereas the details can be found in [15]. The
motivations for such a transformation are manifold. Firstly, it has been empirically shown
that structured models are easier to comprehend and less error-prone than unstructured
ones [8]. Thus, a transformation from an unstructured to a structured system can
be used as a refactoring technique to increase model understandability. Secondly,

164 Fall 2010 Workshop

3 Structuring Acyclic Concurrent Systems

a number of existing analysis techniques only work for structured systems [2, 7]. By
transforming unstructured models into structured ones, we can extend the applicability of
these techniques to a larger class of models. Thirdly, a transformation from unstructured
to structured models can be used to implement converters from graph-oriented process
modeling languages to structured process modeling languages, e.g., transforming from
BPMN models to BPEL executable code.

As mentioned above, the problem of structuring concurrent systems is relevant in
the context of designing BPMN-to-BPEL transformations. However, BPMN-to-BPEL
transformations, such as [14], treat rigids as black-boxes that are translated using
BPEL links or event handlers, rather than seeking to structure them. A large body
of work on flowcharts and GOTO program transformation [13] has addressed the
problem of structuring rigid fragments composed of exclusive gateways. In some cases,
these transformations introduce additional boolean variables in order to encode part
of the control flow, while in other cases they require certain nodes to be duplicated.
In [6], the authors show that not all acyclic rigids composed of parallel gateways can
be structured. They do so by providing one counter-example, but do not give a full
characterization of the class of models that can be structured nor do they define any
automated transformation. Instead, they explore some causes of unstructuredness. In
a similar vein, [9] presents a taxonomy of unstructuredness in process models, covering
cyclic and acyclic rigids. However, the taxonomy is incomplete, i.e., it does not cover
all possible cases of models that can be structured. Also, the authors do not define an
automated structuring algorithm.

The RPST of a well-structured system contains no rigid fragments. If one could
transform each rigid fragment into an equivalent structured fragment, the entire model
could be structured by traversing the RPST bottom-up and replacing each rigid by its
equivalent structured fragment. Observe that in Figure 5, the only rigid fragment R1 in
Figure 5(a) is replaced by an equivalent polygon fragment P2 in Figure 5(b).

Our goal is that the structured system preserves the level of observable concurrency
of the equivalent unstructured system, i.e., we require that both systems are fully
concurrent bisimilar [1]. The core idea of the structuring method proposed in [15] is to
compute the ordering relations, in particular the unfolding relations [4,11,12], of every
rigid fragment, and to synthesize a structured fragment from these ordering relations (if
such a structured fragment exists). To this end, the unfolding relations are computed on
the alternative representation of a system, viz. its complete prefix unfolding [11]. An
unfolding is a “compact” representation of all concurrent runs (instance subgraphs) of a
system. A complete prefix unfolding is a part of the unfolding that contains information
about all states that are reachable by the system.

For the technical details on computing unfolding relations we refer the reader to [15]. A
two-structure in Figure 6(a) shows the unfolding relations computed for fragment R1 of
the system in Figure 5(a). The equivalence relation contains four equivalence classes
that represent causality, inverse causality, conflict, and concurrency relations. Figure 6(a)
must be read as follows: Solid edges represent the conflict relation ({(a, b), (b, a)}).
Dotted edges stand for the concurrency relation ({(c, d), (d, c)}). The causality relation is
encoded by dash dotted lines ({(a, c), (a, d), (b, c), (b, d)}). Finally, the inverse causality

Fall 2010 Workshop 165

Parsing Behavior: The Hierarchical Nature of Concurrent Systems

a c

b d

(a)

a c

b d

(b)

a c

b d

L1

C1 C2

(c)

a

L1

b

C1

c d

C2

(d)

Figure 6: Ordering relations of systems in Figure 5(a) and Figure 5(b) given (a) as a two-structure and
(b) as a directed graph. (c) Modular decomposition of (b) and (d) its tree representation.

relation is given by dashed lines ({(c, a), (d, a), (c, b), (d, b)}). Because of the nature of
unfolding relations, the corresponding two-structure can always be represented by an
equivalent directed graph, cf., Figure 6(b). We call such a graph the ordering relations
graph. In this graph, two-sided arrows hint at conflict, absence of an edge between a
pair of nodes signals for concurrency, and a directed edge stands for causality.

The important observation in the context of the structuring problem is that the system
in Figure 5(b) also exposes unfolding relations that can be represented by the ordering
relations graph in Figure 6(b) [15]. However, the well-structured system is not given,
rather it needs to be synthesized from the ordering relations graph. To this end, we
employ the technique for parsing ordering relations, cf., Sect. 2. Decomposition of a
directed graph into clans is known as modular decomposition and can be accomplished
in linear time [10]. Figure 6(c) shows the decomposition, whereas Figure 6(d) gives its
tree representation.

Finally, we conclude that there exists an equivalent well-structured system, if and
only if decomposition of the ordering relations graph of the unstructured system contains
no primitive clan, cf., [15]. A complete clan can be represented as a bond fragment as
all nodes of a complete clan are pairwise in the same ordering relation. If this relation is
the conflict relation, then one can construct a bond with exclusive gateways; in the case
of the concurrency relation, on the other hand, one can construct a bond with parallel
gateways. A linear clan can be represented by a polygon fragment in the resulting
well-structured fragment. Therefore, in order to construct a well-structured fragment,
one needs to traverse the hierarchy of clans bottom-up and synthesize a bond fragment
for each complete clan and a polygon fragment for each linear clan. For instance,
complete clan C1 in Figure 6(d) corresponds to bond B2 in Figure 5(b), C2 corresponds
to B3, and L1 corresponds to P2.

4 Conclusion

In this report, we have discussed two techniques for parsing two different representations
of concurrent systems. Parsing can be used to learn the hierarchical structure of a
concurrent system. First, we sketched the simplified algorithm for computing the Refined
Process Structure Tree—a technique for workflow graph parsing. Second, we discussed
a technique that can be used to parse concurrent systems specified as ordering relations

166 Fall 2010 Workshop

References

between pairs of tasks or pairs of occurrences of tasks. Finally, we showed how these
two techniques relate to each other in a solution to the problem of structuring acyclic
concurrent systems.

References

[1] Eike Best, Raymond R. Devillers, Astrid Kiehn, and Lucia Pomello. Concurrent
bisimulations in petri nets. Acta Informatica, 28(3):231–264, 1991.

[2] Carlo Combi and Roberto Posenato. Controllability in temporal conceptual workflow
schemata. In BPM, volume 5701 of LNCS, pages 64–79. Springer, 2009.

[3] Andrzej Ehrenfeucht and Grzegorz Rozenberg. Theory of 2-structures, Part I:
Clans, basic subclasses, and morphisms. Theoretical Computer Science (TCS),
70(3):277–303, 1990.

[4] Joost Engelfriet. Branching processes of petri nets. Acta Informatica, 28(6):575–
591, 1991.

[5] John E. Hopcroft and Robert Endre Tarjan. Dividing a graph into triconnected
components. SIAM Journal on Computing (SIAMCOMP), 2(3):135–158, 1973.

[6] Bartek Kiepuszewski, Arthur H. M. ter Hofstede, and Christoph Bussler. On
structured workflow modelling. In CAiSE, volume 1789 of LNCS, pages 431–445.
Springer, 2000.

[7] Manuel Laguna and Johan Marklund. Business Process Modeling, Simulation, and
Design. Prentice Hall, 2005.

[8] Ralf Laue and Jan Mendling. The impact of structuredness on error probability
of process models. In UNISCON, volume 5 of LNBIP, pages 585–590. Springer,
2008.

[9] Rong Liu and Akhil Kumar. An analysis and taxonomy of unstructured workflows.
In BPM, volume 3649 of LNCS, pages 268–284. Springer, 2005.

[10] Ross M. McConnell and Fabien de Montgolfier. Linear-time modular decomposition
of directed graphs. Discrete Applied Mathematics, 145(2):198–209, 2005.

[11] Kenneth L. McMillan. A technique of state space search based on unfolding.
Formal Methods in System Design (FMSD), 6(1):45–65, 1995.

[12] Mogens Nielsen, Gordon D. Plotkin, and Glynn Winskel. Petri nets, event structures
and domains. In Semantics of Concurrent Computation, volume 70 of LNCS, pages
266–284. Springer, 1979.

[13] G. Oulsnam. Unravelling unstructured programs. The Computer Journal (CJ),
25(3):379–387, 1982.

Fall 2010 Workshop 167

References

[14] Chun Ouyang, Marlon Dumas, W. M. P. van der Aalst, Arthur H. M. ter Hofstede,
and Jan Mendling. From business process models to process-oriented software
systems. ACM Transactions on Software Engineering and Methodology (TOSEM),
19(1), 2009.

[15] Artem Polyvyanyy, Luciano García-Bañuelos, and Marlon Dumas. Structuring
acyclic process models. In BPM, volume 6336 of LNCS, pages 276–293. Springer,
2010.

[16] Artem Polyvyanyy, Jussi Vanhatalo, and Hagen Völzer. Simplified computation and
generalization of the refined process structure tree. Technical Report RZ 3745,
IBM, 2009.

[17] Artem Polyvyanyy, Jussi Vanhatalo, and Hagen Völzer. Simplified computation and
generalization of the refined process structure tree. In WS-FM, 2010. to appear.

[18] Robert Endre Tarjan and Jacobo Valdes. Prime subprogram parsing of a program.
In POPL, pages 95–105. ACM, 1980.

[19] Wil M. P. van der Aalst, Ton Weijters, and Laura Maruster. Workflow mining:
Discovering process models from event logs. IEEE Transactions on Knowledge
and Data Engineering (TKDE), 16(9):1128–1142, 2004.

[20] Jussi Vanhatalo, Hagen Völzer, and Jana Koehler. The refined process structure
tree. Data and Knowledge Engineering (DKE), 68(9):793–818, 2009.

[21] Matthias Weidlich, Artem Polyvyanyy, Jan Mendling, and Mathias Weske. Efficient
computation of causal behavioural profiles using structural decomposition. In Petri
Nets, volume 6128 of LNCS, pages 63–83. Springer, 2010.

168 Fall 2010 Workshop

Categorization and Use of Identity Trust

Ivonne Thomas

ivonne.thomas@hpi.uni-potsdam.de

This report summarizes my PhD activities of the past year. Creating a first outline of
the thesis revealed some missing parts, which I aimed to fill during these past months.
In this report, I am giving a more detailed description of what we call Attribute Verifica-
tion Context Classes and show how we use them to better match an identity providers
haves with the needs of a relying party by considering not only the trustworthiness of
the identity provider as a whole, but also for single attributes an identity provider can
assert. This allows us to aggregate identity attributes from various sources to fulfill a
relying party’s policy, herewith providing a more flexible use of digital identities.

1 Introduction

In open environments such as Service-oriented architectures or the Web, participants
as users, service providers and service consumer often do not know each other, but
nevertheless require information from each other to perform meaningful transactions.
Just think of an online store, which requires personal information as our name, ad-
dress and credit card number to deliver goods and to hold us liable in case anything
bad happens. Identity assurance is the degree of confidence another party, such as
the online shop, can have in the belief that our identity in the digital world actually
matches with our Òreal-lifeÓ identity. Depending on what our identity data is used for,
a relying party can have different requirements for the degree of required assurance.
In order to achieve a certain assurance level, the relying party usually implements and
enforces adequate verification processes. However, with the emerge of open identity
management system, the problem of identity assurance is not an isolated problem of
the relying party anymore, but has moved to the open world of the Internet. In open
identity management systems, identity information is not necessarily hold by the party
that is using it. Instead, designated services, so called identity providers, hold identity
information of users for the purpose of provisioning it to parties, that are willing to rely
on it.

Current approaches for identity assurance foster a model that assesses identity
providers as a whole, meaning an identity provider can conduct an independent audit,
that assesses all processes, used technologies and protection mechanisms in place
that have an influence on the trustworthiness on the statements of this identity provider.
However, this approach has some limitations.

Fall 2010 Workshop 169

Categorization and Use of Identity Trust

1.1 Limitations of current assurance frameworks

Different trust levels for the same attribute – Referring to the identity as a whole
makes it hard to reflect trust requirements of specific attributes. An identity provider
could for example manage self-asserted attributes besides verified attributes to meet
different trust requirements of relying parties. In fact, in blogs and forum discussions,
users often prefer using pseudonyms rather than using their real life identity.

Change of trust levels over time – Also, using existing assurance frameworks, it
is hard to reflect possible changes of a user’s identity trust level over time. As identity
proofing processes are cost-intensive and time-consuming due to the effort required to
verify a user’s identity attributes, a verification of an attribute might not be desired as
long as a user is not involved in transactions that demand a higher trust level. Therefore
a user might decide to register with an identity provider without proper identity proof-
ing, having for example his/her name self-asserted and getting involved in the identity
proofing only upon concrete requirement. This requires a different trust level per user
and does not allow to rate an identity provider as a whole.

Diversity of identity providers – Furthermore, identity providers are inherently dif-
ferent due to their affiliation with an organization or institution and might be suitable for
asserting certain identity attributes only to a limited extent. For example, a banking
identity provider will be in particular suitable to assert that a user can pay for a certain
service, but might have weak records of the user’s status as a student while for a uni-
versity’s identity provider it would probably be the opposite.

In my research, I am developing a more flexible solution to express trust require-
ments for identity attributes issued by various identity providers. The following Section
2 shows an example scenario to demonstrate the research focus. Afterwards Section 3
depicts briefly the underlying two layered trust model and describes our categorization
of identity trust and how we use this information in policies and attribute requests to
allow a more flexible choice of identity providers.

2 An Example Scenario

Let’s have a look at the following scenario. The scenario has three different identity
providers and an identity consumer. The identity providers issue identity information
as attributes conveyed in security tokens as well as meta information about these at-
tributes. The identity consumers, so called relying parties, have a policy, in which
they state which attributes they require. Current technologies as OpenID or Informa-
tion Card only offer the possibility to express (a) which attributes are required and (b)
whether any identity provider or a specific one should be used. Using Web Service
Technologies possibilities are a bit wider: WS SecurityPolicy allows to state a list of
required attributes per issuer (identity provider).

In our scenario, we go further and aim at expressing attribute needs with assurance
requirements as in the following examples:

• The relying party requires an attribute name from the user who proved his name

170 Fall 2010 Workshop

2 An Example Scenario

by registering in-person at a federated identity provider.

• The relying party requires a verified eMail address issued by any identity provider
and the name and age of the user issued by an authorized eID Service (electronic
ID card).

• The relying party requires a verified student attestation from an identity provider
with an ICAM [1] trust level of at least 3.

Identity Provider

University trusted

isStudent verified: issuer-controlled

name unverified: user entered

address unverified: user entered

Identity Provider
eID Service of

the federal
government

highly trusted

name verified from ePa

address verified from ePa

birthday verified from ePa

Identity Provider

Bank highly trusted

account number verified: issuer-controlled

name verified by In-Person Proofing

address verified by independent back channel

Relying Party

Newspaper
Publisher

name verified

address verified

account number verified: issuer-controlled

isStudent verified: issuer-controlled

underlying contract

well known authority

same federation

requires:

asserts:

asserts:

asserts

Legend:

Organisational TrustTrust
Reason

< role >

< Common
Name > < Identity Provider Assessment >

< Attribute Name > < Attribute Verification Context >

asserts

Figure 1: A motivating scenario.

In the scenario, we have different assessments for the parties taking the role of the
identity provider as "highly trusted" or "trusted" that are based on the relying party’s
assessment. And we have different attribute verification classes that contain meta
information about the verification of the attribute. Based on this information, the relying
party formulates its policy and a client resolves the possible sources for retrieving the
identity attributes. Hereby it is possible (and maybe even necessary) to request these
attributes from multiple sources and to aggregate them for the authorization step.

Fall 2010 Workshop 171

Categorization and Use of Identity Trust

3 Two Layered Trust Model

As can be seen also in the example above, we distinguish two different layers of trust
in our trust model: organizational trust and identity trust. First, a trust relationship is
required between the service provider and the identity provider in order to trust the
correctness of the assertions (= organizational trust) and second, for a concrete trans-
action, the service provider has to decide whether the identity-based information in the
assertions are sufficient to reach a certain trust level which is required to perform the
request (identity trust).

Our two layered trust model comprises the following elements: facts, attributes,
attribute verification contexts, identity provider, relying parties, organizational trust, or-
ganizational trust level (identity provider trust level), identity trust as well as the concept
of a knowledge base.

An identity provider is an agent which provisions attributes to independent relying
parties who are willing to rely on them. A relying party is a trusting agent that is
consuming identity data.

A fact is a statement about an identity provider, such as "Identity Provider I1 can
assert attributes A1 and A2". A trusted fact is a known fact, that is trusted by the relying
party. The set of facts that a relying party knows constitutes its knowledge base about
an identity provider.

Organizational Trust describes the relationship between an identity provider and
a relying party and is characterized by an organizational trust level. Identity Trust de-
scribes the believe into the identity of a subject and its behavior. An identity of a subject
is reflected by several digital identities in the digital world. Each digital identity com-
prises a set of attributes that characterizes a subject’s identity. An attribute has a well-
known identifier and a value, that is hold by an identity provider on behalf of a subject.
An Attribute Verification Context is the justification that an attribute can be trusted.

3.1 Categorization of Identity Trust

As described above, Identity Trust refers to the trust an entity such as a service provider
has into the identity of a subject and its behavior. As described in previous reports,
identity trust comprises different aspects, such as (a) trust into the authentication pro-
cess and the subject-to-account mapping, (b) trust into the token and (c) trust into a
subject’s attributes. In this report, we focus on the trust into the subject’s attributes and
provide a classification (ontology) of Attribute Verification Context Classes that repre-
sent how an attribute has been verified by the identity provider. Figure 2 shows our
ontology to describe various verification methods and their applicability to identity at-
tributes. Our attribute verification context classes denote general verification schemes
that can be applied to several attributes, but might be implemented in different ways.
For example, the verification of an attribute by an independent back channel can be
done for eMail addresses by sending an email to the claimed address with a verifica-
tion link in it. The same scheme can also be used to verify a bank account. In this
case a small amount of money (1 cent) is usually transferred to the claimed account

172 Fall 2010 Workshop

3 Two Layered Trust Model

Legend:

Verification
Method

verified
Attribute

unverified
Attribute

Verification
Status

In-Person
Proofing

Back Channel
Verification

Issuer
Controlled

User
Entered

is ais a

AttributeeMail is a
Global Type

applies To

leads To

is a is a

leads To

Verified Source

leads To

based on

Unverified
Source

based on

Certificate

is a

Validity

electronic
ID card

is a

has

name

http://axschema.org/
contact/lastname

http://
schemas.xmlsoap.org
/ws/2005/05/identity/
claims/lastname

represents

applies To

applies Toapplies Toapplies To

Attribute
is a

http://axschema.org/
contact/lastname

http://
schemas.xmlsoap.org
/ws/2005/05/identity/
claims/lastname

representsis a

< Name >
Attribute

Verification
Class

Figure 2: Identity Trust Ontology.

with a password in the transaction data, that the user needs to enter later on to prove
that s/he is the owner of the account.

For each verification context class, we state the attributes that are eligible to be
verified in the given manner. However, for the sake of readability, figure 2 only shows
the suitable verification context classes for the two attribute email and lastname. A
complete assignment for a common set of globally know attributes is given in table 2
below.

Fall 2010 Workshop 173

Categorization and Use of Identity Trust

3.2 Verification Classes for Identity Attributes

This sections describes each of the attribute verification context classes depicted in
our identity trust ontology in figure 2 in more detail. The list is a proposal based on
experience with existing assurance frameworks and can be extended and adapted to
match the needs of a given use case.

In-Person proofing is an attribute verification class that is also used in most as-
surance frameworks. As required evidence for the attribute
value, the verifying authority has to ensure that the applicant
is in possession of a primary Government ID document that
bears a photographic image of the holder and that this im-
age matches with that of the applicant. Furthermore it has
to be ensured that the presented document appears to be
a genuine document properly issued by the claimed issuing
authority and valid at the time of application.

Back-channel
proofing

denotes a verification method by which a claimed attribute
value is proven by sending some information via another
communication channel than the one used to claim the
value.

Issuer-controlled is a verification class that can be used when the holder of
the identity information is equal to the creator of the identity
information or is in control of this identity information, as for
example in case of email providers for email addresses or a
company in case of affiliation claims .

User-entered denotes a verification class that is used when identity data
is entered by the user or received from a user-like source
without any further verification.

Proof by electronic
ID card

This verification class is used when an electronic ID card
has been read by service approved by the government (in
Germany: eID Service Providers)

Proof by certificate This verification class is used when a certificate has been
presented by the applicant and it has been ensured that the
presented certificate was valid at the time of application.

Verified attribute is a a very high level attribute context class that subclasses
all context classes that are based on a verification method
or a verified source.

Unverified attribute is also a very high level attribute context class that denotes
that an attribute has not been verified by an accepted veri-
fication method nor issued by an accepted verified source.

3.2.1 Assigning Identity Attributes To Verification Methods

The following table assigns attributes to the attribute context classes defined in the
previous section.

174 Fall 2010 Workshop

4 Formalisation and Implementation

Verification Context Class applies to
In-Person Proofing given name, family name, gender, date of birth, ad-

dress
Back-channel Proofing eMail, telephone number, address, credit card num-

ber (given name), (family name)
Issuer-controlled eMail, telephone number, credit card number, (ad-

dress)
User-entered eMail, given name, family name, gender, date of

birth, telephone number
Proof by electronic ID card given name, family name, gender, date of birth, ad-

dress
Proof by certificate given name, family name, email, (etc.)

Table 2: Globally known Attributes and Applicable Attribute Verification Context
Classes

4 Formalisation and Implementation

We formalized and implemented our model using horn clauses as an effective way to
represent the knowledge base. As said above the set of trusted facts constitutes a
relying party’s knowledge base about its trusted identity providers and their ability to
assert attributes with a certain attribute verification context. Given this formalization,
we can easily reason over this knowledge base and express policies.

4.1 Formalization

We formalize this knowledge base in the following way:

fact1:= Attribut(A) A is an attribut
fact2:= IdentityProvider(I) I is an identity provider
fact3:= IdPTrustLevel(T) T is a trust level of an identity provider re-

flecting the organizational trust relationship.
fact4:= attributeVerificationContext(V) V is an attribute verification context class
fact5:= applies(V ,A) Attribute verification context class V can be

applied to Attribute A

rule1:=corresponds(V1, V2) Attribute verification class V1 equates to at-
tribute verification class V2

fact6:= hasTrustLevel(I, T) Identity provider I has trust level T
fact7 := federatedIdP(I) Identity provider I is a federated identity

provider
fact8:= trustedIdP(I) Identity provider I has been marked trusted

by the relying party

Fall 2010 Workshop 175

Categorization and Use of Identity Trust

rule2:= isTrusted(I) :=trustedIdP(I) ∨
hasTrustLevel(I, T) ∨ federatedIdP(I)

Identity provider I is trusted if I is marked
trusted by the relying party or if I has a trust
level of at least T or if I is a federated iden-
tity provider

fact9:= assert(I, A, V) Identity provider I can assert attribute A
with verification level V

4.1.1 Revisiting the Example Scenario

Revisiting the example scenario from Section 1, we can express the example require-
ments from the Section 1 in the following way:

• Given Attribut(name), Attribut(isStudent), attributeVerificationContext(In-Person
Proofing), attributeVerificationContext(verified), corresponds(In-Person Proofing,
verified), etc.:

• The relying party requires an attribute name from the user who proved his name
by registering in-person at a federated identity provider.

assert(I, name, In-Person Proofing) ∧ federatedIdP(X) = true

• The relying party requires a verified student attestation from an identity provider
with an ICAM trust level of at least 3.

assert(I, isStudent, verified) ∧ hasTrustLevel(X,ICAM3) = true

4.2 Implementation

We use Prolog as a functional programming language to reason over the relying party’s
knowledge base and to match requirements of the relying party with the possible
sources.

Given our model and formalization, we can express identity provider characteristics
and relying party’s requirements in an easy and extendable way. In order to support
a complete web service and web-based scenario, we extend existing web and web
service technologies as OpenID, SAML and WS-Security Policy by mechanisms to

1. express a relying party’s requirements as policy, e.g. as WS-Security Policy or
inside the <object-tag> using Information Cards

2. choose an identity provider from a set of possible identity providers

3. formulate a request for identity attributes with a certain verification context to the
prospective identity providers

4. assert requested attributes with a certain verification context

5. aggregate identity information from multiple sources and pass it to the authoriza-
tion component of the relying party

Parts of this implementation have for example been described in [2].

176 Fall 2010 Workshop

5 Conclusion and ongoing work

5 Conclusion and ongoing work

The need to trust on information received from a foreign party is inherent to open iden-
tity management systems. If a relying party has to rely on identity information received
from a foreign party, the need for assurance that the information is reliable is a natu-
ral requirement prior to using it. Unfortunately, existing identity assurance frameworks
assess identity providers mostly as a whole which leads to the situation, that identity
attributes are mostly requested from a specific trusted identity provider if the trust re-
quirements are high or from any identity provider, if there are no trust requirements. In
our model, we aim at providing trust information on the level of identity attributes, espe-
cially about the verification process, and to use this information in policies and attribute
requests to allow a more flexible choice of identity providers as well as an aggregation
of identity attributes from multiple sources. Therefore, we defined Attribute Verification
Context Classes that describe these differences of attribute trust in on ontology that is
easily extendable and adaptable to a particular use case. We formalized our model, in
a way, which allows us to express the haves and needs of identity providers and rely-
ing parties and to match them by not choosing only one identity source, but allowing a
dynamic aggregation of identity information from multiple sources.

Evaluation As a proof of concept we are currently implementing our approach using
different technologies such as OpenID and web services, hereby extending them to
meet our needs. We also work on setting up a small simulation environment to compare
the flexibility that we achieve with our approach with current solutions and to provide
an evaluation for our concepts.

6 List of Latest Publications

2010

• Ivonne Thomas, Christoph Meinel: Conceptual Evolution of Identity Management
From Domain-based Identity Management Systems to Open Identity Manage-
ment Models, Book Chapter In Digital Identity and Access Management: Tech-
nologies and Frameworks, IGI Global, To be released: 2011. (In Review)

• Ivonne Thomas, Christoph Meinel: Identity Assurance In Open Networks Book
Chapter In Strategic and Practical Approaches for Information Security Gover-
nance: Technologies and Applied Solutions, IGI Global, To be released: 2011.
(In Review)

• Ivonne Thomas and Christoph Meinel: An Identity Provider to manage Reliable
Digital Identities for SOA and the Web In Proceedings of the 2010 ACM 9th Sym-
posium on Identity and Trust on the Internet (IDTrust 2010), Gaithersburg, USA,
April 13 - 15, 2010.

Fall 2010 Workshop 177

References

• Michael Menzel, Robert Warschofsky, Ivonne Thomas, Christian Willems and
Christoph Meinel: The Service Security Lab: A Model-Driven Platform to Com-
pose and Explore Service Security in the Cloud. In Proceedings of the 2010
IEEE World Congress of Services at ICWS/SCC, pp.115-122, Miami, USA, Juli
2010.

2009

• Martin Wolf, Ivonne Thomas, Michael Menzel, and Christoph Meinel: A Mes-
sage Meta Model for Federated Authentication in Service-oriented Infrastructures
In Proceedings of the 2009 IEEE International Conference on Service-Oriented
Computing and Applications (Los Alamitos, CA, USA, 2009).

• Ivonne Thomas and Christoph Meinel: Enhancing Claim-Based Identity Manage-
ment by Adding a Credibility Level to the Notion of Claims In Proceedings of the
2009 IEEE International Conference on Services Computing (SCC-09) (Banga-
lore, India, Sept 21 - 25).

• Michael Menzel, Ivonne Thomas, Benjamin Schueler, Maxim Schnjakin, and Chris-
toph Meinel: Security Requirements Specification in Process-aware Information
Systems, Highlights of the Information Security Solutions Europe (ISSE) 2009
Conference, vol. , Vieweg-Verlag, 2009.

• Regina N. Hebig, Christoph Meinel, Michael Menzel, Ivonne Thomas and Robert
Warschofsky: A Web Service Architecture for Decentralised Identity- and Attribute-
based Access Control, In Proceedings of the 2009 IEEE International Conference
on Web Services (ICWS-09)(L.A., USA, July, 2009).

• Uwe Kylau, Ivonne Thomas, Michael Menzel, and Christoph Meinel: Trust Re-
quirements in Identity Federation Topologies In Proceedings of the 2009 IEEE
International Conference on Advanced Information Networking and Applications
(AINA-09)(Bradford, UK, May 26 - 29, 2009).

• Michael Menzel, Ivonne Thomas, and Christoph Meinel Security Requirements
Specification in Service-oriented Business Process Management In Proceedings
of the 2009 IEEE International Dependability Conference (ARES-09) (Fukuoka,
Japan, March 16 - 19, 2009).

References

[1] ISIMC. Identity, Credential and Access Management.
http://www.idmanagement.gov, September 2010.

[2] Ivonne Thomas and Christoph Meinel. An identity provider to manage reliable digi-
tal identities for soa and the web. In IDTRUST ’10: Proceedings of the 9th Sympo-
sium on Identity and Trust on the Internet, pages 26–36, New York, NY, USA, 2010.
ACM.

178 Fall 2010 Workshop

Enabling Reputation Interoperability
through Semantic Technologies

Rehab Alnemr

rehab.alnemr@hpi.uni-potsdam.de

In this technical report I show my contribution in designing and implementing a se-
mantic artifact for reputation representation that agrees with the theoretical and social
formation and processing of reputation information. This report also illustrates how the
research pieces that i have worked on fit together as well as the last step to finalize my
PhD.

1 Introduction

Reputation is a complex concept that has a major role in fields like social sciences,
economics as well as computer science. Representing it as a simple form of property-
rating or a vector of ratings strips it from its original notion and postulation. It does
not also facilitate the derivation of meaningful conclusions from it. This work presents
a semantic model for the representation of reputation as a complex object; Reputa-
tion Object (RO). The model facilitates reputation interoperability and portability using
semantic technology. In previous work, the line of argumentation went through:

• showing why representing simple rating is not enough, how can a design of a
reputation object help in capturing the social formation of reputation information,
and explaining the formal model [3] [5] [1] [4],

• tools and applications of this design [14] [8] [2],

• how it is implemented and integrated in several domains [4] [10] [13].

In this report I continue with explaining the details of the ontology and the imple-
mented library, and also introduce the latest use cases; reputation management ap-
proach for a reasoning agent-based systems called Rule Responder [11] (accepted
in the upcoming RuleML2010 Conference1 [10] and a reputation service for a cloud
service provider selection [13] (accepted in the upcoming CIKM ClouDB2010 work-
shop2). Recent publications include: [2] [13] [10] [4] and one paper in review [12]. In
the conclusion and future work section, the last step in the thesis is explained.

1The 4th International Web Rule Symposium: Research Based and Industry Focused
2The Second International ACM Workshop on Cloud Data Management

Fall 2010 Workshop 179

Enabling Reputation Interoperability through Semantic Technologies

2 Reputation Object: Model and Ontology

The issues raised in previous work led to the development of the model described in
this section. Here, I describe the model and its benefits abstracted/detached from the
semantic technologies used. This object is constructed to hold a profile of the behavior
or performance of an entity in several contexts. For example, in the e-market domain a
seller’s reputation object reflects his expected performance and rating in several criteria
such as product-quality, payment-methods, and delivery. Each criterion in this list has
a numerical value, a string, or a reference to an object value describing the evaluation
of this particular criterion. Moreover, a set of criteria (e.g. price, payment method) can
be aggregated to be represented by one context (i.e. financial). Aggregating a set of
criteria to a single context can be done to enhance the usability of the reputation object
(i.e. if it is visible to users or agents) and also to ease the ontology matching process
when comparing between two reputation objects (i.e. to relate a criterion’s meaning
like a “payment method“ to its general domain or topic which is “financial“).

The Reputation Object (RO), however, is more than a flat list. The model structure
(Figure 1) contains a description of how this value is collected (e.g. by community
ratings or monitoring service), the computation function (for this criterion) used to ag-
gregate - or recompute - the values each time a new one is entered, and a history
list (previous values dated back to a certain time slot). This enables the destination
system to map its perception (or its reputation computation function) to the one used in
computing this value (i.e. a “very-good“ value in system A can be “good“ value in sys-
tem B). The reputation object in this case is seen as a profile of the entity’s expected
performance which is constructed using different information sources. The degree of
visibility for these criteria to the community’s users (i.e. how many criteria presented
for users in a web site) depends on the community (i.e. a web site can limit the number
of criteria for usability reasons). The model therefore achieves several goals:

• the reputation of an entity is more meaningful because it is associated with the
context in which it was earned

• automation of criteria assignment is possible by declaring a relevant resource as
a criterion (ex. URI1 is_a _:criterion)

• one can easily extend these criteria list dynamically by adding to the list of con-
texts/criteria in the reputation objects

The goal of the work is to have a standard way to represent the reputation of one entity
to be understood by any other entity in a different system or domain. Therefore, the
aim is to embed more information within the reputation statements with an explanation
(or the semantics) of how to interpret it. This model is generic enough to be used
in any domain, but also can be domain-specific by incorporating information (i.e. its
contexts, criteria list, and quality processes) that is specific to this domain. In a service
oriented environment (SOA), a service registry can use combined sources for service’s
quality assessment (which leads to building the reputation object) such as service de-
scription, invocation analysis, history, rating, meta-data, and elements in Service Level
Agreements (SLAs).

180 Fall 2010 Workshop

3 Model development using Semantic Technologies

Reputation
Object

An Entity

Criterion

Reputation
Value

ComputationAlgorithm

PossibleValues

Identier

Name
Description

Time Stamp

QualityAttribute

CurrentValue

Rating

Reputation

hasReputation

hasCriteria

calculatedBy
partOf

(0,n)
1

:is_a

:is_a

1...* *

*

1...*

hasReputationValues

*

1

CollectingAlgorithm

collectedBy1
*

HistoryList

h
asV
alu
e

1

1

* 1

OrderFunction

OrderedValuesList

hasRange

rdfs:
subC

lassO
f

Figure 1: Reputation Object Model

One of the benefits of using such model is that regardless the domain that using it,
there will be enough information for better decision making. In SOA, having a profile
about a service performance (i.e. its reputation object) facilitates customized service
selection. The same applies for domains like e-markets (selecting a seller based on
a consumer’s preferences), in cloud environment (selecting a cloud provider based on
the company’s customized priorities), in agent-based communities (constructing trust
relationships by gossiping about agents’ reputation), and in SLA-breach management
(identifying violation-prone services at service selection phase [8]). Not to mention the
future vision of being able to exchange reputation information between related com-
munities such as eBay and Amazon, credit cards databases and C2C money transfer
systems, social networks, etc.

3 Model development using Semantic Technologies

Achieving the goals described in the previous section requires a technology that pro-
vides common data representation framework as well as a way to connect concepts
with their definitions. Semantic Web is developed with a main objective of facilitating
data integration, enhancing information usage by connecting it to its definitions and
context. [6] RDF is used as a mechanism for data integration across applications and
the web.3 Therefore, it was only to be expected that Semantic Web is the technology
of choice to achieve reputation portability and interoperability. Developing the model
using semantic web technologies achieves:

• seamless interaction between agents of different domains

• the goal of exchanging reputation information (and knowledge) and its meaning
3RDF Vocabulary Description Language: http://www.w3.org/TR/rdf-schema/

Fall 2010 Workshop 181

Enabling Reputation Interoperability through Semantic Technologies

• reputation interoperability

• the development of context-aware reputation

• customized service-provider selection

• understandability and reusability of the embedded reputation information

3.1 A Simple View: Reputation Objects in RDF Graphs

A reputation statement usually describes the target of the statement, the topic of
evaluation, and the value of this evaluation (i.e a judgment or a result of monitoring
process). When talking about someone’s reputation most of the time one would de-
scribe it in a set of such statements. These type of statements correspond to the RDF
statements (or triple) form of: <subject, predicate, object>, where the reputation
statement in this case is: <target, context, value>. The same as an RDF graph
which is a set of RDF triples, the set of reputation statements therefore form a repu-
tation RDF graph. Lets assume that we are rating a seller in an e-market identified by
<foaf:Person rdf:nodeID="Bob"> then a simple description of his reputation can be
viewed as declaring the statements in table 1. If Bob’s servie-quality, delivery, and pay-
ment are identified by URIs and evaluated by the literal values 0.87 and ”very good”,
this table corresponds to the RDF graph instance shown in figure 2 where the edges
represent the context. This is a snippet of the reputation object instance that describes
Bob’s reputation in different criteria:

RO={<Bob,quality,0.87>,<Bob,delivery,``very good`` >,<Bob,payment,gr:MasterCard>}

Target Criterion Value
Bob Service Quality 0.87
Bob Delivery ”very good”
Bob Payment purl.org/goodrelations/v1/MasterCard

Table 1: Reputation Statements about Bob

http://....goodrelations/
v1/MasterCard

0.87

"Very fast"

http://ex.org/quality

http://ex.org/delivery

http://ex.org/Payment

"Bob"

foaf:name

Figure 2: A graph describing part of Bob’s reputation

For the same person ”Bob” who is identified by a given URI, more statements can
be asserted about him and easily merged to the graph representing his reputation if the

182 Fall 2010 Workshop

3 Model development using Semantic Technologies

predicate is a new criterion. If a new statement has an equivalent criterion, then the
reputation value (object) is aggregated (or recomputed, according to the computation
function) to produce a new current value for this criterion.

3.2 Reputation Expressiveness via Reputation Object Ontology

The next step was to formalize and develop the model components and concepts us-
ing a proper technology. RDFS (RDF Schema) can be used to describe the model
classes (ex. Reputation,ReputationObject,Context,Criterion, etc.) and properties
(ex. reputationValue,hasCriterion, etc.). However, after developing the schema and
testing it using some use cases, we found that the model needs to be described using
more expressive method. Restrictions and axioms of the model should be incorporated
in its description such as: how is the reputation value obtained, can a criterion refer
to another concept (criterion matching) in other platforms, how to aggregate values of
this concept if a new evaluation value is entered, can a set of criterion be aggregated in
one context, how many reputation objects can an entity have, can the reputation object
be extended, cardinality, inverse relationships, influencing factors, etc.. In such case,
ontologies are used to provide such level of expressiveness. We have developed an
OWL ontology to represent an entity’s (foaf:Agent) reputation object. Tables 2 and 3
have a description of the classes and their properties. A ReputationObject has:

1. hasCriteria: one or multiple instances of class Criterion or QualityAttribute
(for a service, the criterion describing service reputation is referred to as a quality
attribute). The criterion is collected using a
CollectingAlgorithm and hasValue ReputationValue.

2. hasReputationValues: each criterion instance has a ReputationValue (which in-
cludes the currentValue, its time stamp, and a simple list of its previous values
called historyList) that in turn has the range of values defined in PossibleValues.
It describes the data type that the criterion can have or a specific set of val-
ues (literals or resources URI) evaluating this criterion (e.g. a set of integers
{1, 2, 3, 4} describing 4 trust levels or a set of Strings {′′good′′,′′ bad′′,′′ excellent′′}
describing a user opinion). Each time a criterion is being evaluated (i.e. a
new entry value for this criterion), a new currentValue is calculated using the
ComputationAlgorithm which is the reputation computation function used with
this criterion such as sum, average, etc..

Since it is not always the case to identify intuitively what the highest reputation value
is -among the defined possible value set, for instance-, the PossibleValues class has
an orderedList that is ordered from the relatively highest reputation value to the lowest
(e.g.{′′excellent′′,′′ good′′,′′ bad′′}). It has also the possibility to define a comparison and
ordering function; OrderFunction. For example: if the criterion is a student grade-
float number from 1 to 4 representing the GPA- the function is ”greater than” when it is
American GPA (4 is the highest) and the function is ”less than” when it is German GPA
(1 is the highest). In the presented ontology, the pattern OWL-List [7] is used to retain
the order of the list. The ontology makes use of other vocabulary such as OWL, RDFS,

Fall 2010 Workshop 183

Enabling Reputation Interoperability through Semantic Technologies

FOAF, XSD, and can integrate with vocabulary such as Trust or RDF Review to describe
one criterion in a reputation object. Using this ontology, the object representing the
reputation can be transferred within a domain or to another domain without negotiating
on its format or semantics. The advances in ontology matching techniques ensures
the matching between the criteria of a reputation object in one platform to be used in
another platform.

Classes Description
Reputation An abstract Reputation

Rating A single Rating representing an entity’s reputa-
tion, refers to other ways of representing reputation,
subclassof:Reputation and has one owner

ReputationObject A Reputation Object of an entity related to multiple crite-
ria, subclassof:Reputation and has one owner

ReputationValue contains the current value of the criterion along with its
past values if they exist

PossibleValues A set of possible values that a criterion in a reputation
object can have (literals or resources) which can be a
static predefined set or a general range

Context A reputation context that represent multiple criteria

Criterion A reputation criterion to be evaluated and saved in a rep-
utation object

QualityAttribute A reputation criterion regarding quality measuers

Algorithm A methodological method, entry point, or an engine

ComputationAlgorithm The method used to compute or aggregate several rep-
utation values (i.e. reputation function)

CollectingAlgorithm The engine or method used to collect the value of a rep-
utation criterion

Table 2: Reputation Object Model Ontology Classes

3.3 Implementation

We used Protégé-OWL tools4 in the development of the ontology. Currently, the on-
tology is being tested for stability using the default reasoning engines and adjusted
accordingly. Implementation for reading, writing, and processing an RO along with the
selection method (given a consumer priority list) was developed in Java using Jena-
API5 which facilitates the integration of the model in any system on the implementation
layer.

4Protege OWL: http://protege.stanford.edu/overview/protege-owl.html
5Jena framework: http://jena.sourceforge.net/

184 Fall 2010 Workshop

3 Model development using Semantic Technologies

Properties domain: range:
hasReputation foaf:Agent ReputationObject,

Rating

hasCriteria ReputationObject Criterion or QualityAt-
tribute

hasReputationValue Criterion or QualityAttribute ReputationValues

historyList ReputationValue, list of the past values
for a criterion in a particular time slot

Collection of Possible-
Value

currentValue ReputationValue, describes the current
value of a criterion

PossibleValues

hasRange Criterion or QualityAttribute PossibleValues

orderedValuesList PossibleValues, describes the order of
the possible values for a criterion to be
able to compare between 2 values

OWLList

orderFunction PossibleValues, describes the compari-
son function (i.e. between two given rep-
utation values) and is used as an alter-
native to order a dynamic set of possible
values if a static list is not given

Algorithm

calculatedBy Criterion or QualityAttribute ComputationAlgorithm

collectedBy Criterion or QualityAttribute CollectingAlgorithm

hasRatingValue Rating type:literal

Table 3: Reputation Object Model Ontology Properties

In order to test the use of ROs in a reasoning environment, we have been working
on integrating ROs in the Rule Responder system6. For declarative processing of the
semantic reputation objects we make use of rules. Reputation objects are attached
to the rule-based services (agents). Rule Responder allows to deploy distributed rule
inference services running a local rule engine such as Prova or Drools on an enterprise
service bus. [11] The rule services, which can act as multi-agents, can communicate
with each other using Reaction RuleML7 as a standard rule interchange format. The
reputation values can be used in the agent’s rule logic, e.g. to implement access poli-
cies, information dissemination rules or decision management strategies. For instance,
an agent might reveal more information to a trusted requestor or might internally pri-
oritize incoming requests from other agents according to the details in their reputation
objects. That is, an agent in Rule Responder can manage reputation locally in its
knowledge base, but can also communicate reputation objects to other agents. For the
implementation of the application scenarios in the following section (4.1) we used the

6Rule-Responder: http://responder.ruleml.org
7RuleML Initiative: http://ruleml.org/

Fall 2010 Workshop 185

Enabling Reputation Interoperability through Semantic Technologies

Prova Semantic Web rule engine8 in Rule Responder, which supports using Semantic
Web ontologies as type systems and allows queries to RDF data. [9]

4 Applications

As explained before, the model can be used in several domains and it was shown in
previous publications how it can be beneficial to these domains. Here, I show our latest
work on integrating the RO model in the two presented domains.

4.1 Reputation Management in Rule Responder

We developed a new architectural design artifact for a reputation management system
which is distributed on the (Semantic) Web. This work is recently published in [10]. In
this paper we introduced a reputation management system based on distributed rule
agents, which uses Semantic Web rules for implementing the reputation management
functionalities as rule agents and which uses Semantic Web ontologies for representing
simple or complex multi-dimensional reputations. For the architecture we presented a
distributed Reputation Processing Network (RPN) consisting of Reputation Processing
Agents (RPAs) that have two different roles:

1. Reputation Authority Agents (RAAs): act as reputation scoring services for the
reputee entities whose Reputation Objects are being considered or calculated in
the agents’ rule-based Reputation Computation Services (RCSs). A RCS runs
a rule engine which accesses different sources of reputation (input) data from
the reputers about an entity and evaluates a RO based on its declarative rule-
based computational algorithms and contextual information available at the time
of computation (described in the RO by the Criterion and its PossibleValues

along with its ComputationAlgorithm, orderedList, and OrderFunction).

2. Reputation Management Agents (RMAs): -aka reputation trust center- provide
reputation management functionalities. A RMA manages the local RAAs provid-
ing control of their life cycle in particular and also ensuring goals such as fairness.
It might act as a Reputation Service Provider (RSP) which aggregates reputa-
tions from the reputation scores of local RAAs. Based on the final calculated
reputation, it might also perform actions, e.g. compute trust worthiness, make
automated decisions, or trigger reactions. It also manages the communication
with the reputors collecting data about entities from them, generates reputation
data inputs for the reputation scoring; and distributes the data to the RAAs. It
might also act as central point of communication for the real reputee entities (e.g.
persons) giving them legitimate control over their reputation and allowing entities
to governance their reputations. RMAs can act as a single point of entry to the
managed sets of local RAAs, which allows for efficient implementation of various
mechanisms of making sure the RAAs functionalities are not abused (security

8Prova Engine: http://www.prova.ws

186 Fall 2010 Workshop

4 Applications

mechanisms) and making sure privacy of entities, the reputation input data, and
computed reputation objects is respected (privacy & information hiding mecha-
nisms). For instance, an RMA can disclose abstracted aggregate reputation ob-
jects, such as trustworthiness levels of local entities, to authorized parties without
revealing private reputation scores or local data about the entities.

As an example to evaluate a person using his/her RO, a resource authorization
agent, called SocialActivities, for computing the number of friends, implements a pri-
vate rule friend for deriving all friends of a person using a SPARQL query to access
all friends from a local foaf document. A public rule numberOfFriends computes the
number of friends using this private rules. Other agents can query this public rule via
a rcvMsg reaction rule, which gives access only to authorized agents and only to all it’s
public rules. Privacy is ensured by not reveling persons’ friends to other agents.

% private rule for collecting persons' friends

friend(Person, Friend) :-

SparqlQuery = ' PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX ex: <http://ns.example.org/#>

SELECT ?person ?friend

FROM <friends.n3>

WHERE {?person foaf:knows ?friend .} ',

sparql_select(SparqlQuery,person(Person),friend(Friend)).

% public rule for computing number of friends

@public(numberOfFriends(?,?))

numberOfFriends(Person, Number) :-

count(friend(Person,Friend),Number).

rcvMsg(CID,esb,Agent,acl_query-ref, Query) :-

authorized(Agent), % check if requesting agent is authorized

derive(Query) [public(Query)] % derive query if public guard is true

sendMsg(CID,esb,Agent,acl_inform-ref,Query). % send back result

Another RAA, called Driving, computes driving ratings with respect to the driving
skill level of a person. The shown rule drivingSkill is part of a set of the agent’s rules,
which derive personal driving ratings with respect the years of driving experience and
years without accidents. The input data is coming from a local relational database
which is queried by SQL in the private rule yearsOfDrivingExperience.

% public rule for computing number of friends

@public(drivingSkill(?,?))

drivingSkill(Person,Rating):-

Rating = 8, % level is 8

yearsOfDrivingExperience(Person,DrivingYears),

DrivingYears > 5, % if driving experience is higher than 5 years

yeasWithoutAccident(Person,AccidentFreeYears),

AccidentFreeYears > 3. % and no accidents within 3 years

yearsOfDrivingExperience(Person,Years) :-

...,

sql_select(DB,person,[years,Years]). % access data from local database

The following rule of a reputation management agent (RMA) allows external agents
to ask for a person’s reputation object. Both RAAs are queried by the RMA in two paral-
lel running sub-conversations. The RMA then creates a (complex) reputation object for
a person from the resulting two reputation criteria received from the RAAs. All details
about the reputation computing algorithm and the reputation input data is not revealed
to the external requesting agent, thus ensuring privacy of person’s data.

Fall 2010 Workshop 187

Enabling Reputation Interoperability through Semantic Technologies

rcvMsg(CID,esb,Agent,acl_query-ref, reputation(Person,ReputationObject) :-

% query RAA Driving in new sub-conversation 1

sendMsg(Sub-CID1,esb,"Driving",acl_query-ref,drivingSkill(Person,Rating)),

% in parallel query RAA Rating in sub-cid 2

sendMsg(Sub-CID2,esb,"SocialActivities",acl_query-ref,numberOfFriends(Person, Number)),

rcvMsg(Sub-CID1,esb,"Driving",acl_inform-ref, ReputationCriteria1), % receive reputation criteria 1

rcvMsg(Sub-CID2,esb,"SocialActivities",acl_inform-ref, ReputationCriteria2),% receive reputation criteria 2

% create reputation object for a person

createReputationObject(ReputationObject,Person,ReputationCriteria1,ReputationCriteria2),

% send back reputation object to requesting agent

sendMsg(CID,esb,Agent, acl_inform-ref, reputation(Person, ReputationObject)).

4.2 A Reputation Object Service in a Cloud Architecture

In [13] we described an architecture where the selection of a cloud service provider
is based on both the reputation of the provider and consumer’s priorities. Using the
RO model, the provider’s reputation is represented as the collection of his reputation
regarding several quality parameters. The consumer who uses his services is required
to rate him in some detailed way (e.g his service availability, price, response time,
reliability, technical support, etc.). From the detailed profile, the reputation service is
able to cross reference the quality parameters required by the consumer (retrieved
from his priority list) and the performance parameters extracted from the providers’
reputation objects. The priority list contains the quality parameters ordered from the
consumer’s most important parameter to the least important one. Once the service
receives the list of potential providers, it refines it based on the providers’ reputation
and the consumer priority list. For example, if a consumer cares about "quality" more
than "price", the service returns the providers that were rated as having the highest
quality. The refining process in the reputation service is based on a simple algorithm
where:

get priority P1 from the ConsumerList

For all Providers_reputation in the ProviderList

select the providers with the highest P1 values

save in FilterList1

get priority P2 from the ConsumerList

For all Providers_reputation in FilterList1

select the providers with the highest P2 values

save in FilterList2

Finally, the consumer receives the filtered list produced by a trade off between the
best QoS parameters and the user requirements. The consumer therefore takes the
decision on selecting his provider. In this work, we illustrate how the RO model can be
used as an effective tool; to better choose a service provider in the cloud environment
based on the embedded information in the reputation objects and based also on the
consumer customized priorities.

5 Conclusion and Next Steps

The line of this work for the past years focused on bringing the way we perceive repu-
tation in our social communities to the computerized reputation systems. This included

188 Fall 2010 Workshop

References

analyzing the problems of abstracting reputation values to simple rating formats and
isolating reputation values in their domain of creation only. This was followed by work-
ing on developing a model to enhance the use of reputation by re-formatting its repre-
sentation into an object that embeds more information along with their semantics. To
see the value of using such model, I worked with several colleagues to integrate the
model in their domain of work and observe how it can be used and the benefits of using
it. The next step is to conduct a user study to confirm that the developed Reputation
Object model aligns with the social view of reputation.

References

[1] Rehab Alnemr, Justus Bross, and Christoph Meinel. Constructing a context-aware
service-oriented reputation model using attention allocation points. Proceedings
of the IEEE International Conference on Service Computing (SCC 2009), pages
451– 457, 2009.

[2] Rehab Alnemr, Stefan Koenig, T. Eymann, and C. Meinel. Enabling usage con-
trol through reputation objects: A discussion on e-commerce and the internet of
services environments. In in the special issue of Trust and Trust Management,
Journal of Theoretical and Applied Electronic Commerce Research, 2010.

[3] Rehab Alnemr and Christoph Meinel. Getting more from reputation systems: A
context-aware reputation framework based on trust centers and agent lists. Com-
puting in the Global Information Technology, International Multi-Conference, 2008.

[4] Rehab Alnemr, Adrian Paschke, and Christoph Meinel. Enabling reputation inter-
operability through semantic technologies. In ACM International Conference on
Semantic Systems. ACM, 2010.

[5] Rehab Alnemr, Matthias Quasthoff, and Christoph Meinel. Taking Trust Manage-
ment to the Next Level. Handbook of Research on P2P and Grid Systems for
Service-Oriented Computing: Models, Methodologies and Applications, pp. 796-
816, 2009.

[6] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific
American Magazine, May 17, 2001.

[7] Nicholas Drummond, Alan Rector, Robert Stevens, Georgina Moulton, Matthew
Horridge, Hai Wang, and Julian Sedenberg. Putting owl in order: Patterns for
sequences in owl. In OWL Experiences and Directions (OWLEd 2006), Athens
Georgia, 2006.

[8] Irfan Ul Haq, Rehab Alnemr, Adrian Paschke, Erich Schikuta, Harold Boley, and
Christoph Meinel. Distributed trust management for validating SLA choreogra-
phies. Proc. Workshop SLAs in Grids (in conjunction with Grid’09), CoreGRID
Springer series, Banff, Canada, October 2009.

Fall 2010 Workshop 189

References

[9] Adrian Paschke. A typed hybrid description logic programming language with
polymorphic order-sorted DL-Typed unification for semantic web type systems. In
OWLED, 2006.

[10] Adrian Paschke, Rehab Alnemr, and Christoph Meinel. Rule responder distributed
reputation management system for the semantic web. In RuleML-2010 Confer-
ence in Washington, 2010.

[11] Adrian Paschke, Harold Boley, Alexander Kozlenkov, and Benjamin Larry Craig.
Rule responder: RuleML-based agents for distributed collaboration on the prag-
matic web. In ICPW, pages 17–28, 2007.

[12] Maxim Schnjakin, Rehab Alnemr, and Christoph Meinel. Security and high-
availability layer for cloud storage (in review). 2010.

[13] Maxim Schnjakin, Rehab Alnemr, and Christoph Meinel. Contract-based cloud
architecture. In The Second International ACM Workshop on Cloud Data Man-
agement, October, 2010.

[14] Kia Teymourian, Rehab Alnemr, Olga Streibel, Adrian Paschke, and Christoph
Meinel. Towards semantic event-driven systems. In IEEE 3rd Int. Conference on
New Technologies, mobility, and Security, December 2009.

190 Fall 2010 Workshop

A Proactive Service Registry With
Enriched Service Descriptions

Mohammed AbuJarour

Information Systems Group
Hasso-Plattner-Institut

mohammed.abujarour@hpi.uni-potsdam.de

Although service descriptions play a crucial role in Service-oriented Computing
(SOC), it has been observed that service providers release poor service descriptions
about their web services. This lack of rich service descriptions reduces the (re)usability
of web services and limits the role of service registries. In this work, we propose a
novel approach and platform to alleviate this problem and investigate the benefits of
information integration in SOC, where information about web services is gathered from
multiple sources, e.g., service providers, consumers, invocations, etc., and integrated
in rich universal service descriptions that enable our proactive service registry, Depot.

1 The Role of Service Descriptions

In the triangular SOA operational model (cf. Fig. 1), service providers represent the
single source of information about web services that is provided during the publish
phase. Typically, this information is technical-oriented and provided in XML in the form
of service description, such as, WSDL, WADL, etc. This description is then used by service
consumers in several tasks, such as service discovery, service invocation, service
composition, service replacement, etc. During service discovery, the requirements
of service consumers are matched against the published specifications of services. To
invoke a web service, service consumers need to know how to call the service, which
inputs it expects, and which outputs it returns, etc. When a service fails achieving
its task, it should be replaced by an other service that achieves the same task. This
replacement depends on the descriptions of the considered services. Moreover, com-
posing several services into a composite service requires enough knowledge about the
composed services and their interfaces to match their inputs/outputs, perform required
transformations, provide missing information, etc.

In spite of their crucial role in Service-oriented Computing (SOC), researchers
have identified several limitations in service descriptions, regarding their sources, man-
agement, formats, etc. An important factor, that highlights the limitations of service
descriptions, is the “Internet of Services” (IoS) vision [13]. This vision is based on
the concept of business services that represent an abstraction of the IT web services.
Business services are basically concerned with end-to-end delivery of an added value
and outcome. These requirements need much information about the considered ser-
vices rather than the technical information provided by service providers in the form of

Fall 2010 Workshop 191

A Proactive Service Registry With Enriched Service Descriptions

Service
Registry

Service
Consumer

Service
Provider

➋
 Di
sco
ve
r ➊

 Publish

➌ Bind

Figure 1: The triangular SOA operational model

service descriptions. In [13], the authors stated that “. . . there is definitely the need for
more than the technical description of a web service interface”.

One of the main effects of the aforementioned limitations in service descriptions is
the limited (re)usability of the offered web services, especially in open environments,
such as the Internet. To increase the (re)usability of the offered web services, several
approaches have been proposed to enrich service descriptions. Typically, a single
source of information is used to enrich service descriptions, e.g., service providers,
service consumers, or domain experts (cf. Sec. 2). In our approach, we propose an
information integration approach, where information about web services is gathered
from several sources and integrated into rich universal service descriptions.

The remainder of this report is organized as follows. In Sec. 2, we introduce the
research context and give further details about the addressed research problem. Then
we explain our proposed approach in Sec. 3. Further implementation details are given
in Sec. 4. We highlight the significant related research papers in Sec. 5. Finally, we
conclude and summarize our next steps in Sec. 6.

2 Research Context and Research Problem

The available tools that enable service providers deploy their systems as web services
and the popular Software-as-a-Service and Cloud Computing trends have helped in-
creasing the number of public web services. However, this easiness in service creation
has complicated the problem of service (re)usability because such services, usually,
lack rich description artifacts that are vital in service discovery, service invocation,
service composition, service replacement, etc.

Service providers tend to focus on the implementation aspects of their services
rather than giving rich service descriptions. Usually, service descriptions appear in
the form of comments and notes by service developers [12]. Such descriptions are
technical-oriented and not suitable for non-IT people. In the Internet of Services (IoS)
initiative, this fact is reflected in the new concept of business services that abstract the
technical web services to fit the background of their intended users, namely, business
people [5].

A common approach followed by service providers to offer public web services
is to provide a list of services with a textual description attached to each service to
explain its functionality. Moreover, service providers usually offer a try option, where
one can invoke their services directly via their web interfaces. Such options typi-

192 Fall 2010 Workshop

2 Research Context and Research Problem

cally include web forms to collect input parameters from service consumers. Much
of the information provided on such web pages is not provided in the description
(e.g., WSDL) of the corresponding web service. We view such HTML pages and forms
as rich sources of information and descriptions about web services. For instance,
Amazon.com provides several public web services, e.g., Amazon Relational Database
Service (Amazon RDS). Typically, Amazon provides a detailed description for each
of their Web Services in HTML. For example, Amazon RDS is described in details
at: https://aws.amazon.com/rds. Much of this information, such as the fact that it
is based on MySQL, is not provided in its WSDL description available at: https://rds.
amazonaws.com/doc/2010-01-01/AmazonRDSv2.wsdl. In our approach, we extract the
information that service providers release about their offered web services on their
websites and generate richer service descriptions from this information.

In particular we focus on the following research problems in our research:

Passive service registries: In the traditional SOA operational model (cf. Fig. 1), a
service registry acts passively. It reacts to register-requests from service providers
and discovery-requests from service consumers. This role is typically removed in
practice, but the removal of this role violates the basic principles of loose-coupling
and dynamic-binding of SOC [11]. Although its role is vital, we believe that service
registries can do more, especially in enterprise applications.

Single source of information: Typically, service providers represent the main source
of information about their web services. Although they know much about their
web services (e.g., source code), it has been observed that they release poor
service descriptions [12]. Several proposals in research assume that service
providers give specific information in service descriptions, such as Non-Functional
Properties [15]. Another common source of information about web services is
service consumers. Typically, service consumers rate web services and provide
further information about their quality. Domain experts represent another source
of information about web services, e.g., Chiu et al. [7]. However, an integrated
view for service descriptions is still missing.

Lack of rich service descriptions: This problem has been highlighted by several re-
searchers, e.g., [10], where ontologies are proposed to express semantically-
rich service descriptions (i.e. Semantic Web Services). In our research, we
target web services released before Semantic Web Services and those that do
not conform to Semantic Web Services, such as Amazon web services. We
investigated the value of service descriptions with respect to service discovery
using Chen Wu’s collection of public web services that was collected using search
engines over the Internet [17]. This collection has around 2000 WSDL files for
public web services. In Fig. 2(a), we summarize relevant statistics about these
files w.r.t service discovery, where we evaluate the ratio of information used in
service discovery to the entire provided information. The first bar shows the
total size of all WSDL files (∼ 64 MB). The second bar shows the total size of
all indexable content extracted from these WSDL files. Indexable content includes:

Fall 2010 Workshop 193

A Proactive Service Registry With Enriched Service Descriptions

0

14

28

42

56

70

To
ta

l s
ize

of
 fi

le
s

To
ta

l s
ize

 o
f

in
dex

ab
le
 c

on
te

nt

To
ta

l s
ize

 o
f

pro
ce

ss
ed

 c
on

te
nt

Total Size

S
iz

e
 in

 M
B

(a) Total Size

0

8

16

24

32

40

Avg
. s

ize

of
 fi

le
s

Avg
. s

ize
 o

f

in
dex

ab
le
 c

on
te

nt

Avg
. s

ize
 o

f

pro
ce

ss
ed

 c
on

te
nt

Average Size

S
iz

e
 in

 K
B

(b) Average Size

Figure 2: The total and average size of WSDL files, their indexable, and processed
content

documentation, service name, porttype name, operation name, message names,
and message types. The total size of the indexable content extracted from this
collection is around 14 MB. Indexing such a collection to perform service dis-
covery involves a processing step using stopwords removal and stemming to
eliminate insignificant terms. The total size of the processed content of this
collection is around 11 MB. The size of processed content is about 17% of the
total size of their WSDL files, only. In Fig. 2(b), we show the same statistics using
the average size of files, indexable content, and processed content, respectively.
Also, this statistics shows that the average size of processed content is only
17.3% compared to the average size of all WSDL files in the collection.

In our research, we aim at enriching service descriptions, maximizing the benefits
of existing descriptions, and integrating all available resources to provide the highest
precision for service discovery and selection. Our research statement is summarized
in this question: How to enrich, integrate, and manage service descriptions efficiently
and what are the benefits of enriching service descriptions in SOC?

3 Depot at a Glance

Our proactive service registry is called “Depot”. The architecture of Depot is shown
in Fig. 3. Depot uses a focused crawler (component 1) to collect public web services
from the websites of their providers. The collected web services are validated, parsed,
and annotated with information, which is gathered from the websites of their providers
using the WSDL and information parser (component 2). This gathered information is

194 Fall 2010 Workshop

3 Depot at a Glance

stored in a service database. Service consumers can discover web services through
the web service explorer (component 3) that provides a personalized result list of web
services based on the profiles of service consumers through the personalization filter
(component 4). Moreover, service consumers can invoke the selected web services
using the web service executor (component 5), where HTML forms are provided to
collect service’s input parameters from service consumers. This feature enables Depot
to gather further information about the invoked web services and the invoking service
consumers. This information is gathered using the invocation analyzer (component 6)
and stored as service metadata. Further service metadata can be provided explicitly by
service consumers in the form of service annotations through the community annota-
tion handler (component 7). Depot uses the collected information about web services,
service providers, and consumers to notify consumers about new web services that
might be relevant to their business through the web service recommender (component
8).

Service
Consumer

WSDL and
Information Parser

MetadataService
Data

WS Executor

Invocation Analyzer

Service
ConsumerService

ConsumerService
Consumer

Service
Provider

DEPOT

WS Recommender

Community
Annotations Handler

7

6

5
WS Explorer

3

2

Focused Crawler
1

8

Personalization
Filter

4

Figure 3: The architecture of Depot

In our initial prototype of De-
pot [1], we introduced (among
others) a focused crawler and a
preliminary web service executor.
In [3], we have extended this pro-
totype by introducing the WSDL and
information parser (component 2)
and the web service explorer (com-
ponent 3). We give further details
about these components in Sec. 4.
The remaining components will be
added incrementally.

As an information integration
environment, Depot uses three dif-
ferent sources of information about
its managed web services, namely,
service providers, service con-
sumers, and invocation analysis.
Internally, this information is di-
vided into service data – e.g., the
location of its WSDL – and service
metadata – e.g.,number of invo-
cations of a web service. Depot
performs several tasks proactively.
It employs web crawling techniques
to collect public web services automatically. It returns personalized lists of web services
to service consumers that reflects their requirements and behavior. Moreover, it
recommends new web services to their potentially interested consumers based on
their profiles, proactively.

To handle the challenge of inadequate criteria for service discovery and selec-
tion, Depot uses several sources of information to enrich service descriptions. These

Fall 2010 Workshop 195

A Proactive Service Registry With Enriched Service Descriptions

sources are service providers, consumers and invocation analysis.
Service providers: Along with the technical service descriptions (published in

service registries) that service providers release about their web services, they give
additional textual descriptions (on their own websites) to explain their functionalities.
Typically, such textual descriptions do not appear in their counterpart technical service
descriptions. Depot collects technical service descriptions for web services and an-
notates them with textual descriptions extracted from the websites of their providers
automatically.

Service consumers: Feedback and ratings are the most common types of informa-
tion that service consumers provide about the web services they use. The goal of such
information is to assess the quality of the used web service(s), e.g., response time,
cost, performance, security, etc. This information is also used to evaluate the reputation
of service providers. We extend this approach in Depot by allowing service consumers
to annotate the web services they used to enrich their descriptions. Users’ annotations
can be simple tags or detailed descriptions about the behavior of the invoked web
service.

Invocation analysis: Depot provides interfaces where consumers can use web
services directly. Web forms are used to collect inputs from users [1]. This feature
gives Depot the opportunity to analyze such service invocations and learn more about
the invoked web services. Several things can be extracted from such analysis: per-
formance and quality, caching, classification of service consumers, tagging of web
services, and the context where web services are invoked.

4 Implementation Details

In Sec. 3, we gave a general overview of our approach to a proactive service registry
with enriched service descriptions. In this section, we give further implementation
details about the following components: Focused crawler, WSDL and information parser,
WS explorer, WS executor, and invocation analyzer.

4.1 Focused Crawler and WSDL and Information Parser

To collect public web services, we employ web crawling techniques to the web. We
have implemented a focused crawler that targets XML and HTML resources only. XML

files are potential candidates for web service descriptions, e.g., WSDL, whereas HTML

files are potential places to find further information about the collected web services.
Our focused crawler is based on Heritrix crawling framework [9]. We developed a set
of decision rules to accept XML and HTML resources and reject all other types. The
collected resources that conform to our decision rules are stored in an archive file.

Additionally, we developed a WSDL parser that verifies whether the collected re-
sources by Heritrix are valid web services or not. Web services are validated using
WSDL4J. Valid web services are registered and stored in Depot. Moreover, we de-
veloped an information parser that extracts further information (annotations) about the
collected web services from the crawled HTML pages. This parser collects two types of

196 Fall 2010 Workshop

4 Implementation Details

annotations, namely, textual service descriptions and tags. Textual service descriptions
are typically given by service providers on their web pages in HTML. We collect these
textual descriptions from the parts of the HTML pages where the corresponding web
services are referenced. The entire contents of an HTML page, where a collected web
service is referenced, are used to generate tags that describe the service. For further
details, please refer to [3].

4.2 Web Service Explorer

Depot uses the information about web services, service providers, and service con-
sumers to provide an enhanced service exploration and discovery for service con-
sumers. Four types of service exploration are provided by Depot:

1. Browse by provider: This type of service exploration enables service consumers
to find relevant web services from specific service providers. For instance, service
consumers prefer to use web services from service providers with high reputation
or well-known providers.

2. Full-text search: This type requires basic knowledge in the application domain to
choose “good” keywords, e.g., address normalization, credit card validation, etc.

3. Browse by category: The increasing complexity of web services and their driving
business needs makes finding “good” keywords for full-text search a difficult task.
For such cases, Depot provides web service browsing based on categories.
Collected web service are automatically classified in several application domains,
e.g., education, finance, entertainment, etc. This classification is based on the
enriched descriptions of web services.

4. Browse by tag cloud: For a quick way of exploring common web services, re-
gardless of their providers or categories, Depot provides a tag cloud that enables
service consumers to browse through common tags attached to web services.
Part of these tags are automatically generated from websites of service providers
during service crawling through WSDL and information parser (component 2) or
from invocation analysis using invocation analyzer (component 6). Additional tags
are provided by service consumers in the form of community annotations.

4.3 Web Service Executor and Invocation Analyzer

Depot provides two variants of the web service executor component: an API for enter-
prise applications and a web application. We introduced an API-based web service
executor in our proposed “Diamond SOA Operational Model” [2]. The web-based
executor enables users to invoke web services using a web form that collects input
parameters to call the required web service. We use schema definitions of data types
from the WSDL files to organize form fields in a convenient way. Additionally, each field in
the web form is associated with annotations that we generate from invocation analysis.

Fall 2010 Workshop 197

A Proactive Service Registry With Enriched Service Descriptions

Invocation analysis is an additional source of information about web services. This
source is instance-based, where the actual service invocations are used to generate
additional information about the invoked web services. Several things can be learnt
from such analysis, e.g., performance and quality measures, identifying categories of
service consumers, tagging web services – as we show next.

In Sec. 4.1, we introduced our approach to crawl public web services and anno-
tate them with textual descriptions and tags based on the content provided by their
providers on their own websites in HTML. However, the generated tags have two main
limitations: i) Provider’s content dependency, ii) Fixed tags. The invocation analyzer
component of Depot targets these limitations in data web services by extracting further
information about web services based on their actual invocations, such as dynamic
tags. The implementation of our dynamic tag generator for data web services includes
two components: invoker and tagger. The invoker has the task of invoking the con-
sidered web services and managing their requests and responses. As an input, the
invoker takes the target web service (e.g., WSDL) and its input parameters (if any).
The expected output of this component is service response (e.g., SOAP). The tagger
has the task of processing the returned responses to generate tags based on their
delivered contents. The invoker notifies the tagger whenever it receives a successful
service response. After that, the tagger applies a set of decision rules and performs
a set of processing steps to generate dynamic tags from the corresponding service
response. For each successful service response, tagger decides whether it is dynamic
or not. If the considered response is dynamic, then tagger verifies that it carries a new
result. Then, tagger extracts contents from the received response and applies a set of
content processing steps including stopwords removal and stemming. Finally, terms in
the processed content are ranked such that candidate tags can be selected.

5 Related Work

Most existing service registries and repositories are based on UDDI, ebXML, or a mix of
both: Centrasite is a UDDI service registry that is limited to the web services inside a
single organization [6]. Sun’s service registry is based on ebXML 3.0 with added support
for UDDI 3.0 [14]. IBM’s WebSphere Registry and repository mainly manages services’
metadata that is gathered from all available resources, such as UDDI registries [8]. Most
of these registries use service providers as a single source of information.

The limitations in the traditional SOA operational model have been highlighted by
several researchers. In [11], the authors showed that the triangular model is not used
widely in practice because of the limited role of service registries. Another approach
to achieve active web service registries was introduced in [16]. The authors use RSS

feeds to announce changes in the registered services to interested service consumers.
The information provided by such feeds is generated by service providers, who tend to
focus on the technical parts of their services. Moreover, such a service registry cannot
force service providers to notify them about any updates so that they can add RSS feeds
to announce the corresponding changes.

The main reason behind the highlighted limitations of the triangular model in the

198 Fall 2010 Workshop

6 Summary and Roadmap

aforementioned work is the lack of rich service descriptions [10]. Therefore, researchers
have proposed several approaches to gather information about services to handle the
problem of poor service descriptions. In [4], the authors use a specialized crawler to
collect web services from multiple UDDI registries. Although the idea of using crawlers
to collect web services is innovative, restricting it to UDDI registries does not give the
maximum benefit of web crawling, as such an approach is still limited to what service
providers announce during service registration.

An other web service crawler has been introduced by the EU project Seekda (http:
//www.seekda.eu). In this recent project, the authors use a specialized crawler to
collect public web services over the web, and present them in a web 2.0 environment,
which allows users to annotate, tag, and use them. We extend this approach by
annotating the collected web services with automatically extracted descriptions and
generated tags. Additionally, we enrich service descriptions with metadata extracted
from service invocation analysis.

6 Summary and Roadmap

In this report, we introduced an approach to increase the (re)usability of public web
services by enriching their poor descriptions through a proactive service registry, called
“Depot”. It uses three sources of information about web services: service providers,
service consumers, and invocation analysis. Depot achieves three features proactively,
namely, crawling of web services, personalization of web service discovery, and rec-
ommendation of web services.

We have already implemented the components of focused crawler, WSDL and infor-
mation parser, web service explorer, web service executor, and part of the invocation
analyzer. Our next steps include an implementation of the remaining components to
verify our approach, in addition to extensive evaluation of the entire system.

References

[1] Mohammed AbuJarour, Mircea Craculeac, Falko Menge, Tobias Vogel, and Jan-
Felix Schwarz. Posr: A Comprehensive System for Aggregating and Using Web
Services. In SERVICES ’09, pages 139–146, LA, CA, USA, 2009. IEEE Computer
Society.

[2] Mohammed AbuJarour and Felix Naumann. Towards a Diamond SOA Operational
Model. In SOCA ’10: Proceedings of the IEEE International Conference on
Service-Oriented Computing and Applications, Perth, Australia, 2010. IEEE
Computer Society. To appear: http://bit.ly/bMgqXJ.

[3] Mohammed AbuJarour, Felix Naumann, and Mircea Craculeac. Collecting,
Annotating, and Classifying Public Web Services . In Proceedings of the 18th
International Conference on Cooperative Information Systems, Crete, Greece,
2010. Springer. To appear: http://bit.ly/bI6aUL.

Fall 2010 Workshop 199

References

[4] Eyhab Al-Masri and Qusay H. Mahmoud. Investigating Web Services on The
World Wide Web. In WWW ’08, pages 795–804, NY, USA, 2008. ACM.

[5] Jorge Cardoso, Konrad Voigt, and Matthias Winkler. Service Engineering for the
Internet of Services. In ICEIS, pages 15–27. Springer, 2008.

[6] Centrasite Community. Centrasite Registry. http://www.centrasite.org.

[7] David Chiu, Sagar Deshpande, Gagan Agrawal, and Rongxing Li. A dynamic
approach toward qos-aware service workflow composition. In ICWS ’09:
Proceedings of the 2009 IEEE International Conference on Web Services, pages
655–662, Washington, DC, USA, 2009. IEEE Computer Society.

[8] IBM. WebSphere Service Registry and Repository. http://www.ibm.com/

software/integration/wsrr.

[9] Internet Archive. Heritrix Web Crawler Project. http://crawler.archive.org.

[10] Dominik Kuropka, Peter Tröger, Steffen Staab, and Matthias Weske. Semantic
Service Provisioning. Springer, Germany, 2008.

[11] Anton Michlmayr, Florian Rosenberg, Christian Platzer, Martin Treiber, and
Schahram Dustdar. Towards recovering the broken SOA triangle: a software
engineering perspective. In IW-SOSWE ’07, pages 22–28, New York, NY, USA,
2007. ACM.

[12] Marta Sabou, Chris Wroe, Carole Goble, and Gilad Mishne. Learning Domain
Ontologies for Web Service Descriptions: An Experiment In Bioinformatics. In
WWW ’05: Proceedings of the 14th international conference on World Wide Web,
pages 190–198, New York, NY, USA, 2005. ACM.

[13] SAP Research. Unified Service Description Language. http://www.

internet-of-services.com/uploads/media/USDL-Information-Sheet.pdf,
2009.

[14] SUN Microsystems. SUN’s Service Registry. http://www.sun.com/products/

soa/registry.

[15] Ioan Toma, Dumitru Roman, Dieter Fensel, Brahmanada Sapkota, and
Juan Miguel Gomez. A multi-criteria service ranking approach based on non-
functional properties rules evaluation. In Proceedings of the International
Conference on Service-oriented Computing, 2007.

[16] Martin Treiber and Schahram Dustdar. Active Web Service Registries. IEEE
Internet Computing, 11(5):66–71, 2007.

[17] Chen Wu. A Public Web Services Collection for Service Discovery. 2010. INEX
2010 Web Service Discovery Track.

200 Fall 2010 Workshop

Towards Automated Analysis and
Visualization of Distributed and

Service-based Software Systems

Martin Beck

Computer Graphics Systems Group
Hasso-Plattner-Institut

martin.beck@hpi.uni-potsdam.de

Distributed software systems gain more and more importance due to a paradigm
shift in software systems and applications, evolving from single-chip solutions to multi-
tiered web-based applications. For a single developer, it becomes increasingly difficult
to cope with the complexity of such software systems. Hence, dedicated software
development tools are required.

This report reflects on the first six months of an ongoing research work at the HPI
Research School that aims at providing novel automated analysis and visualizing tech-
niques for the interactive exploration of static structures and behavior of distributed and
service-based software systems.

1 Introduction

Distributed software systems gain more and more attention due to the rise of service-
based software, which enables reliable, configurable and scalable IT solutions. Con-
sequently, software developers are confronted with the necessity to efficiently develop,
maintain and thus understand this category of systems. However, developers gener-
ally cannot cope with the inherent complexity of such systems, leading to a severe
increase in development and maintenance costs as well as project risks. To improve
program comprehension and to gain insights into the distributed system’s architecture,
dedicated software development tools are required. For example, a web-based shop
application may be faced with timeouts in one out of a hundred uses, and developers
have to investigate the reason for this behavior.

In this research project, we strive to provide a novel technique for automated anal-
ysis and visualization of distributed systems that extracts, analyzes and visualizes the
messages exchanged in the system. We target existing systems used in production.
Thus, our technique cannot be used to forward engineer distributed systems. Instead,
live systems can be visualized and explored to understand their architecture and be-
havior. To extract necessary data, we not only trace messages, but also instrument
each component itself. Thereby, actions taken by the system upon incoming messages
can be considered for analysis.

Fall 2010 Workshop 201

Towards Automated Analysis and Visualization of Distributed and Service-based
Software Systems

This report is structured as follows. The following section presents related work.
Sections 3 and 4 describe our first ideas for a data extraction and analysis process
that especially targets our visualization context. The subsequent section elaborates on
visualization techniques we are proposing. Finally, section 6 summarizes this report
and gives an overview of the future tasks for the next half year.

2 Related Work

The visualization of software, its structure, behavior and evolution has long been a
topic in research [5]. However, distributed systems have received little attention in the
software visualization literature [3].

For dynamic analysis of distributed software systems, the runtime data needs to be
collected. This can include different strategies. For example source code instrumen-
tation [9], Java Virtual Machine profiling [13] or Aspect-Oriented Programming tech-
niques [2] have been used to gather behavioral information from distributed systems.

To our best knowledge, there exists only few literature about the visualization of
a distributed software system’s structure, which goes beyond leveraging UML dia-
grams [12]. Zhou et al. use quaternary fat-tree networks and adjacency matrices
for visualizing extreme-scale supercomputers [18]. The data jewelry box by Yamaguchi
and Itoh depicts the hierarchical structure of distributed processes [17]. Allcock et al.
have designed GridMapper, which simply maps the real global positions of grid nodes
onto a virtual earth globe [1].

The visualization of behavior has been exploited more than the visualization of the
mostly intangible structure of distributed software systems. De Pauw et al. have pre-
sented a visualization tool that supports understanding of service-oriented architec-
tures by enhancing UML sequence diagrams [4]. Moe and Sandahl used interactive
scatter plots to visualize execution traces from distributed systems [11].

Our first idea for an interactive layout idea is based on a magnet-metaphor for
graph visualization introduced by Spritzer and Freitas [16]. To handle massive mes-
sage data in our visualization, we leverage the Information Mural presented by Jerding
and Stasko [8].

3 Data Acquisition

To successfully analyze and visualize existing distributed software systems used in
production, the extraction of message and software component traces requires spe-
cial care. Due to the higher complexity of these systems as compared to single-chip
applications, issues such as the monitoring software’s performance impact of and the
central collection of data play a major role.

202 Fall 2010 Workshop

3 Data Acquisition

Worker Thread/Process

Node

Component

Message

Queue

Channel

Figure 1: Low-level building blocks of a distributed software system from a developer’s
perspective.

3.1 Extracting Structural Information

A distributed software system’s observable structure is typically made of multiple com-
ponents deployed on several nodes. These components are comprised of processes
and threads. Fig. 1 illustrates this. Instead of trying to extract this information via
system introspection or deployment configuration analysis, we plan to use gathered
behavioral data described in the next section. Presumed this data set is large enough,
it should result in a more accurate extracted structure as compared to the actually used
parts of the system. Due to the analysis of production systems, enough data should
be present. However, system parts inactive during the extraction phase cannot be
identified this way.

3.2 Extracting Behavioral Information

The directly observable behavior of a distributed software system basically consists
of the messages exchanged between its components and the process-internal call-
graphs of these components. While we plan to use existing solutions for the component
traces [15], partially developed in our group, the way of gathering message traces is
still subject to research. With regard to the analysis step, component-specific message
tracers could ease later message categorization. For example, a Java RMI component
tracer would be able to log invoked target operations and, thereby, marking a message
as method invocation and specify its content. However, besides tremendous develop-
ment efforts, this requires additional configuration and deployment overhead possibly
preventing potential system analysts from employing our technique. The alternative is
to simply trace each message on the network protocol level and lay the burden to rea-

Fall 2010 Workshop 203

Towards Automated Analysis and Visualization of Distributed and Service-based
Software Systems

Leader-Follower

Pattern

Message

Tracer

Central Trace Server

Fact

Extraction

Internal

Instrumentation

Internal

Instrumentation

Figure 2: Instrumentation of a distributed software system. Each component is instru-
mented with a software tracer and each messages is logged. Both data are eventually
sent to a central storage server.

son about the message’s purpose on the analysis step. Fig. 2 illustrates our planned
instrumentation strategy.

3.3 Data Collection

To examine gathered extracted data later, a central storage solution is required. First,
each component stores traced events such as message arrivals or function calls it-
self. Second, this buffered data is transferred to a central server automatically as also
shown in Fig. 2. Finally, the server orders gathered data chronologically. A problem
in this setup are unsynchronized system clocks on the different nodes of the system.
However, this has been handled in literature earlier [6,10].

Furthermore, we expect a tremendous amount of data. Tracing function calls within
each component creates large data sets on its own. As we focus on live production
systems and possibly large time frames, massive message traces between these com-
ponents add another dimension. Handling the efficient transmission of this kind of data
over the network and its storage for later analysis is one of our research questions.
In-memory databases may be necessary to fulfill the required tasks [7].

204 Fall 2010 Workshop

4 Analysis

4 Analysis

The analysis phase tries to automatically recognize software development patterns
and infer causal relationships between the messages. Communication profiles of com-
ponents and nodes are identified and used as hints for the visualization step. For
example, nodes with similar behavior can be clustered.

To support analysis, we model distributed software systems from a system archi-
tect’s perspective. Low-level building blocks such as messages, queues and channels
enable precise description of actual system structures and their behavior. Processes
and worker threads provide a suitable abstraction of a component’s inner workings,
omitting unnecessary details. Fig. 1 depicts this model. Extracted structural and be-
havioral data is transformed into an instance of this model, enabling the recognition of
more high-level architecture patterns. For example, the Leader-Followers pattern [14]
depicted in Fig. 2 describes a solution to provide high through-put for processing in-
coming events by introducing a ring of worker threads.

The model itself can be refined recursively by repeating analysis of the extracted
system facts and reusing already identified structures. Thereby, hierarchical structures
are identified step by step this way. For example, a database component or node can
be the incoming message queue of a larger web-service itself. Vice versa, a web-
service consisting of multiple nodes and components may play the role of a database
system. Eventually, this recursive refinement leads to a high-level abstraction of the
distributed software system.

After its establishment, the analysis step uses this high-level model to reason about
possible causal relationships between incoming and outgoing messages. Messages
can be traced on their way through receiving queues to the responsible worker thread.
Every action taken by this thread such as sending messages is considered to be a
direct consequence of the incoming message. We seek to model this thread behavior
to improve the visualization.

Statistical analysis of message trace data aids to categorize messages by their
types and reveals communication profiles of the components. For example, command
sessions typically use small and high-frequency messages while data streaming tries
to maximize packet sizes for better through-put.

5 Visualization

Besides automated analysis, visualization is the second main part of our research on
distributed and service-based software systems. We aim at leveraging the results gath-
ered from the analysis phase to enhance current visualization techniques. A special
goal is to integrate structural and dynamic information in one unified view. Existing
tools for behavior visualization generally layout components in columns. However, to
support developers to create a mental model of a system, it is generally not sufficient to
understand structural aspects or dynamic aspects in isolation. For this reason, an ap-
proach is required that combines both information sources. Interactivity aids to adapt
the visual representation to the mental model, leading to improved comprehension.

Fall 2010 Workshop 205

Towards Automated Analysis and Visualization of Distributed and Service-based
Software Systems

Web-Server
Component

DB
Component

DB
Component

DB
Component

Web-Server
Component

Web-Server
Component

Http-Magnet
Database-

Magnet

Http-Magnet

Figure 3: Layout concept using a magnet metaphor. Multiple magnets attract different
kinds of nodes, enabling users to adjust the layout interactively.

In the next section, we first describe an idea for visualizing the structural aspects of
distributed software systems. Afterwards, the subsequent section elaborates on visual
integration possibilities for the system’s behavior.

5.1 Structure Visualization

To visualize the structure of a distributed system, we plan to compute a dynamic 2D
graph layout for the participating components. An initial layout can be automatically
derived using the data gathered in the analysis step. Especially, recognized message
patterns help the algorithm to control the layout. To further improve the layout, we
investigate a magnet metaphor to visualize the component communication graph. This
would allow users to interactively adjust the layout to their needs.

Fig. 3 illustrates this idea. Multiple magnets attract nodes with regards to their
attributes, e.g., nodes sending and receiving HTTP messages or database queries.
These magnets can be placed interactively and configured with constraints such as
multiple attributes the attracted nodes have to adhere to. Furthermore, the same mag-
net configuration can be used more than once, thus allowing similar subgraphs to be
positioned distinctively.

Further research topics include using Level-Of-Detail techniques for an interactive
hierarchy exploration, visualization of participating threads and processes, and how to
depict recognized development patterns.

5.2 Behavior Visualization

One of the main behavioral aspects of distributed software systems is the commu-
nication between the system’s components. Distributed systems used in production
typically emit millions of messages within a given time frame. Therefore, special care
has to be taken to avoid visual clutter.

Fig. 4 illustrates an idea to overcome this. The straight connection line between two
nodes separates the available space into two regions, one for each message direction.
Incoming and outgoing messages are drawn as bars orthogonal to the separator line
in chronological order on their respective side. As the connection line between two
components may be rotated in the layout, increasing time is represented by increasing

206 Fall 2010 Workshop

6 Summary & Future Work

Time,

Saturation

Responses

Node Node

Requests

Measured variable,
e. g., message size or

message count

Message

Figure 4: Possible rendering of traced messages exchanged between two nodes. In-
creasing saturation represents increasing time, while request and response message
directions are differentiated by color. Additional information can be coded in the ampli-
tude.

saturation of the message bar colors. Furthermore, incoming and outgoing message
bars use different colors to provide a visual distinction regardless of the direction. The
height of each bar represents the chosen measurement variable such as message size
or transfer time. Due to space constraints, multiple messages can be accumulated in
one bar. However, zooming can be used to analyze individual messages.

Nevertheless, behavioral visualization is not limited to message sends. We have to
find ways to visualize addition and removal of nodes, queue activity or worker thread
models. Ideally, these techniques can be embedded into the structural visualization.
This combination would allow developers to mentally connect visualized data to an
imaginary spatial model.

6 Summary & Future Work

We have presented an approach for program comprehension of distributed software
systems. First, the system’s behavior is traced by instrumenting the software compo-
nents and intercepting the messages exchanged. Second, a model representing the
structure and the behavior of the system is inferred from the gathered data. Next, an
analysis step uses the high-level abstractions in the model and the original extracted
data to reveal communication profiles, identify outlier and cluster similar behaving com-
ponents. Finally, the results of the previous steps are visualized allowing users to in-
teractively explore the available data.

In the next half year, we want to concentrate on the data extraction and model de-
duction. This includes to specify the model for a distributed system from a developer’s
perspective more precisely. The data extraction itself is a mostly covered topic [3], but
nevertheless it needs to be implemented in some way by ourselves. Using this extrac-
tion implementation and the model specification, we will analyze and model existing
example applications. We hope to find these applications within the industry. Further-
more, those industry partners can help us to align our research questions with concrete
problems developers have with their distributed and service-based software systems.

Fall 2010 Workshop 207

References

References

[1] William Allcock, Joseph Bester, John Bresnahan, Ian Foster, Jarek Gawor,
Joseph A. Insley, Joseph M. Link, and Michael E. Papka. Gridmapper: A tool for
visualizing the behavior of large-scale distributed systems. In HPDC ’02: Proceed-
ings of the 11th IEEE International Symposium on High Performance Distributed
Computing, page 179, Washington, DC, USA, 2002. IEEE Computer Society.

[2] Lionel C. Briand, Yvan Labiche, and Johanne Leduc. Toward the reverse engi-
neering of uml sequence diagrams for distributed java software. IEEE Transac-
tions on Software Engineering, 32:642–663, 2006.

[3] Bas Cornelissen, Andy Zaidman, Arie van Deursen, Leon Moonen, and Rainer
Koschke. A systematic survey of program comprehension through dynamic anal-
ysis. IEEE Transactions on Software Engineering, 35(5):684–702, 2009.

[4] W. De Pauw, M. Lei, E. Pring, L. Villard, M. Arnold, and J. F. Morar. Web ser-
vices navigator: visualizing the execution of web services. IBM Systems Journal,
44(4):821–845, 2005.

[5] Stefan Diehl. Software Visualization. Visualizing the Structure, Behaviour, and
Evolution of Software. Springer, Berlin, 2007.

[6] Colin Fidge. Logical time in distributed computing systems. Computer, 24(8):28–
33, 1991.

[7] H. Garcia-Molina and K. Salem. Main memory database systems: An overview.
IEEE Transactions on Knowledge and Data Engineering, 4:509–516, 1992.

[8] Dean F. Jerding and John T. Stasko. The information mural: A technique for
displaying and navigating large information spaces. IEEE Transactions on Visual-
ization and Computer Graphics, 4:257–271, 1998.

[9] David Kortenkamp, Reid Simmons, Tod Milam, and Joaquín L. Fernández. A suite
of tools for debugging distributed autonomous systems. Form. Methods Syst.
Des., 24(2):157–188, 2004.

[10] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558–565, 1978.

[11] Johan Moe. Understanding distributed systems via execution trace data. In In In-
ternational Workshop on Program Comprehension, pages 60–67. Society Press,
2001.

[12] Object Management Group. The unified modeling language uml. http://www.

uml.org, retrieved October 9th 2010.

[13] Maher Salah and Spiros Mancoridis. Toward an environment for comprehend-
ing distributed systems. In Proceedings of the Working Conference on Reverse
Engineering, pages 238–247. IEEE Computer Society, 2003.

208 Fall 2010 Workshop

References

[14] Douglas C. Schmidt, Hans Rohnert, Michael Stal, and Dieter Schultz. Pattern-
Oriented Software Architecture: Patterns for Concurrent and Networked Objects.
John Wiley & Sons, Inc., New York, NY, USA, 2000.

[15] Software Diagnostics Developer Edition. http://www.softwarediagnostics.

com/, retrieved 14 Jul 2010.

[16] Andre Suslik Spritzer and Carla Freitas. A physics-based approach for interactive
manipulation of graph visualizations. In Proceedings of the Working Conference
on Advanced Visual Interfaces, pages 271–278. ACM, 2008.

[17] Yumi Yamaguchi and Takayuki Itoh. Visualization of distributed processes us-
ing "data jewelry box" algorithm. Computer Graphics International Conference,
0:162–169, 2003.

[18] Cheng Zhou, Kenneth L. Summers, and Thomas P. Caudell. Graph visualization
for the analysis of the structure and dynamics of extreme-scale supercomputers.
In SoftVis ’03: Proceedings of the 2003 ACM symposium on Software visualiza-
tion, pages 143–149, New York, NY, USA, 2003. ACM.

Fall 2010 Workshop 209

Towards Efficient Camera Interaction in
Service-based 3D Geovirtual

Environments

Jan Klimke

jan.klimke@hpi.uni-potsdam.de

Service based geovisualization helps to enable high quality 3D visualization with
minimal requirements for clients regarding computational power or rendering capabil-
ities. While interaction with 2D maps is quite well understood, interaction in 3D is
more challenging due to its additional degrees of freedom that have to be controlled.
So called smart interaction techniques can help a user to master this 3D complexity
using standard 2D input devices. To do so, additional information about the 3D envi-
ronment, which is used for visualization, is needed. Such data is not per se available
in many of the applications of service-based 3D visualization. This report proposes
to encapsulate parts of the interaction process into service components that can be
deployed independently from client applications. This lowers the complexity of client
implementations, that are possibly running on a small handheld devices, so data ac-
cess and computation necessary for interaction can be externalized to faster systems,
which may also have a faster, more reliable network connection. Such a decoupled
paradigm enables the deployment of service-based visualization applications depend-
ing on the client device’s capabilities regarding computational power or data access
(access rights or networking bandwidth).

1 Introduction

Since "a 3D world is only as useful as the user’s ability to get around and interact
with the information within it" [12] interaction components should play a major role
in development of systems using geoinformation for 3D visualization. In a 3D virtual
environment camera manipulation is the primary interaction since the specification of
camera parameters defines what is visible to a user and therefore defines a user’s
context. Six degrees of freedom (namely 3D camera position (3 DOF) and 3D orienta-
tion (3 DOF)) have to be controlled to specify the position and orientation of a virtual
camera. These additional variables, compared to interaction with 2D user interfaces,
make camera interaction in 3D geovirtual environments (3D GeoVEs) a complex task
for users. While the capabilities of standard input devices for today’s applications, such
as mouse, keyboard or touch sensitive surfaces, provide adequate means for control-
ling 2D user interfaces (such as map-based applications or conventional window-based
ones), they do not allow a direct manipulation of all the parameters that are necessary

Fall 2010 Workshop 211

Towards Efficient Camera Interaction in Service-based 3D Geovirtual Environments

Figure 1: Classification of camera interaction techniques regarding their indirection
from direct manipulation of camera parameters.

for 3D positioning and orientation of a camera view in virtual 3D space. Hence, an
intelligent mapping from user input to camera configurations is needed. Approaches
for smart (assisting) camera control for 3D GeoVEs can use semantics of the under-
lying spatial model (e.g., 3D city model) to provide higher-level interaction to users,
which reduces the number of feedback cycles needed to position and orient the virtual
camera. Additionally such techniques try to avoid distracting or disorienting views of a
virtual camera by applying constraints to its parameters.

Service-based portrayal for 3D GeoVEs allows for thin client applications by hid-
ing the complexity of geodata handling, processing and large parts of the rendering
from clients [8]. In this way, also clients with constraint capabilities regarding data
access, memory, data processing, rendering and input (e.g., mobile phones as client
devices) can be used for running 3D geovisualization applications. To support the are-
fore mentioned smart interaction techniques for camera interactions, such clients need
service-side support for computation of camera view parameters and camera paths.
To improve efficiency of interaction, camera navigation techniques have to be designed
and selected with special regard to such limitations [4].

In this report a concept for separating the camera control process from the service-
based portrayal itself is described. Therefore we provide a concept of how to decom-
pose a camera control process into single, possibly distributed service components,
each performing a specific task in the interaction process. Well defined interfaces for
each service component facilitate reuse of existing functionality and can additionally
serve for a more efficient prototyping of interaction techniques. The concept for a
service-based support for interaction applications is a first step in my research towards
future applications for SOA-driven 3D geovisualization.

The remainder of this report is organized as follows: Section 2 will give a short
overview of work that motivates this paper. Afterwards, in Section 3 our approach for
distributing camera control functionality is presented. Section 4 will summarize this
paper and gives an outline of future research activities towards future service-based
3D geovisualization systems.

212 Fall 2010 Workshop

2 Related Work

2 Related Work

Smart interaction techniques, also called assisting navigation techniques, help a user
to perform a task and avoiding disorienting or distracting camera positions and ori-
entations. There are several types of camera control techniques regarding the level
of indirection from user input to camera parameters (Fig. 1). The notion of camera
task decribes an intented of camera movement and position. In general, users can be
supported better, if a higher level specification of desired camera tasks is possible.

Semantics contained in virtual 3D city models, as type of geovirtual environment,
can be used to evaluate user input and derive camera control tasks [7]. A defined cam-
era control task (e.g., "show me that building", "guide me along this road") allows for
generation of a camera path with respect to quality criterions, e.g., collision avoidance,
retaining a user’s orientation inside the 3D GeoVE, perceived smoothness of camera
animation, or keeping certain points of interest visible. To enable comprehensible cam-
era paths, approaches exist that are using basic physical models for camera control.
For example inertia effects like acceleration and deceleration lead to a perceived better
camera motion [2].

Assisting camera control techniques, which use semantics of the underlying model,
involve additional requirements regarding data management and computational power
since geodata is typically massive, heterogeneous and distributed. Especially thin
clients are restricted in hardware (mobile devices like phones) or in software (thin,
browser-based clients). This is a problem when 3D geovisualization applications are
running on such devices. Nevertheless, through the high abstraction level from the
user input, assisting camera navigation techniques seem to be promising especially
for use cases that demand for a relatively low number of interaction cycles to reach a
specific goal, e.g. performing a desired camera animation. A low count of interaction
cycles between user and application is especially favorable for service-based systems
because of the inevitable network delays during requests, which slow down service-
based applications. Since mobile devices tend to have a possible unreliable network
connection, this effect plays an important role if end-user applications are running on
such devices.

Handling geodata for visualization is a complex task that demands for special high
performance hardware (e.g., graphics adaptors, large main memory, CPU) to produce
high quality visualizations. The heterogenity of hardware components and the finan-
cial and configuration effort to deploy those hamper the implementation of such high
quality visualizations. Since geodata itself is often not freely accessible, another point
concerning geovisualization applications is data access and rights management. Own-
ers of geodata do not want to grant full access to their data, but might want to enable
it’s usage for visualization. Using the paradigm of service orientation for geovisualiza-
tion applications can hide the complexity of rendering or suffisticated rigths manage-
ment from client applications by encapsulating steps of the visualization pipeline. The
data management encoding and processing part of the service chain is already suf-
ficiently standardized by the Open Geospatial Consortium (OGC) (i.e., Web Feature
Service [13] for data access, CITYGML [6] or GML [10] for data encoding, and Web
Processing Service [11] for data processing).

Fall 2010 Workshop 213

Towards Efficient Camera Interaction in Service-based 3D Geovirtual Environments

Figure 2: Separation of a camera interaction process into tasks together with the results
generated by each step.

For portrayal of geodata, a 2D portrayal service has been specified by the OGC and
is widely adopted. This Web Map Service (WMS) [3] creates map images from geo-
data. Currently, there is no corresponding OGC standard for 3D portrayal. Two active
approaches towards OGC standards for 3D portrayal services are currently existing
in the OGC community: The Web 3D Service (W3DS) [1] and the Web View Service
(WVS) [8]. The approaches differ in the type of data they provide. While a W3DS
provides display elements in a computer graphic coordinate system, a WVS provides
layers of scene views encoded as images. This leads to different requirements for
presentation clients needed to use such services. While a W3DS demands for 3D ren-
dering capabilities on the client side for image synthesis, this is not necessary for WVS
clients since, because this service performs server-side image synthesis.

Supporting navigation in 3D GeoVEs has not been a central issue during the devel-
opment of current portrayal standard candidates. The W3DS draft standard does not
include any facilities to support camera control on the server side, because the client
is expected to handle all issues concerning user interaction and rendering. The WVS
standard draft defines an optional GetCamera-Operation that returns a good camera
definition for a set of 2D pixels. Here, the definition of what is a good camera per-
spective for the actual application is defined by the WVS implementation. So a very
fundamental support for camera control is included in this standard, and can be used
by thin clients for exploration of 3D GeoVEs .

3 The Camera Interaction Process

To support camera control for service-based visualization environments the process
of interaction needs to be analyzed and decomposed into actions that can be per-
formed by conceptually independent components. A clear definition of an interaction
process in service-based visualization systems helps to identify the interfaces and data
for communication of services. The components of such an interaction support system
can be distributed. Depending on the capabilities and demands of client devices and
applications, the distribution of the components could be dynamically adjusted.

We divide four tasks for camera control (Fig. 2). The input capturing task of an in-
teraction process is done by the client device running an application. A variety of sen-
sors can deliver input values for 3D camera control techniques, e.g., (series of) touch
events for tangible surfaces, ui button events or keyboard events. Further, mobile often

214 Fall 2010 Workshop

4 Service Support for Camera Interaction

include additional sensor hardware, such as GPS receivers, gyroscopes or accelerom-
eters. So they are able to capture different information that describes a user’s current
context. This information can be used to influence the interaction with a 3D application
to support a user by adjusting to his current contex, especially with regard to mobile
applications.

Raw input data can be preprocessed to provide a more high level input for the
following steps. The input preprocessing step can involve, for example, smoothing
input values, recognition of shapes from series of positions. The result of this step is a
navigation command that encodes a camera task to perform by the animation of virtual
camera.

The camera path computation step executes a navigation command by creating
a camera path, which consist of one or more sets of parameters defining a virtual
camera’s position and orientation. The path computation itself may use additional data
sources, for example, to provide collision avoiding camera paths. Therefore it has to
use the same geometries that is currently used for visualization to be able to perform
the necessary computations to comply with the data that is currently viewed.

The visualization step concludes a camera interaction loop. It applies the generated
camera path to the image synthesis stange. Image generation itself may be done
using geovisualization services or implemented independently at client side. A camera
service itself is not bound to thin clients. It may also be used by thick oder medium
clients to provide smart camera paths.

4 Service Support for Camera Interaction

The single steps of a camera interaction cycle presented above can be supported using
service instances. Which types of services can be used and how they could communi-
cate is depicted in Fig. 3. As described in the previous section, navigation commands
are recognized from user inputs. The necessary operations for command recognition
can possibly involve additional data to provide commands that rely on semantics of
objects included in the current scene view.

As shown in Figure 1, a user’s inputs do not have to influence the parameters of the
virtual camera directly. They can also describe a higher-level task to be executed by
the camera. Tasks to perform are, e.g., following a route, inspect a building, or taking
an overview position for parts of the scene. To allow this kind of indirection from user
inputs, a command recognition service can be used to extract navigation commands.
Each type of navigation command can have specific parameters, e.g., a "move to"
command can have a feature identifier as target description.

Conceptually a 3D camera service is able to compute a camera position or ani-
mation for executing one type of navigation command. Therefore a registry for such
camera service is introduced which manages metadata of camera services and there-
fore helps to find the right service-endpoint that is able to execute the command which
was recognized from user input. Camera navigation techniques compute camera pa-
rameters, respectively camera animations, according to criteria, defined by the type
and implementation of a technique. Examples for such criteria are:

Fall 2010 Workshop 215

Towards Efficient Camera Interaction in Service-based 3D Geovirtual Environments

Collision Avoidance A navigation technique may be capable of creating a camera
path for animation that does not intersect with other scene geometry. There are
several strategies for collision avoidance for camera path computation. Collision
avoidance can be either guaranteed, best-effort or there can also be no collision
avoidance at all.

Orientation Camera navigation techniques can implement orientation preserving fea-
tures. For example, a technique may try to optimize the visibility of landmarks to
provide orientation support to users.

Task Task specific techniques compute camera paths that are specialized in perform-
ing a task such as object inspection, overview tours our routing the camera to a
defined endpoint.

3D Camera services encapsulate camera navigation techniques. They use naviga-
tion commands, which have been computed in preceding steps, alongside with com-
mand specific parameters, e.g., current camera position or a point in space as target
for the camera animation, and return a camera path, which consist of one or sets of
camera parameters that describe at least a camera’s position and orientation. The
path computation itself may use additional data, either originating from the visualiza-
tion service (e.g., for image-based techniques such as the one presented by McCrae et
al. [9]) or from a WFS to provide certain quality features such as, for example, collision
avoidance or a guaranteed visibility of certain points of interest.

5 Summary and Outlook

This report presented a first step towards service support for camera interaction in
service-based 3D geovisualization systems. Here our central point is the definition of
a service-supported interaction process using different processing stages.

The future research towards more user friendly service-based 3D geovisualization
applications is seen in the following areas:

Definition of quality criterions for camera animations The definition of criterions for
camera positions and animations is not trivial. Quality criterions might depend on
several factors defined by the type of application using these camera positions,
the context of a user and especially on the current task to be performed by a 3D
visualization system. To judge the quality of camera positions and respectively
animations, a computable definition of the quality of a scene view is necessary.
A numerical description of the quality of a scene view may then be optimized by
a technique that computes camera paths. A promising approach could be, for
example, using methods from visual analytics in 3D city models, as presented by
Engel and Döllner [5] in connection with image analysis to rate a specific scene
view regarding the quality criteria.

Camera navigation techniques New approaches for creating the camera animation
itself will help to generate camera animation paths that are flexible enough to in-
clude a variety of parameters into the camera path computations. For example,

216 Fall 2010 Workshop

5 Summary and Outlook

Figure 3: Abstract component architecture and data flow of a geovisualization system
using service-based camera navigation

to provide the mentioned context-sensitive camera animations for mobile appli-
cations, the available parameters, such as user position, device orientation and
acceleration, influence the camera animation. One promising approach for such
calculation is using a physics engine to simulate forces that affect the camera
and to create a camera animation. Here, questions for my further research may
include the type of phsical forces (e.g., spring forces, force fields, flow simulation
etc.) that can be used to create a camera animation.

Visual feedback for camera navigation Visualization for current or future actions a
camera animation will include is essential to keep a user oriented and also to
communicate recognized navigation commands to a user of a service-based vi-
sualization system. The research question here is how to introduce meta el-
ements into the visualization that communicate clearly the navigation intention
that a camera animation executes. Especially in the case of indoor visualization
this is an open question in the reasearch community.

Definition of camera control intentions In which way can a user describe complex
camera navigation tasks using conventional input devices. This is important to
allow reliable recognition of navigation commands and to provide task oriented
navigation techniques. Here the central question is, how can semantic data,

Fall 2010 Workshop 217

References

which is available when using geodata for visualization, be used to derive such
intentions in 3D from actions that are performed on the 2D camera view plane.

Camera services Definition, assessment and implementation of the service-based
camera control remains a challenging task. Especially performance consider-
ations together with an analysis of the application potentials and restrictions will
show how such a system can be applied. The definition of exchange formats and
camera service metainformation for the services introduced in Section 4 is an-
other part of work to be done to enable a loosely coupled system and a camera
service registry.

Multi-touch input devices The mapping of the input of tangible displays, which are
increasingly used in end-user hardware, to camera navigation intentions is a
question that will be in focus. The goal to achieve highly interactive visualiza-
tions of massive 3D geodata on small devices demands for more research in
thios specific direction.

References

[1] J. Basanow, P. Neis, S. Neubauer, A. Schilling, and A. Zipf. Towards 3D Spatial
Data Infrastructures (3D-SDI) based on open standards - experiences, results
and future issues. In Advances in 3D Geoinformation Systems, Lecture Notes in
Geoinformation and Cartography, pages 65–86. Springer, 2008.

[2] H. Buchholz, J. Bohnet, and J. Döllner. Smart and Physically-Based Navigation in
3D Geovirtual Environments. In 9th Int. Conf. on Information Visualisation (IV’05),
pages 629–635. IEEE, 2005.

[3] J. de la Beaujardiere. OGC Web Map Service Interface, 2004.

[4] F. Decle and M. Hachet. A Study of Direct Versus Planned 3D Camera Manipu-
lation on Touch-basedMobile Phones. In Proc. of the 11th Int. Conf. on Human-
Computer Interaction with Mobile Devices and Services - MobileHCI ’09, page 1,
New York, USA, 2009. ACM Press.

[5] J. Engel and J. Döllner. Approaches towards visual 3d analysis for digital land-
scapes and its applications. Digital Landscape Architecture Proceedings 2009,
pages 33–41, 2009.

[6] G. Gröger, T. H. Kolbe, A. Czerwinski, and C. Nagel. OpenGIS City Geography
Markup Language (CityGML) Encoding Standard Version 1.0.0, 2008.

[7] B. Hagedorn and J. Döllner. Sketch-Based Navigation in 3D Virtual Environments.
In Proc. of the 9th Int. Symp. on Smart Graphics, volume 5166 of Lecture Notes
in Computer Science, pages 239–246, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg.

218 Fall 2010 Workshop

References

[8] B. Hagedorn, D. Hildebrandt, and J. Döllner. Towards Advanced and Interactive
Web Perspective View Services. In Developments in 3D Geo-Information Sci-
ences, pages 33–51, Berlin/Heidelberg, 2009. Springer.

[9] J. McCrae, I. Mordatch, M. Glueck, and A. Khan. Multiscale 3D Navigation. Proc.
of the 2009 Symp. on Interactive 3D Graphics and Games - I3D ’09, page 7, 2009.

[10] C. Portele. OpenGIS Geography Markup Language (GML) Encoding Standard,
Juli 2007.

[11] P. Schut. OGC Web Processing Service, 2007.

[12] D.S. Tan, G.G. Robertson, and M Czerwinski. Exploring 3D Navigation: Combin-
ing Speed-coupled Flying with Orbiting. In Proc. of the SIGCHI Conf. on Human
Factors in Computing Systems, volume pp, pages 418–425. ACM New York, USA,
2001.

[13] P.A. Vretanos. OGC Web Feature Service Implementation Specification, 2005.

Fall 2010 Workshop 219

Towards Synchronization of Partitioned
Applications

Felix Geller

Software Architecture Group
Hasso-Plattner-Institut

felix.geller@hpi.uni-potsdam.de

The Web has become an established platform for serving advanced applications.
The common partitioning of Web applications into server- and client-side, and ubiq-
uitous access to the Internet faciliate online collaboration. While the division entails
strong benefits, such as simplified release management, multiple client instances raise
issues with regard to synchronization that remain a difficult task for software develop-
ers. More specifically, if clients share or collaborate on common resources these need
to be synchronized among clients, as well as the server. A stateless protocol and pos-
sible delay due to offline use or packet loss further complicate the developers’ task to
ensure a coherent application state.

There is a wide range of frameworks to ease various aspects of Web application
development, such as database access, control flow and markup generation. However,
there is few programming platform support for synchronizing application state across
multiple instances. As a first step, we present related work and highlight the connection
to our goal of facilitating the synchronization of applications.

1 Introduction

Current Web technologies and pervasive access to the Internet enable ubiquitous ac-
cess to advanced user applications. Software providers can build on evolved language
runtimes and rendering systems to produce comprehensive applications. In addition,
they benefit from simplified release management due to a popular client platform and
server-side installations. The established partitioning of Web applications into server-
and client-side entails strong benefits but remains a difficult task for software devel-
opers. The distinction between server and client involves different tool sets and pro-
gramming languages for a single integrated application and communication among
components is aggravated by the use of a stateless protocol.

More recently, distributed teams or the use of smart mobile devices yield multi-
ple client-side instances of a single application. Common examples are online word
processing applications that enable collaboration among a distributed team, or email
clients that run on regular desktop computers as well as mobile devices. Information
needs to be synchronized across instances to ensure a coherent application state.
Changes to a text document need to be propagated to other team members and the

Fall 2010 Workshop 221

Towards Synchronization of Partitioned Applications

current state of an email folder should be consistent across individual application in-
stances.

Figure 1 is an abstract depiction of the described scenario and related approaches
to software deployment. The first column (1) displays a more traditional scenario,
where a user accesses a single application instance on a local computer. In contrast,
Web application instances are usually partitioned into a client- and server-side compo-
nent (2). This usually means that either resources are mirrored between the client and
server, or that changes to the resource are published to the server, which holds the
primary version of the respective resource. The third column (3) depicts the described
scenario of partitioned applications with multiple client instances. This is applicable to
distributed teams or the use of mobile devices that access Web application instances.
There are multiple instances of the client-side component whose application state is
based on shared resources and should be coherent among all instances.

A! AC! AC1!

AS!

ACn!!"

AS!

AC2!

(1)! (2)! (3)!

Server-side!

Client-side!

Figure 1: Synchronization of partitioned applications

Most programming platforms today provide only limited support for software devel-
opers to cope with the difficulty of concurrent connected application instances. Syn-
chronization of application instances across the Web is often aggravated by significant
delay due to offline time or lost packets as a result of poor connections. Delay of syn-
chronization implies a higher chance of deviation of application state and therewith
more difficult conflict resolution. Moreover, finding efficient and appropriate algorithms
for synchronization is a challenging task depending on the application domain.

We suggest to support application development for the described scenario, where
synchronization of multiple instances is required. Inherent platform support for syn-
chronizing multiple partitioned application instances should reduce the complexity of
building applications that support collaboration among teams or can be accessed con-
currently from different devices.

Platform support should encompass appropriate abstractions for managing com-
putation across application partitions and communication among components to syn-
chronize application state. Furthermore, providing inherent platform support offers the

222 Fall 2010 Workshop

2 Related Work

possibilty to automate and optimize tasks that currently are left as manual work to the
software developers. Automated conflict resolution and reduction of communication
payload are possible examples of where platform support may facilitate application de-
velopment.

2 Related Work

Many techniques exist that are related to our scenario. In this section we present an
excerpt of related work and highlight the connection to our goal of synchronizing appli-
cation instances. While existing techniques offer partial solutions to providing inherent
platform support, to the best of our knowledge, there is no previous work that combines
all aspects and supports our scenario in its entirety.

First, we describe a small set of programming languages that contain related
language-level abstractions or were designed with a similar goal in mind. Closely re-
lated are application frameworks that support distributed or partitioned applications and
aim to facilitate the work of software developers. We continue to present techniques
that promise to be assistant when augmenting programming platforms with support for
efficient and automated synchronization of application instances: Orthogonal persis-
tence for applications and optimistic replication of shared resources.

2.1 Programming Languages

Erlang [1] and Clojure [10] are examples for languages that provide relevant abstrac-
tions for performing parallel and possibly distributed computation. For example, Erlang
features concise control structures for scheduling and handling light-weight threads,
while Clojure introduces abstractions to faciliate concurrency issues by separating the
notions of identity and computation of values. Both languages aim to ease application
development for parallel computation by offering suitable abstractions but, to the best
of our knowledge, have no inherent support for synchronization of application state
across instances.

The programming language Acute [15] is an example for a set of languages that
address issues related to distributed computation. Acute examines type-related issues
resulting from communication among components in a distributed setting. For example,
the language aims to support interaction among components that are based on differ-
ent versions of shared modules. Mace [11] is an extension to the C++ programming
language that provides language-level support for developing distributed applications.
It includes facilities to ease event handling across distributed components and support
for verifying the correctness of applications by model-checking. Both approaches aim
to support specification of communication among distributed applications but seem to
include no facilities for synchronization.

The Newspeak programming platform aims to implement the vision of “Objects as
Software Services” [6] where entire applications are synchronized across instances.
Currently, the platform features the programming language Newspeak [7] that was de-
signed to facilitate synchronization, for example by abandoning a global namespace.

Fall 2010 Workshop 223

Towards Synchronization of Partitioned Applications

However, the features related to synchronization are currently limited and not sup-
ported in regular application development.

The programming language Hop [14] supports a two layer programming model for
Web applications: the graphical user interface is managed by the client’s Web browser,
while computation intensive logic resides on the server. The language supports devel-
oping such partitioned applications as a single unit and features transparent communi-
cation among both application components via various event notification mechanisms.
While a holistic approach to Web application development is closely related to our sce-
nario, Hop does not address Web applications with multiple client-side instances and a
single corresponding server instance. Thus, there is currently no inherent support for
synchronization of application state across multiple instances.

2.2 Application Frameworks

There is a wide variety of frameworks that support Web application development. Pop-
ular frameworks1 facilitate the separation of application components according to the
Model-View-Controller pattern and ease access to databases or the generation of
HTML entities via domain specific languages. Other frameworks2 aim to reduce the
complexity that results from using a stateless protocol by managing control-flow of
Web applications via continuations. However, none address the issue of synchronizing
multiple application instances.

The Jini system [17] is an infrastructure that aims to support “network-centric” de-
sign of distributed applications. It is built on the Java language system and allows to
divide computation among loosely coupled entities that communicate via proxies. The
protocol uses the features of the Java language and imposes no additional interface
definition language, as is the case in other popular distributed system. Thus communi-
cation across application components is consistent with internal communication. While
the system offers insights on issues related to distributed systems, there seems to be
no explicit support for synchronization of components.

Croquet [16] is a framework that supports development of interactive multi-user
applications that support collaboration in a 3D space. The system implements the
TeaTime protocol for inter-component communication and content synchronization via
replicated objects. The protocol is a direct extension to the message passing model
of the Squeak Smalltalk platform and depends on synchronous communication. More
recently, the Hedgehog architecture3 introduces a router that acts as a single point
of change for coordinating message propagation across replicated instances. There
is only rudimentary support for resolving conflicts caused by deviation in application
state. However, divergence of resources of Web application is often caused by delay
as described in the first section and imposes a significant challenge in our scenario.

1Examples are: Django and Ruby on Rails, available at http://www.djangoproject.com/ and
http://www.rubyonrails.org respectively, last accessed on October 8th, 2010.

2Examples are: Seaside and the Racket Web server, available at http://www.seaside.st/ and
http://docs.racket-lang.org/Web-server-internal respectively, last accessed on October 8th, 2010.

3”Croquet - Hedgehog”, http://www.opencroquet.org/images/e/ee/2005_Hedgehog_Architecture.pdf,
last accessed on October 8th, 2010.

224 Fall 2010 Workshop

2 Related Work

2.3 Orthogonal Persistence

Orthogonal persistence [5] for applications means that each value in an application
may automatically be persisted, thus enabling resumption of application state at a later
point in time. The goal of orthogonal persistence for application development is re-
lated in terms of efficiently managing the evolution of application state without impact
on program performance. Value changes of persisted objects need to be propagated
to a persistent store whithout affecting regular execution. Similarly, changes to shared
resources or application state should be propagated among synchronized instances
without imposing performance overhead. However, in contrast to most persistent ap-
plication systems, our scenario involves delay that may cause significant differences
between instances.

There exists research on supporting orthogonal persistence for the Java program-
ming language [2–4] that documents design decisions, as well as related work that
highlights general points of critique for orthogonal persistence [8]. Considering both
perspectives should be assistant to adding efficient run-time platform support for syn-
chronization of application instances.

2.4 Optimistic Replication

Data replication enables collaboration on shared resources and is often used to gain
benefits through redundancy. Optimistic replication refers to redundant data manage-
ment where replicas might deviate for short periods of time, allowing for temporary
inconsistencies among copies. This relaxation enables certain improvements with re-
spect to performance and facilitates collaboration where users are able to contribute
changes independently. On the other hand, diverging resource state can lead to con-
flicts and thus resolving differing versions is a common concern for the optimistic ap-
proach. However, optimistic replication provides assistant insights with respect to our
scenario where application instances might deviate due to delay.

Saito and Shapiro provide a comprehensive survey [13] of related research, as
well as, point out existing techniques that are implemented in existing products. In
Figure 2 they summarize the individual stages and actions that are commonly part of
optimistic replication approaches. They list techniques for each stage and point out
their applicability for different scenarios. Based on this comprehensive analysis, we
are able to evaluate individual techniques with respect to our scenario.

With respect to submission of operations, in our scenario, it should be possible to
immediately execute operations locally and independently of related instances. More
specifically, operations should be performed without delay resulting from re-ordering
operations (for example, to resolve differences caused by concurrent operations on
other instances). If a client works offline, state deviation is imminent. But rather than
deferring local actions to be coordinated pessimistically to prevent conflicts, platform
support should allow immediate execution and faciliate conflict resolution.

The concept of operational transformations [9] supports these requirements: Op-
erations are immediately executed locally and remote operations are transformed to
resolve conflicts if applicable. Moreover, part of the research on operational transfor-

Fall 2010 Workshop 225

Towards Synchronization of Partitioned Applications

44 Y. Saito and M. Shapiro

Fig. 1. Elements of optimistic replication and their roles. Disks represent
replicas, memo sheets represent operations, and arrows represent commu-
nications between replicas.

assumption that problems will occur only
rarely, if at all. Updates are propagated in
the background, and occasional conflicts
are fixed after they happen. It is not a
new idea,1 but its use has expanded as the
Internet and mobile computing technolo-
gies have become more widespread.

Optimistic algorithms offer many ad-
vantages over their pessimistic counter-
parts. First, they improve availability;
applications make progress even when
network links and sites are unreliable.2
Second, they are flexible with respect
to networking because techniques such
as epidemic replication propagate opera-
tions reliably to all replicas, even when
the communication graph is unknown
and variable. Third, optimistic algorithms
would scale to a large number of repli-
cas because they require little synchro-
nization among sites. Fourth, they allow
sites and users to remain autonomous. For
example, services such as FTP and Usenet
mirroring [Nakagawa 1996; Krasel 2000]
let a replica be added with no change to ex-
isting sites. Optimistic replication also en-

1Our earliest reference is from Johnson and Thomas
[1976], but the idea was certainly developed much
earlier.
2Tolerating Byzantine (malicious) failures is outside
our scope; we cite a few recent papers in this area:
Spreitzer et al. [1997], Minsky [2002], and Mazières
and Shasha [2002].

ables asynchronous collaboration between
users, as in CVS [Cederqvist et al. 2001;
Vesperman 2003] or Lotus Notes [Kawell
et al. 1988]. Finally, optimistic algorithms
provide quick feedback as they can apply
updates tentatively as soon as they are
submitted.

These benefits, however, come at a cost.
Any distributed system faces a trade-off
between availability and consistency [Fox
and Brewer 1999; Yu and Vahdat 2002;
Pendone 2001]. Where a pessimistic algo-
rithm waits, an optimistic one speculates.
Optimistic replication faces the chal-
lenges of diverging replicas and conflicts
between concurrent operations. It is thus
applicable only for applications that can
tolerate occasional conflicts and inconsis-
tent data. Fortunately, in many real-world
systems, especially file systems, conflicts
are known to be rather rare, thanks to the
data partitioning and access arbitration
that naturally happen between users
[Ousterhout et al. 1985; Baker et al. 1991;
Vogels 1999; Wang et al. 2001].

1.3. Elements of Optimistic Replication

This section introduces basic concepts of
optimistic replication and defines com-
mon terms that are used throughout the
article. We will discuss them in more
detail in later sections. Figure 1 illus-

ACM Computing Surveys, Vol. 37, No. 1, March 2005.

Figure 2: Elements of optimistic replication and their roles [13]

mations aims to support remote collaboration in high-latency networks and thus may
be applicable to our described scenario that involves delay between synchronization
points. Existing extensions to the original work, such as synchronization of a file sys-
tem based on operational transformations [12], provide further support. Issues that
arise when applying the concept to synchronizing application state are dependent on
the domain of the application. For example, the identification of operations and possi-
ble rewriting rules to resolve conflicts pose challenges in our scenario of synchronizing
applications.

3 Summary and Outlook

The related research encompasses different approaches none of which are geared
solely towards our scenario of supporting the synchronization of partitioned applica-
tions. While partial solutions are presented and various techniques may be applicable
to parts of our scenario, we briefly summarize our scenario and highlight next steps to
further investigate platform support for application synchronization.

We propose to augment programming platforms to include support for synchroniz-
ing application state across multiple instances. Inherent platform support can help to
shift the difficulty of partitioning an integrated application and supporting synchroniza-
tion of multiple instances. More specifically, we suggest considering two connected
problems that arise when developers synchronize multiple concurrent application in-
stances:

226 Fall 2010 Workshop

References

1. Finding appropriate abstractions to control the synchronization of state across
multiple instances of an integrated application. The interfaces for communication
among components should be consistent with intra-component communication
and not be obscured by additional protocols. While well-defined protocols en-
sure communication among loosely related applications, they impose additional
complexity when the software architect is aware and in control of the connections
between components. Nevertheless, inter-component communication should be
explicit. More specifically, the software developer should be aware of compo-
nent boundaries and respective consequences. In summary, software developers
should retain an appropriate level of control over the distribution of where logic
and state is handled.

2. Platform support to enable efficient automated application synchronization while
handling delay. Augmenting platforms with support for application synchroniza-
tion enables automation and optimization of tasks that currently remain with the
software developer. Optimizations should aim to reduce the payload and required
frequency of communication among partitions of an application. Moreover, auto-
mated synchronization should be supported by appropriate techniques for conflict
management, especially in the light of delay and resulting deviations in applica-
tion state.

In summary, we suggest to reduce the complexity of dealing with partitioned appli-
cations with multiple client-side instances by offering inherent platform support. While
the main goal is to alleviate program development, such inherent support also raises
questions in regard of security and creates room for improvement. For example, by
further utilization of information that becomes available by synchronizing multiple ap-
plication instances, such as the identification of corrupt application components. We
plan to investigate these questions further as platform support is available for experi-
mentation.

References

[1] Joe Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf, 2007.

[2] M. P. Atkinson, L. Daynès, M. J. Jordan, T. Printezis, and S. Spence. An Orthog-
onally Persistent Java. SIGMOD Rec., 25(4):68–75, 1996.

[3] Malcolm P. Atkinson, Mick J. Jordan, Laurent Daynès, and Susan Spence. Design
Issues for Persistent Java: A Type-Safe, Object-Oriented, Orthogonally Persistent
System. In Richard C. H. Connor and Scott Nettles, editors, Workshop on Persis-
tent Object Systems, pages 33–47, 1996.

[4] Malcom Atkinson and Mick Jordan. Providing Orthogonal Persistence for Java.
ECOOP’98, pages 383–395, 1998.

Fall 2010 Workshop 227

References

[5] Malcom P. Atkinson, Peter J. Bailey, Kenneth J. Chisholm, Paul W. Cockshott, and
Ronald Morrison. An Approach to Persistent Programming. The computer journal,
26(4):360, 1983.

[6] Gilad Bracha. Objects as Software Services. Whitepaper Available Online at:
http://bracha.org/objectsAsSoftwareServices.pdf, August 2006.

[7] Gilad Bracha. Newspeak Programming Language Draft Specification Version
0.05. 2009.

[8] Tim Cooper and Michael Wise. Critique of Orthogonal Persistence. In Proceed-
ings of the 5th International Workshop on Object Orientation in Operating Sys-
tems, pages 122–126. IEEE Computer Society, 1996.

[9] C. A. Ellis and S. J. Gibbs. Concurrency Control in Groupware Systems. In Pro-
ceedings of the 1989 ACM SIGMOD international conference on Management of
data, SIGMOD ’89, pages 399–407, New York, NY, USA, 1989. ACM.

[10] Stuart Halloway. Programming Clojure. Pragmatic Bookshelf, 2009.

[11] Charles Edwin Killian, James W. Anderson, Ryan Braud, Ranjit Jhala, and
Amin M. Vahdat. Mace: Language Support for Building Distributed Systems. In
PLDI ’07: Proceedings of the 2007 ACM SIGPLAN conference on Programming
language design and implementation, pages 179–188, New York, NY, USA, 2007.
ACM.

[12] Pascal Molli, Gérald Oster, Hala Skaf-Molli, and Abdessamad Imine. Safe Generic
Data Synchronizer. Research Report A03-R-062, LORIA – INRIA Lorraine, May
2003.

[13] Yasushi Saito and Marc Shapiro. Optimistic Replication. ACM Computing Surveys,
37(1):42–81, March 2005.

[14] Manuel Serrano, Erick Gallesio, and Florian Loitsch. Hop, a Language for Pro-
gramming the Web 2.0. In OOPSLA ’06: Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems, languages, and applica-
tions, pages 975–985, New York, NY, USA, 2006. ACM.

[15] Peter Sewell, James J. Leifer, Keith Wansbrough, Francesco Zappa Nardelli, Mair
Allen-Williams, Pierre Habouzit, and Viktor Vafeiadis. Acute: High-Level Program-
ming Language Design for Distributed Computation. Journal of Functional Pro-
gramming, 17(4-5):547–612, 2007.

[16] David A. Smith, Alan Kay, Andreas Raab, and David P. Reed. Croquet–A Collab-
oration System Architecture. In Proceedings of the First Conference on Creating,
Connecting, and Collaborating through Computing (C503), pages 2–9, 2003.

[17] Jim Waldo. The JINI Architecture for Network-Centric Computing. Communica-
tions of the ACM, 42(7):76–82, 1999.

228 Fall 2010 Workshop

Aktuelle Technische Berichte
des Hasso-Plattner-Instituts

Band ISBN Titel Autoren / Redaktion

45 978-3-86956-

128-8
Survey on Healthcare IT systems:
Standards, Regulations and Security

Christian Neuhaus,
Andreas Polze,
Mohammad M. R. Chowdhuryy

44 978-3-86956-
113-4

Virtualisierung und Cloud Computing:
Konzepte, Technologiestudie,
Marktübersicht

Christoph Meinel, Christian
Willems, Sebastian Roschke,
Maxim Schnjakin

43 978-3-86956-
110-3

SOA-Security 2010 : Symposium für
Sicherheit in Service-orientierten
Architekturen ; 28. / 29. Oktober 2010 am
Hasso-Plattner-Institut

Christoph Meinel,
Ivonne Thomas,
Robert Warschofsky et al.

42 978-3-86956-
114-1

Proceedings of the Fall 2010 Future SOC
Lab Day

Hrsg. von Christoph Meinel,
Andreas Polze, Alexander Zeier
et al.

41 978-3-86956-
108-0

The effect of tangible media on
individuals in business process modeling:
A controlled experiment

Alexander Lübbe

40 978-3-86956-
106-6

Selected Papers of the International
Workshop on Smalltalk Technologies
(IWST’10)

Hrsg. von Michael Haupt,
Robert Hirschfeld

39 978-3-86956-
092-2

Dritter Deutscher IPv6 Gipfel 2010 Hrsg. von Christoph Meinel und
Harald Sack

38 978-3-86956-
081-6

Extracting Structured Information from
Wikipedia Articles to Populate Infoboxes

Dustin Lange, Christoph Böhm,
Felix Naumann

37 978-3-86956-
078-6

Toward Bridging the Gap Between Formal
Semantics and Implementation of Triple
Graph Grammars

Holger Giese,
Stephan Hildebrandt,
Leen Lambers

36 978-3-86956-
065-6

Pattern Matching for an Object-oriented
and Dynamically Typed Programming
Language

Felix Geller, Robert Hirschfeld,
Gilad Bracha

35 978-3-86956-
054-0

Business Process Model Abstraction :
Theory and Practice

Sergey Smirnov, Hajo A. Reijers,
Thijs Nugteren, Mathias Weske

34 978-3-86956-
048-9

Efficient and exact computation of
inclusion dependencies for data
integration

Jana Bauckmann, Ulf Leser,
Felix Naumann

33 978-3-86956-
043-4

Proceedings of the 9th Workshop on
Aspects, Components, and Patterns for
Infrastructure Software (ACP4IS '10)

Hrsg. von Bram Adams,
Michael Haupt, Daniel Lohmann

32 978-3-86956-
037-3

STG Decomposition:
Internal Communication for SI
Implementability

Dominic Wist, Mark Schaefer,
Walter Vogler, Ralf Wollowski

31 978-3-86956-
036-6

Proceedings of the 4th Ph.D. Retreat of
the HPI Research School on Service-
oriented Systems Engineering

Hrsg. von den Professoren
des HPI

30 978-3-86956-
009-0

Action Patterns in Business Process
Models

Sergey Smirnov, Matthias
Weidlich, Jan Mendling,
Mathias Weske

ISBN 978-3-86956-129-5
ISSN 1613-5652

	Titelblatt
	Impressum

	Contents
	Towards a Truly Retargetable Decompiler (Jan-Arne Sobania)
	1 Introduction
	2 Related Work
	3 Processor Features
	3.1 Stack vs. Register Machines
	3.2 Basic Instructions
	3.3 Register Operands
	3.4 Control Flow Instructions Revisited
	3.5 Register renaming
	3.6 Speculative Execution
	3.7 Invoking Code on Co-Processors

	4 Decompiler Architecture
	4.1 The Compiler Pipeline
	4.2 Decompilation Overview
	4.3 The Decompiler Core

	5 Decompilation Example: .NET CIL to OpenCL
	6 Intel SCC: Many-Core and Beyond
	7 Summary and Conclusions
	References

	Unifying the definition of megamodels: Toward describing service-oriented system's development (Regina Hebig)
	1 Introduction
	2 State of the Art
	2.1 Definition of Megamodels and Related Terminologies
	2.2 Comparing the definitions
	2.3 Application of Megamodels
	2.4 Characteristics of Megamodel Approaches

	3 Unified Definition of Megamodel
	4 Conclusion & Future Work
	References

	A Granular Approach for Information Lifecycle Management in the Cloud (Johannes Lorey)
	1 Research Context and Related Work
	1.1 Information Lifecycle Management
	1.2 Cloud Storage
	1.3 Distributed Databases

	2 Granular Access
	2.1 Fragments
	2.2 Two-dimensional Granular Access
	2.3 Three-dimensional Granular Access

	3 System Design
	3.1 Transaction Analyzer
	3.2 Fragment Cohesion Calculator
	3.3 Fragment Analyzer
	3.4 Cost Estimator
	3.5 Storage Dispatcher

	4 Summary and Next S
	References

	Data in Business Process Modeling (Andreas Meyer)
	1 Introduction
	2 Data in Business Process Modeling Notations
	2.1 Classification
	2.2 Discussion of Activity-driven Approach
	2.3 Discussion of Data-driven Approach
	2.4 Discussion of Communication-driven Approach
	2.5 Conclusion of Approaches Discussion

	3 Dependencies between Business Process Models and Data Object Life Cycles
	4 Conclusion
	References

	Semantics Detection for Data Quality Web Services (Tobias Vogel)
	1 The Need for Data Quality
	2 Workflow
	3 Attribute Classification
	3.1 Features
	3.2 Correspondence Matrix
	3.3 1:k Mapping

	4 Evaluation
	5 Related Work
	6 Summary and Roadmap
	References

	A Shared Platform for the Analysis of Virtual Team Collaboration (Thomas Kowark)
	1 Introduction
	2 Prior Work
	3 Related Work
	4 Platform Development and Application
	4.1 A Software-as-a-Service Approach to Virtual Collaboration Analysis
	4.2 Case Studies

	5 Summary
	References

	Programming Models for Parallel Heterogeneous Computing (Frank Feinbube)
	1 Motivation
	2 Domains of Hybrid Systems
	2.1 High Performance Computing
	2.2 Business Servers
	2.3 Desktop Computers
	2.4 Mobile and Embedded Systems

	3 Programming Models
	4 Research Plan
	5 Recent Activities
	5.1 Paper presentation at the 9th International Symposium on Parallel and Distributed Computing (ISPDC)
	5.2 Visiting the UPCRC Summer School
	5.3 Journal Paper for the IEEE Software: Survey on Best Practices for Optimizations in GPU Computing
	5.4 Knowledge Sink for Use Cases, Tools and Libraries
	5.5 Example Implementations of Representative Use Cases
	5.6 Prototype to Run OpenCL-Code from .NET

	6 Conclusion
	References

	A Study on Mobile Real-Time Middleware (Uwe Hentschel)
	1 Introduction
	2 Middleware for mobile distributed systems
	3 Effects which influence mobile communication
	3.1 Real world effects
	3.2 Transmission layer
	3.3 Applications layer

	4 End-to-end measurement of available bandwidth
	5 Proposals for solution
	5.1 Mobile device as passive node
	5.2 Mobile device as active node

	6 Adaptation to different conditions
	6.1 Measurement of information
	6.2 Derivation of information

	7 Conclusions
	References

	Understanding Service Implementations Through Behavioral Examples (Michael Perscheid)
	1 Introduction
	2 Dynamic Service Analysis
	2.1 Entry Point Characteristics
	2.2 Step-wise Run-time Analysis
	2.3 Link Entry Points, Get Traceability

	3 An Overview of the Path Tool Suite
	3.1 PathFinder: Interactive Dynamic Views
	3.2 PathMap: What We Can Learn from Tests
	3.3 PathTrace: Understanding the User’s Point of View

	4 Case Study: Fault Localization in Seaside
	5 Summary and Next Steps
	References

	Modeling Browser-based Mashups by Means of Meaningful Choreographies (Emilian Pascalau)
	1 Introduction
	2 Use Case
	3 Enriching choreography models with contextual information
	4 Related work
	5 Conclusions
	References

	 Multiple Runtime Models and their Relations for Self-Management (Thomas Vogel)
	1 Introduction
	2 Structural Adaptation and Abstract Runtime Models
	3 Runtime Models, Relations and Megamodels
	4 Conclusion and Future Work
	References

	Recent Developments in JCop – Context-oriented Concurrency Control and Compiler Optimization (Malte Appeltauer)
	1 Introduction
	2 Context-oriented Concurrency Control
	2.1 View-based Concurrency
	2.2 JCop Approach

	3 Compiler Optimization
	3.1 Invoke Dynamic Bytecode Instruction
	3.2 Implementing Layer-aware Method Lookup
	3.2.1 JCop Mapping
	3.2.2 INVOKEDYNAMIC Implementation

	4 Summary and Next Steps
	References

	Towards Service-Oriented, Standards- and Image-Based Styling of 3D Geovirtual Environments (Dieter Hildebrandt)
	1 Introduction
	2 Fundamentals
	2.1 Image Post-Processing
	2.2 Styling

	3 Analysis
	4 Design
	5 Implementation and Evaluation
	6 Summary, Conclusions, and Next Steps
	References

	Modeling and Verification of Self-Adaptive Service-Oriented Systems (Basil Becker)
	1 Introduction
	2 Requirements
	2.1 Modeling

	3 State of the Art
	4 Goals of the Thesis
	References

	Parsing Behavior: The Hierarchical Nature of Concurrent Systems (Artem Polyvyanyy)
	1 Parsing Workflow Graphs
	2 Parsing Ordering Relations
	3 Structuring Acyclic Concurrent Systems
	4 Conclusion
	References

	Categorization and Use of Identity Trust (Ivonne Thomas)
	1 Introduction
	1.1 Limitations of current assurance frameworks

	2 An Example Scenario
	3 Two Layered Trust Model
	3.1 Categorization of Identity Trust
	3.2 Verification Classes for Identity Attributes
	3.2.1 Assigning Identity Attributes To Verification Methods

	4 Formalisation and Implementation
	4.1 Formalization
	4.1.1 Revisiting the Example Scenario

	4.2 Implementation

	5 Conclusion and ongoing work
	6 List of Latest Publications
	References

	Enabling Reputation Interoperability through Semantic Technologies (Rehab Alnemr)
	1 Introduction
	2 Reputation Object: Model and Ontology
	3 Model development using Semantic Technologies
	3.1 A Simple View: Reputation Objects in RDF Graphs
	3.2 Reputation Expressiveness via Reputation Object Ontology
	3.3 Implementation

	4 Applications
	4.1 Reputation Management in Rule Responder
	4.2 A Reputation Object Service in a Cloud Architecture

	5 Conclusion and Next Steps
	References

	A Proactive Service Registry With Enriched Service Descriptions (Mohammed AbuJarour)
	1 The Role of Service Descriptions
	2 Research Context and Research Problem
	3 Depot at a Glance
	4 Implementation Details
	4.1 Focused Crawler and WSDL and Information Parser
	4.2 Web Service Explorer
	4.3 Web Service Executor and Invocation Analyzer

	5 Related Work
	6 Summary and Roadmap
	References

	Towards Automated Analysis and Visualization of Distributed and Service-based Software Systems (Martin Beck)
	1 Introduction
	2 Related Work
	3 Data Acquisition
	3.1 Extracting Structural Information
	3.2 Extracting Behavioral Information
	3.3 Data Collection

	4 Analysis
	5 Visualization
	5.1 Structure Visualization
	5.2 Behavior Visualization

	6 Summary & Future Work
	References

	Towards Efficient Camera Interaction in Service-based 3D Geovirtual Environments (Jan Klimke)
	1 Introduction
	2 Related Work
	3 The Camera Interaction Process
	4 Service Support for Camera Interaction
	5 Summary and Outlook
	References

	Towards Synchronization of Partitioned Applications (Felix Geller)
	1 Introduction
	2 Related Work
	2.1 Programming Languages
	2.2 Application Frameworks
	2.3 Orthogonal Persistence
	2.4 Optimistic Replication

	3 Summary and Outlook
	References

	Aktuelle Technische Berichte des Hasso-Plattner-Instituts

