
Technische Berichte Nr. 42

des Hasso-Plattner-Instituts für
Softwaresystemtechnik
an der Universität Potsdam

Proceedings of the Fall

2010 Future SOC

Lab Day

Christoph Meinel, Andreas Polze, Alexander Zeier,
Gerhard Oswald, Dieter Herzog, Volker Smid,
Doc D‘Errico, Zahid Hussain (Hrsg.)

Technische Berichte des Hasso-Plattner-Instituts für
 Softwaresystemtechnik an der Universität Potsdam

Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam | 42

Christoph Meinel | Andreas Polze | Alexander Zeier | Gerhard Oswald
Dieter Herzog | Volker Smid | Doc D'Errico | Zahid Hussain (Hrsg.)

Proceedings of the Fall 2010 Future SOC Lab Day

Universitätsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet über http://dnb.d-nb.de/ abrufbar.

Universitätsverlag Potsdam 2011
http://info.ub.uni-potsdam.de/verlag.htm

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 4623 / Fax: 3474
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam wird herausgegeben
von den Professoren des Hasso-Plattner-Instituts für Softwaresystemtechnik
an der Universität Potsdam.

ISSN (print) 1613-5652
ISSN (online) 2191-1665

Das Manuskript ist urheberrechtlich geschützt.

Online veröffentlicht auf dem Publikationsserver der Universität Potsdam
URL http://pub.ub.uni-potsdam.de/volltexte/2011/4976/
URN urn:nbn:de:kobv:517-opus-49761
http://nbn-resolving.org/urn:nbn:de:kobv:517-opus-49761

Zugleich gedruckt erschienen im Universitätsverlag Potsdam:
ISBN 978-3-86956-114-1

mailto:verlag@uni-potsdam.de�

Contents

Prof. Dr. Torsten Eymann, Wirtschaftsinformatik, Universität Bayreuth

Simulating the Internet of Services at the HPI Future SOC Lab 1

A protocol-generic Infrastructure for electronic SLA Negotiations in the Internet of Services 5

Dr. Tobias Friedrich, Algorithms and Complexity Group, Max-Planck-Institut In-
formatik

Simulation of Physical Growth Models . 11

Prof. Dr. Holger Giese, System Analysis and Modeling Group, Hasso-Plattner-
Institut

Towards Scalable and Self-Optimizing Software for Multi-Core and Cloud Computing . . . 15

Prof. Dr. Ben Juurlink, Architektur eingebetteter Systeme, Technische Universität
Berlin

Evaluation of the CMPSs Programming Model for Consumer Applications 21

Prof. Dr. Wolfgang Lehner, Database Technology Group, TU Dresden

Query Processing on Prefix Trees . 23

Dr. Martin von Löwis, Operating Systems & Middleware Group, Hasso-Plattner-
Institut

Build Automation as a Service . 27

Dr. Christian Mathis, Office of the CTO - Strategic Projects, SAP AG

Parallel Aggregation and Join Computation in NewDB . 31

Prof. Dr. Christoph Meinel, Internet-Technologies and Systems Group, Hasso-
Plattner-Institut

IDS Alert Correlation using In-Memory and Multi-Core 35

Enlargement of the Search Domain of the tele-TASK Portal 39

Prof. Dr. David Patterson, Electrical Engineering and Computer Sciences, Univer-
sity of California at Berkeley

Workload Management for Main Memory Databases in Data Clouds 43

Prof. Dr. h.c. Hasso Plattner, Enterprise Platform and Integration Concepts,
Hasso-Plattner-Institut

An Architecture-Aware Compaction Process . 49

i

Prof. Dr. Andreas Polze, Operating Systems & Middleware Group, Hasso-Plattner-
Institut

Pro-Active Virtual Machine Migration in the HPI FutureSOC Lab 53

Prof. Dr. Rainer Thome, Betriebswirtschaftslehre und Wirtschaftsinformatik, Uni-
versity of Wuerzburg

Rule based Business Matrix Processing (RBM) Business Rules for realtime Process Man-
agement based on In-Memory Technology . 59

Dr. Peter Tröger, Operating Systems & Middleware Group, Hasso-Plattner-Institut

Software-Implemented Fault Injection in the HPI FutureSOC Lab 63

Dr. Dirk Werth, Institute for Information Systems (IWi), German Research Center
for Artificial Intelligence (DFKI)

B-HiP Business For High-Performance Computing . 67

Prof. Dr. Mathias Weske, Business Process Technology Group, Hasso-Plattner-
Institut

Business Process Model Intelligence . 73

ii

Simulating the Internet of Services at HPI Future SOC Lab

Stefan König
University of Bayreuth

Chair of Information Systems Management
95440 Bayreuth

stefan.koenig@uni-bayreuth.de

Torsten Eymann
University of Bayreuth

Chair of Information Systems Management
95440 Bayreuth

torsten.eymann@uni-bayreuth.de

Abstract

The Internet-of-Services (IoS) describes a general
computational paradigm, which allows companies to
procure computational resources externally and thus
to save both internal capital expenditures and opera-
tional costs. Due to the decentralized and open na-
ture of the IoS common access control mechanisms
(”hard security”) are not sufficient. Additionally,
socio-economic mechanisms like controlled markets
in combination with reputation mechanisms should be
implemented. This project focuses on large scale sim-
ulation experiments to substantiate former findings.

1. Project Idea

In the proposed project we will investigate to what ex-
tend socio-economical mechanisms can help to close
the gap that traditional access control mechanisms
leave open. In particular, we want to conduct simula-
tions to assess the effect of different reputation track-
ing mechanisms; e.g. the detection of fraudsters in the
market population in terms of speed, rate and adapt-
ability; different options to calculate the risk of fraud
and to rank transaction partners accordingly; the over-
all utility for the market as well as the individual utility
for the single participant. In a more abstract view on
the problem, we will thus try to answer the question
how much of the ex-ante concepts of traditional secu-
rity can be substituted or enhanced by using dynamic
and runtime socio-economic control [1].
Due to the visionary nature of the IoS [8], we need
a simulation environment that allows us to test dif-
ferent mechanisms in future IoS settings. Man-
aged by the University of Bayreuth, the simulation
toolset SimIS (Simulating the Internet of Services:
http://sourceforge.net/projects/simis/), which allows
to simulate socio-economical mechanisms in these Fu-
ture Internet settings, has been developed. Preliminary
results show that the combination of negotiation proto-
cols with established reputation mechanisms promise
a suitable usage control of these open and distributed
systems during runtime.

Figure 1: SimIS Architecture [3]

1.1 Simulation Environment

In order to evaluate the socio-economic mechanisms
later, we have to introduce a simulation environment,
called SimIS [3], that follows the IoS vision. This sys-
tem is able to model Internet-like networks where the
nodes are hosting active services. The messages fol-
low the SOAP messages structure and the service in-
terfaces follow real-world Web Services technology.

1.1.1 Technological Base: Repast Toolkit

The SimIS1 toolkit was implemented as an exten-
sion to the Recursive Porous Agent Simulation Toolkit
[7], developed at the Argonne National Lab, Chicago.
Repast is a free and open source agent-based mod-
elling toolkit [4]. This foundation was chosen due to
its comprehensive API, the very generic and easy to
use set of data gathering and analysis functions as well
as the support for network modelling (including re-
spective programming libraries). Technically, the cur-
rent version of SimIS is based on Repast Symphony
and is completely implemented in the Java program-
ming language.

1.1.2 SimIS Architecture

In order to map the abstract IoS architecture to our
simulation model a two-tiered architecture for SimIS
seems suitable. The overall system is thus divided
into an Application Layer and an Infrastructure Layer.
An overview of the overall architecture is illustrated in
Figure 1.
The Infrastructure Layer models topological settings
of the IoS. The basic idea is that all Application Layer

1For more information see http://simis.sourceforge.net

1

Agents or Services are linked to a single Infrastruc-
ture Agent each, which is representing their server
platform. This platform is therefore responsible for
sending messages to other Application Layer Agents
(including routing and communication patterns, such
as broad- or multicast), and receiving messages from
other Infrastructure Agents and passing them on to ei-
ther other Infrastructure Agents (in case the agent rep-
resents only the next step on the message’s route) or to
one or more Application Layer Agents associated with
it (in case these are the recipients) [3].
Within the Application Layer the actual services of
the IoS vision are modelled. Basically the under-
lying Infrastructure Layer provides us with a high-
enough flexibility for implementing any service logic
in terms of Application Layer Agents communicating
via the offered message objects and routing functional-
ity. Each service (Application Layer Agent) is imple-
mented as a plain Java class and can therefore exploit
the full potential this programming language offers
in addition to the libraries present within the SimIS
toolkit.

2 Used Future SOC Lab Resources

Before joining the Future SOC Lab Consortium, we
conducted simulation experiments using graphical in-
terfaces. For the project we are going to extend the
simulation environment to enable a complete com-
mand line control. This phase still lasts for some time.
Nevertheless we have started to replicate some exper-
iments (see section 3 for details). The methodological
approach of replicating agent-based simulation model
is based on the general framework of Edmonds and
Hales [2], see figure 2, but considers also more de-
tailed issues of Sansores and Pavón [9].
In order to replicate the simulation experiments, we
worked on a virtual machine that has been provided
by the HPI Future SOC Lab. The machine has 8 GB
RAM, 2-Core CPU and 40 GB HDD available. In or-
der to replicate the simulation experiment the machine
was busy for about eight hours.

3 Findings

This section first presents the simulation scenario that
is the same for the original simulation experiments and
the replicated experiments. Following, the metrics are
defined before the simulation results of the original ex-
periments are presented.

3.1 Simulation Scenario

As just mentioned, the topology will be divided into
an Infrastructure Layer consisting of nodes and edges
between them, and an Application Layer. The network
used for simulation experiments consists of 100 nodes

that are connected not heavy-weighted and not long-
tailed. The mean distance between the nodes is about
3.26 with an maximum distance between two nodes of
six hops.
For the following simulation experiments, 200 Service
Provider (SP) agents and 200 Service Consumer (SC)
agents will be deployed at the beginning of the sim-
ulation experiment. In order to introduce dynamics,
participants are substituted by newcomers during the
simulation experiments. The time range for the substi-
tution process is set to a value that in average the com-
plete population of agents is replaced once during one
simulation experiment of 100,000 time ticks. Depend-
ing on the payment model 10% SP cheaters or 10% SC
cheaters are deployed. This rate might fluctuate due to
the dynamic character of the system.
For each simulation setting, the products that are ne-
gotiated are fixed by a certain functional attribute def-
inition. This attribute combination is assumed to be
defined by an underlying service description. The one
and only attribute that is negotiated is denoted by the
price. The negotiation outcome is determined by a
(M+1)st price Double Auction [10].

3.2 Metrics

As the simulation scenario has been defined, the met-
rics for the simulation experiments are introduced
now. The fulfilment rate and the negotiation rate are
plotted in dependence of the simulation time.
The concrete implementation of the fulfilment de-
pends on the payment model of the simulation experi-
ment: if the service has to be paid in advance, the ful-
filment rate considers the service fulfilment (see equa-
tion 1). For each participant the rate of successful ser-
vices against failed services are noted. Without any
reputation system, one would expect that the service
fulfilment rate corresponds to the rate of cheaters in the
system. If the service has to be paid after it has been
fulfilled, the fulfilment rate considers the payment ful-
filment. Then, for each SP the rate of successful pay-
ments against failed payments are plotted over time.

fr =

|SCs|∑
i

servicesreceivedi

servicespaidi

(1)

3.3 Simulation Results

In the following simulations each single experiment
is repeated for 10 times using different Random val-
uations and makes use of the modified Double Auc-
tion Protocol. During the data analysis the mean of
the time series is taken for further analysis. The sim-
ulation outcome is further compared to the case that
uses the initial Double Auction protocol. In both
cases, AV ALANCHEdec is used as decentralized
trust and reputation model for all participants (SPs and
SCs). AV ALANCHEdec is an extended approach

2

Original SimIS simulation
(using modi�ed Double

Auction Protocol)

SimIS@HPI Future SOC
Lab (using the same

parameters)

Results of SimIS@HPI
Future SOC Lab

Results on impact of
Reputation in Double

Auctions (not published
yet)

re
vi

se

pr
od

uc
es

pr
od

uc
es

compare

informs

Figure 2: Relationship between published model and re-implementation (following [2])

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time ticks

fu
lfi

lm
en

t r
at

e

pay later
pay later, modified DA protocol
pay before, modified DA protocol
pay before

Figure 3: Double Auction Fulfilment Rate

of AV ALANCHE, a reputation tracking mechanism
for Multi-Agent Systems [5, 6]. AV ALANCHEdec

is identical to the original approach with one excep-
tion: the reputation value are not stored within a cen-
tralized reputation unit. Instead, all intelligent services
(agents) are responsible for managing their own expe-
riences and providing this information to requesting
agents. This change becomes necessary due to the IoS
requirements of avoiding central instances to keep this
decentralized system running.
Figure 3 illustrates the overall fulfilment rate of the
scenario’s simulation experiments. The figure denotes
the payment fulfilment in the pay-later and the service
fulfilment in the pay-before model. As we have 10%
of cheating agents, the fulfilment rate is expected at
about 90%. As we have seen above, the reference case
(initial Double Auction protocol) exactly fulfils the ex-
pectation with a constant fulfilment rate of about 90%
(dotted lines).
The continuous lines illustrate the service or payment
fulfilment rates when using AV ALANCHEdec com-
bined with the modified Double Auction protocol. The
service fulfilment rate increases for about eight percent
points compared to the simulation outcome with the
initial Double Auction protocol. Both suitable pay-
ment models (pay-before or pay-later) lead to analo-

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time ticks

fu
lfi

lm
en

t r
at

e

pay later
pay later, modified DA protocol
pay before, modified DA protocol
pay before

Figure 4: Double Auction Fulfilment Rate

gous results.
A value of approximated 100% is unrealistic due to the
following reasons: during the settlement phase of the
simulation run the reputation system has to be filled
with information. Within this settlement phase some
interactions fail, such that the rate can not reach the
100% value. Further, during the simulation runs the
implemented dynamics lead to a continuous arrival of
unknown agents.

3.4 Replication

The same experiments have been conducted on the
HPI Future SOC Lab infrastructure. Even if the du-
ration of each single simulation experiment decreases,
the simulation outcome can be assumed as identical.
Figure 4 illustrates the corresponding fulfilment rate.
This finding is important for the future steps of this
project. Only with ensuring the possibility to replicate
simulation experiments, it is possible to conclude new
findings from the next steps for the whole context.

4 Next Steps

The next step of the project ”SimIS@HPI Future SOC
Lab” are can be stated as follows:

3

• The results presented above already show that the
usage of reputation mechanisms in a Double Auc-
tion market seems to be promising. Nevertheless
the amount of services has been quite low in these
simulations due to resource limitations of simu-
lation environments. The corresponding research
interest is two-fold: First, the scalability of the
SimIS environment: is it possible to simulate IoS
environments with 1000 and more services? If
so, the second question regards the emergent be-
haviour of the system: does it differ to the already
simulated small environment in their trend?

• In a second step the influence of the network
structure on the simulation outcomes might be
interesting. What about reputation information
spreading in heavy-tailed or clustered networks?
How will changes in the network structure affect
the simulation outcomes?

References

[1] R. AlNemr, S. König, T. Eymann, and C. Meinel. En-
abling usage control through reputation objects: A dis-
cussion on e-commerce and the internet of services
environments. Journal of Theoretical and Applied E-
Commerce Research, 5(2):59–76, 2010. to appear.

[2] B. Edmonds and D. Hales. Replication, replication and
replication: Some hard lessons from model alignment.
Journal of Artificial Societies and Social Simulation,
6(4), 2003.

[3] S. König, S. Hudert, and T. Eymann. Socio-Economic
Mechanisms to Coordinate the Internet of Services -
the Simulation Environment SimIS. Journal of Arti-
ficial Societies and Social Simulation (JASSS), 13(2),
2010.

[4] M. J. North, N. T. Collier, and J. R. Vos. Expe-
riences creating three implementations of the repast
agent modeling toolkit. ACM Transactions on Mod-
eling and Computer Simulation, 16:1–25, 2006.

[5] B. Padovan, S. Sackmann, and T. Eymann. Secure
Electronic Marketplaces Based on the Multi Agent
System Avalanche. SSRN eLibrary, 2000.

[6] B. Padovan, S. Sackmann, T. Eymann, and I. Pip-
pow. A prototype for an agent-based secure electronic
marketplace including reputation tracking mecha-
nisms. International Journal of Electronic Commerce,
6(4):93–113, 2002.

[7] Repast Development Group. Repast Home Page. Web-
site. http://repast.sourceforge.net.

[8] R. Ruggaber. Internet of services sap research vi-
sion. In WETICE ’07: Proceedings of the 16th IEEE
International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises, page 3,
Washington, DC, USA, 2007. IEEE Computer Soci-
ety.

[9] C. Sansores and J. Pavón. Agent-based simulation
replication: A model driven architecture approach.
In Proceedings of the 4th Mexican international con-
ference on artificial intelligence (MICAI), Monterrey,
Mexico, Lecture Notes on Computer Science, pages
244–253. Springer, 2005.

[10] P. R. Wurman, W. E. Walsh, and M. P. Wellman. Flex-
ible double auctions for electronic commerce: the-
ory and implementation. Decision Support Systems,
24:17–24, 1998.

4

A protocol-generic Infrastructure for electronic SLA Negotiations in the
Internet of Services

Sebastian Hudert
University of Bayreuth

Chair of Information Systems Management
95440 Bayreuth

sebastian.hudert@uni-bayreuth.de

Torsten Eymann
University of Bayreuth

Chair of Information Systems Management
95440 Bayreuth

torsten.eymann@uni-bayreuth.de

Abstract

Visions of the next-generation Internet of Services
(IoS) are driven by digital resources traded on a global
scope. For the resulting economic setting, automated
on-line techniques for handling services and resources
themselves, for advertising and discovering as well as
for the on-the-fly negotiation of proper terms for their
use are needed. Hence, a flexible infrastructure for the
respective handling of services and associated service
level agreements (SLAs) is mandatory.
In the course of this project, we want to design such an
infrastructure, building on software-agent technology
and an expressive but still machine manageable proto-
col description language capable of specifying a mul-
titude of different negotiation protocols. It will sup-
port the discovery of services with appropriate SLA
negotiation styles as well as the actual SLA negotia-
tion based on chosen protocol description documents.

1. Project Idea and Motivation

Current developments in the area of Information Sys-
tems show a tendency towards massively distributed
infrastructures, consisting of highly specialized digital
resources. Today’s Internet of mainly human interac-
tions will evolve towards a socio-technical and global
information infrastructure, where humans as well as
software agents, acting on their behalf, continuously
interact to exchange data and computational resources.
This vision of globally interacting electronic services
can be observed in both research and industry alike
and is commonly referred to as the IoS [15, 14].
Building on currently applied computing paradigms,
such as Service-oriented [3], Grid [4] or Cloud Com-
puting [2], the IoS vision defines highly dynamic net-
works of composable services, offered and consumed
on demand and on a global scope. Taking such ideas
one step further, it rigorously focuses on the goal of
an Internet-based service economy similar to the real-

world service sector. Digital services will be offered
over electronic service markets, purchased by respec-
tive customers and then combined with internal or
other external services to business workflows of vary-
ing complexity.
Hence, the IoS will primarily focus on new business
models and the commercial application of distributed
computing, concerning trading processes down to the
level of an individual service, and the subsequent
charging based on its usage and delivered quality-of-
service (QoS).
Two of the main challenges for the IoS, from a com-
mercial perspective, are reliability of the services
traded and the technical infrastructure underlying the
service economy. Since such scenarios inherently lack
the applicability of centralized QoS management, ser-
vice guarantees must be obtained in the form of bi-
lateral SLAs assuring service quality across individual
sites [9]. These SLAs subsequently act as a signed
contract governing the actual service invocation [2],
enabling the structured monitoring and assessment of
the service’s compliance.
A very crucial part of the SLA-based service life cycle
can be seen in the discovery and above all the nego-
tiation phase. All subsequent steps (binding, execu-
tion and monitoring, post-processing etc.) depend on
the SLA documents which were agreed-upon in this
phase. On that account we focus on the negotiation
and prior discovery of SLAs for our work presented in
this project.
Aiming at this very phase, economic reserach claims
that differences in system configuration, or the ser-
vices actually traded, demand different negotiation
protocols in order to reach the highest-possible effi-
ciency of the overall system (see for example [10]).
Based on these findings and the global context of the
envisioned scenario it is not likely, or even efficient,
that only one central marketplace for electronic ser-
vices will emerge, offering a single, known protocol.
Instead a system of marketplaces offering different
protocols will probably emerge, each of which is best
be suited for a given context.

5

Fortifying this, we argue that restricting service con-
sumers (SCs) or providers (SPs) in that they are only
able to interact with one distinct service market they
were implemented for (and are therefore only tech-
nically compatible with the applied negotiation pro-
tocol), unnecessarily decreases the potential flexibil-
ity and efficiency of the whole system. SCs should
be able to buy, and therefore negotiate about, any fit-
ting service, regardless of the market it is offered in,
and thus regardless of the protocol with which it is of-
fered. Also, given the dynamic nature of distributed
workflow executions and the increased complexity of
global service selection manual negotiations of the hu-
man users are by far not efficient enough. This process
should be automated by electronic software agents that
negotiate on the users’ behalf.
The research goal of our work is thus to develop
a service-oriented infrastructure supporting software
agents to discover and negotiate about electronic SLAs
and not restricting them to a pre-defined negotiation
protocol.

2 Research Method

Due to the nature of the problem considered a con-
structivist research process was chosen for this project,
following the principles of Design Science (DS) in In-
formation Systems (IS). According to Hevner et al.,
DS represents a research paradigm originating in en-
gineering, basically aiming at the generation of inno-
vative solutions to non-trivial problems [6].
The problem considered in this project,is the lack of
mechanisms for a comprehensive and fully automated
management of SLAs in distributed service systems.
For this problem domain a new and innovative infras-
tructure definition is to be derived.
Several research groups have come up with frame-
works and idealized process models for DS efforts (e.
g. [6] or [13]). All are basically geared to the abstract
engineering cycle of problem identification, problem
solving and evaluation of the solution. Based on these
process models the research approach applied in this
project was defined.
The first step is concerned with the definition of a
given research problem and the justification of the so-
lution’s value. This step regularly involves a detailed
scenario definition in order to give a clue on the state of
the research problem and to motivate a solution to be
developed. Based on a description of the anticipated
scenario the problem to be addressed and the resulting
research goals is detailed and motivated.
In a second step desired objectives of the envisioned
solution are derived from the presented scenario model
and the research goals, eventually resulting in a set
of defined requirements. The requirements for this
project are identified in section 3 based on findings in
scientific literature. These requirements either both act
as input for the subsequent Design and Development

phase, in that they set the boundaries within which de-
sign decisions can be made, as well as for the Demon-
stration and Evaluation phase, since they represent the
criteria against which the designed solution will be
evaluated.
There are two distinct approaches for evaluating our
infrastructure: Its implementation in the context of
a physically distributed service management middle-
ware and subsequent usage or its integration into an
IoS simulation toolkit and subsequent simulative as-
sessment. Within the current project the latter ap-
proach will be used in order to investigate the effec-
tiveness and efficiency of the developed mechanisms
before porting it to a productive environment in a sec-
ond step.

3 Requirements

In the following requirements for such an infrastruc-
ture definition, as they were found in the literature, will
be presented and structured semantically.

General requirements:

• Mechanisms are needed for dynamic discovery
and negotiation of electronic services (i.e. [2]).

• SLAs should be employed for service description
and QoS assurance (i.e. [2] or [12]).

Requirements, structured according to the service
management process:

Discovery Phase:

• After the Discovery Phase all parties must have a
common understanding of the protocol to be exe-
cuted in the negotiation phase [8].

• This common understanding must be generated
dynamically at runtime [1].

Negotiation Phase:
Negotiation Object:

• Services (and thus SLAs) of different complexity
must be negotiable (i.e. [10]).

• Possible offers should be restrictable, incl. non-
negotiable SLA terms (i.e. [8]).

Negotiation Protocol / Setting:

• Different marketplaces and protocols even within
one market are needed for dif-ferent services to
be traded (i.e. [10] or [2]).

• Service requestors and consumers must be able to
start the negotiation (i.e. [16]).

Negotiation Strategy / Participants:

6

• Software Agents should act as negotiators (i.e.
[12] or [8]).

• Intermediaries, such as auctioneers or brokers,
should be present (i.e. [2]).

4 Simulation Environment

In order to evaluate the developed infrastructure con-
cepts, we developed a simulation environment, called
SimIS [7], that follows the IoS vision. This system is
able to model Internet-like networks where the nodes
are hosting active services. The messages follow the
SOAP message structure and the service interfaces fol-
low real-world Web Services technology.

4.1 Technological Base: Repast
Toolkit

The SimIS1 toolkit was implemented as an exten-
sion to the Recursive Porous Agent Simulation Toolkit
[5], developed at the Argonne National Lab, Chicago.
Repast is a free and open source agent-based mod-
elling toolkit [11]. This foundation was chosen due
to its comprehensive API, the very generic and easy to
use set of data gathering and analysis functions as well
as the support for network modelling (including re-
spective programming libraries). Technically, the cur-
rent version of SimIS is based on Repast Symphony
and is completely implemented in the Java program-
ming language.

4.2 SimIS Architecture

In order to map the abstract IoS architecture to our
simulation model a two-tiered architecture for SimIS
seems suitable. The overall system is thus divided
into an Application Layer and an Infrastructure Layer.
An overview of the overall architecture is illustrated in
Figure 1.

Figure 1: SimIS Architecture [7]

The Infrastructure Layer models topological settings
of the IoS. The basic idea is that all Application Layer
Agents or Services are linked to a single Infrastruc-
ture Agent each, which is representing their server
platform. This platform is therefore responsible for
sending messages to other Application Layer Agents
(including routing and communication patterns, such
as broad- or multicast), and receiving messages from

1For more information see http://simis.sourceforge.net

0 0.5 1 1.5 2

x 10
4

0

20

40

60

80

100

120

140

Tick

A
m

ou
nt

English Auctions
Minimum # English Auctions per Agent
Maximum # English Auctions per Agent

Figure 2: Initial Simulation Results

other Infrastructure Agents and passing them on to ei-
ther other Infrastructure Agents or to one or more Ap-
plication Layer Agents associated with it.
Within the Application Layer the actual services of
the IoS vision are modelled. Basically the under-
lying Infrastructure Layer provides us with a high-
enough flexibility for implementing any service logic
in terms of Application Layer Agents communicating
via the offered message objects and routing functional-
ity. Each service (Application Layer Agent) is imple-
mented as a plain Java class and can therefore exploit
the full potential this programming language offers.

5 Used Future SOC Lab Resources

At the current state the developed software pieces rep-
resent a proof-of-concept prototype which is currently
work in progress. Very initial simulation runs were al-
ready undertaken on a simple desktop computer, the
results of which can be seen in figure 2.
For these experiments, the simulator was configured
with ten infrastructure nodes, upon which 40 SPs and
50 SCs are placed. Each SP offers the same service,
however 8 of those with the Alternate Offers, 12 with
the English Auction and the remaining 20 with the
Double Auction protocol. Additionally one registry
node for storing and retrieving the service and proto-
col description documents as well as one broker for the
Double Auction are present.
At this point no resources from the HPI Future SOC
Lab were used, as the mechanisms and data structures
are currently developed. The prototype system is cur-
rently in a very early feasibility test phase. Once these
initial tests are successful the whole system will be
ported to the HPI Future SOC infrastructure for exten-
sive evaluation runs. These will include simulations of
very extreme market configurations and different time-
out and communication settings in order to investigate
the boundaries of our approach.

7

Service
Management

Layer

Economy
Sub-Layer

Service
Layer

Market
Sub-Layer

Registries
(RAgent)

Service Provider and
Consumer Processes

Service Management
Agents

(SPAgent,
SCAgent)

Mediators
(NCAgent)

manage

bid
agree
upon

SLA

lookup

invoke

Figure 3: System Architecture

6 Findings

The major deliverables achieved up to now are a com-
prehensive functional architecture of our infrastruc-
ture, structured schema descriptions of the involved
data types as well as initial implementations of the de-
signed software components. All of these will shortly
be sketched in the following.

6.1 Design Idea

The basic design idea underlying this work is to offer
a given product (SLA for an electronic service) inde-
pendently from the way an agreement concerning this
product can be attained (negotiation protocol). This al-
lows for flexible combinations of product and protocol
to be chosen for each market situation individually.
Since software agents will be employed for the service
management within our systen, the negotiation proto-
col applied for a given service is not only decoupled
from the actual SLA but must also be made explicit
in terms of its communication rules. This allows for
run time adaption of the SC agents to the respective
protocol.
To this end, the designed infrastructure will build on a
conceptual architecture of machine-readable descrip-
tion documents, as described in the following.

6.2 Service Description Documents

As just introduced, a set of service description docu-
ments is needed enabling a) the discovery of an appro-
priate service or respective SLA (template) and b) the
description of the negotiation protocol used to reach an

agreement. For that purpose three different data struc-
tures were designed:

• Service Type (ST): definition of the functional
and non-functional aspects, a given class of ser-
vices can offer.

• Extended SLA Template (EST): definition of
initial QoS guarantees (building on the non-
functional aspects given in the respective ST) as
an input for the subsequent negotiation as well as
the applied negotiation protocol.

• Service Identificator (SI): identification of an in-
dividual service instance along with links to the
associated ST and EST documents.

Figure 4 gives a short overview on these documents
and their relations:

Service
Description
Layer

Service
Instance
Layer

Service Type
Document

Extended
SLA Templates

Service
Identificator

ID

functional and
non-functional

properties

service
guarantees

negotiation
protocol

description

Links to:

service type

eSLA template

wsdl

bindings

SLA Context
SP
SC

service type
wsdl

template ID

service guarantees

final SLAService
Instance

1:N

N:1
N:1

1:1

Figure 4: Document-based Architecture

8

6.3 Role-based Architecture

The developed prototype infrastructure builds on a de-
fined set of roles, the service management agents can
adopt: The two basic roles present in this system
are the SC and the SP, representing buyer and seller
agents.
Additionally a set of registry services / agents (RA) are
needed for supporting the publication and discovery of
service description documents. Finally, the NC role
represents the agents mediating negotiation processes
as a broker agent.
Both SP and SC agents mainly offer an interface to
one another, allowing them to send and receive mes-
sages related to the discovery and negotiation phases.
Additionally, each of theses roles offers one routine to
external users of the infrastructure: A SP agent offers
a method for publishing and selling and a SC one for
discovering and purchasing a service on a user’s be-
half, respectively.
A RA only accepts discovery related messages as it
does not take part in any other phases of the life cy-
cle. Finally, NC agents are responsible for admission
of SCs or SPs to and potentially mediation of a given
negotiation. Hence, they again offer methods for ex-
changing respective messages.

7 Next Steps

The next step of our project proceed in two basic di-
rections:

• Porting the SimIS toolkit to the HPI Future Soc
resources in order to allow the large-scale evalu-
ation of our mechanisms.

• In a second step to further develop our internal
components and, once scalable and effective, port
them to a real-world service management middle-
ware.

References

[1] I. Brandic, S. Venugopal, M. Mattess, and R. Buyya.
Towards a meta-negotiation architecture for sla-aware
grid services. Techreport, University of Melbourne,
August 2008.

[2] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and
I. Brandic. Cloud computing and emerging it plat-
forms: Vision, hype, and reality for delivering com-
puting as the 5th utility. Future Generation Computer
Systems, 25(6):599 – 616, 2009.

[3] I. Foster. Service-oriented science. Science,
308(5723):814–817, 2005.

[4] I. Foster, C. Kesselman, and S. Tuecke. The anatomy
of the grid: Enabling scalable virtual organizations.
International Journal of Supercomputer Applications,
15:2001, 2001.

[5] R. D. Group. Repast home page. Website.

[6] A. R. Hevner, S. T. March, J. Park, and S. Ram. Design
science in information systems research. MIS Quar-
terly, 28(1):75–105, 2004.

[7] S. König, S. Hudert, and T. Eymann. Socio-economic
mechanisms to coordinate the internet of services – the
simulation environment simis. Journal of Artificial So-
cieties and Social Simulation (JASSS), 13(2), 2010.

[8] A. Ludwig, P. Braun, R. Kowalczyk, and B. Franczyk.
A framework for automated negotiation of service
level agreements in services grids. In Lecture Notes
in Computer Science, Proceedings of the Workshop
on Web Service Choreography and Orchestration
for Business Process Management, 2006, volume
3812/2006, 2006.

[9] H. Ludwig, A. Keller, A. Dan, R. King, and R. Franck.
A service level agreement language for dynamic elec-
tronic services. Journal of Electronic Commerce Re-
search, 3:43–59, 2003.

[10] D. Neumann, J. Stoesser, C. Weinhardt, and J. Nimis.
A framework for commercial grids - economic and
technical challenges. Journal of Grid Computing,
6(3):325–347, September 2008. ISSN: 1570-7873.

[11] M. J. North, N. T. Collier, and J. R. Vos. Expe-
riences creating three implementations of the repast
agent modeling toolkit. ACM Transactions on Mod-
eling and Computer Simulation, 16:1–25, 2006.

[12] S. Paurobally, V. Tamma, and M. Wooldridge. A
framework for web service negotiation. ACM Trans.
Auton. Adapt. Syst., 2(4):14, 2007.

[13] K. Peffers, T. Tuunanen, M. Rothenberger, and
S. Chatterjee. A design science research methodology
for information systems research. Journal of Manage-
ment Information Systems, 24(3):45–77, 2008.

[14] R. Ruggaber. Internet of services sap research vi-
sion. In WETICE ’07: Proceedings of the 16th IEEE
International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises, page 3,
Washington, DC, USA, 2007. IEEE Computer Soci-
ety.

[15] C. Schroth and T. Janner. Web 2.0 and SOA: Con-
verging concepts enabling the internet of services. IT
Professional, 9(3):36–41, 2007.

[16] W. Ziegler, O. Waeldrich, P. Wieder, T. Nakata, and
M. Parkin. Considerations for negotiation and moni-
toring of service level agreements. Technical Report
TR-0167, CoreGRID, June 2008.

9

Simulation of Physical Growth Models

Tobias Friedrich
Max-Planck-Institut für Informatik

Campus E1.4
66123 Saarbrücken, Germany

Abstract

Based on recent advances in random walk theory we
have developed a new highly-efficient parallel algo-
rithm to simulate several physical growth models. We
use the infrastructure of the HPI Future SOC Lab to
examine properties of these physical growth models up
to four orders of magnitude larger than previously pos-
sible. Our main application is internal diffusion lim-
ited aggregation which models for example solid melt-
ing around a heat source. Obtaining precise estimates
for the resulting shape is a long-standing open prob-
lem in statistical physics. We are also interested in
how much the amount of randomness in the simulation
influences the process.

1. Introduction

How do corals grow? Successive particles wander in
“from infinity” and stick when they reach some arm of
the coral. The resulting growths appear dendritic and
fractal-like, but rigorous results are extremely hard to
come by. This model is called diffusion limited aggre-
gation (DLA) and was introduced in 1981 by Witten
and Sander [21, 22] to model aggregates of condens-
ing metal vapor. It has since then attracted much in-
terest both among mathematicians and physicists. It
models not only the growth of corals, snowflakes, vas-
cular networks, neurons, and crystals, but also the path
taken by a lightning, coalescing of dust or smoke par-
ticles, dielectric breakdown, electrochemical deposi-
tion, viscous fingering, watershed formation. Figure 1
gives a typical example of two-dimensional diffusion
limited aggregation (Thanks to Paul Bourke from the
Centre for Astrophysics and Supercomputing, Swin-
burne University for providing the image).
The cousin of DLA is internal diffusion-limited ag-
gregation (IDLA). This is a cluster growth process in
which particles start at one or more sources within a
cluster, diffuse outward, and are added to the cluster
at the first site outside it they reach. This process is
sometimes also called anti-DLA or diffusion-limited
erosion as by reversing figure and ground, one can see
this as a hole being hollowed out by particles which re-

Figure 1: Example for diffusion limited aggregation (DLA).

move sites from a surrounding material. It has been in-
troduced in 1990 by Diaconis and Fulton [7] as a vari-
ant of classical DLA. IDLA models electrochemical
polishing, viscous fluid displacing an inviscid one in
a porous medium, solid melting around a heat source,
and other physical phenomena.

Though DLA is a very popular model, rigorous re-
sults on its shape remain very hard to prove as it
tends to amplify irregularities in the cluster’s bound-
ary. On the other hand, IDLA tends to smooth them
out. Lawler, Bramson, and Griffeath [16] showed that
the limiting shape of n particles is a Euclidean ball
as n → ∞ and that with high probability the fluc-
tuations around this limiting shape are bounded by
O(n1/3) [15]. Moore and Machta [20] observed ex-
perimentally that up to n = 105.25 these error terms
were even smaller, namely of roughly logarithmic size.
Determining the size of the boundary fluctuations in
IDLA is a long-standing open problem in statistical
physics. Our aim is understanding this physical pro-
cess better by simulating it in a clever way up to four
orders of magnitude further than previous methods.

11

Figure 2: IDLA cluster (left) and rotor-router aggregation with counterclockwise rotor sequence (right) of N = 106 chips. Half
of each aggregate is shown. Each site is colored according to the final direction of the rotor on top of its stack (yellow=W,
red=S, blue=E, green=N). Note that the boundary fluctuations of the rotor-router aggregation are much smoother than for
IDLA. Larger rotor-router aggregates of size up to N = 1010 can be found on [1].

2 Derandomization and Quasirandom-
ness

With the Copenhagen interpretation of quantum me-
chanics by Bohr and Heisenberg in the early 20-th
century, it became widely accepted that the fundamen-
tal understanding of the world can only be statistical.
However, it remains widely open how much random-
ness is needed. This is not only a fundamental question
in philosophy and physics, but also a very practical one
in computer science.
Coming back to the aforementioned growth models,
we are interested in how much the resulting structure
depends on the amount of involved randomness. In the
late 1990s, James Propp from the University of Mas-
sachusetts Lowell came up with a quasirandom aggre-
gation as a way of derandomizing IDLA [14]. To do
so, he adds a rotor to each position and this rotor can
point up, right, down, or left. Now the particles do
not anymore go into a random direction, but in the di-
rection of the respective rotor and afterwards the rotor
is rotated one step further (e.g. clockwise or counter-
clockwise). This way the previously random walk of
the particles becomes a quasirandom walk, which is
deterministically determined after the initial directions
of the rotors have been fixed. Hence the property that
the neighboring positions are served with equal chance
is kept while the variance of the process is removed.
It is known from combinatorics that this quasirandom
walk closely resembles a random walk in several re-
spects [4–6, 8, 13]. The concept of quasirandom walks
has lead to improvements in algorithmic applications.

Examples include external mergesort [3], broadcast-
ing information in networks [9], and iterative load-
balancing [12].

Starting with all initial rotors pointing in one direction,
the quasirandom IDLA reveals very interesting pat-
terns. The right half of Figure 2 shows a quasirandom
IDLA of one million chips. Every site’s rotor begins
pointing east and is rotated counterclockwise. The
color indicates in which direction the rotor is eventu-
ally pointing. The clearly visible fractal-like patterns
are barely understood, but it is known that the limiting
shape is also a Euclidean ball and that the inner fluctu-
ations are provably logarithmic in the radius [17, 18]
in this case. However, the true fluctuations appear to
grow even more slowly, and may even be bounded in-
dependent of the number of particles. Kleber [14] ob-
served that for up to n = 3·106 particles the difference
of the radius of the largest inscribed and the smallest
circumscribed circle is at most a small constant. With
better algorithmic tools and the resources of the Future
SOC lab we could recently confirm these measurement
up to n ≈ 2 · 1010 particles. Another motivation is
to generate more fine-scaled examples of the intricate
patterns of the final rotors at the end of the aggregation
process. As said above, these patterns remain poorly
understood even on a heuristic level. A four-color pic-
ture of the final rotors of an aggregation of n = 1010

particles can be found on our website [1]. To make this
picture with over ten Gigapixels accessible, this page
uses a Google Maps overlay to allow the user to zoom
and scroll through the image.

12

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

100 101 102 103 104 105 106 107 108 109

in
/
o
u
tr
a
d
iu
s
d
iff
er
en

ce

number of chips N

WENS

WNES

WNSE

(a) Quasirandom IDLA.

0

1

2

3

4

5

6

7

8

9

1 10 102 103 104 105 106 107

number of chips N

in
/
o
u
tr
a
d
iu
s
d
iff
er
en

ce

(b) IDLA.

Figure 3: Difference between inradius and outradius for different numbers of chips N for quasirandom IDLA (depending on
the rotor sequence) and the classic IDLA (with standard deviations). It is clearly visible that the fluctuations for classic IDLA
are of logarithmic order while they are sublogarithmic for the quasirandom variant.

3 Algorithmic Techniques

It is known that computing DLA is P-complete and
therefore inherently sequential [19]. We now discuss
how to calculate a classic IDLA or quasirandom IDLA
cluster of n particles. Straight-forward sequential sim-
ulation of IDLA takes on average Θ(n2) steps as ev-
ery particle needs roughly Θ(n) steps to go from its
source to the boundary at distance Θ(

√
n). Moore

and Machta [20] showed that on a parallel machine
with k processors this can be reduced to O(n2/k +
n log k) steps. In [11] we developed a substantially
faster sequential algorithm based on recent findings in
random walk theory. With this we achieve sequen-
tial runtimes of about Θ(n1.5) for classic IDLA and
Θ(n polylog(n)) for quasirandom IDLA.
The main trick of the new algorithm is to compute the
final state of various growth models without comput-
ing all intermediate states. For this, we analyze the
odometer function of the growth process which counts
for every position how often a particle has passed.
Our technique is based on a least action principle [10]
which characterizes this function. Starting from an ed-
ucated guess for the odometer, we successively cor-
rect under- and overestimates and provably arrive at
the correct final state. The degree of speedup depends
on the accuracy of the initial guess. As this succes-
sively correcting the under- and overestimates can be
done independently in different regions, this algorithm
scales very well on many-core architectures.

4 Experimental Setup

After initial experiments with the machines avail-
able at the Max-Planck-Institut für Informatik in
Saarbrücken, we used the resources of the HPI Future

SOC Lab to perform more involved experiments. As
especially the runtime for quasirandom IDLA is very
close to linear, indeed memory, rather than time, is the
limiting factor. Therefore especially the usage of the
Hewlett Packard DL980 G7 with 2048 GB main mem-
ory greatly enhances the applicability of this method.
Figure 3 (a) gives some results on the fluctuations
of quasirandom IDLA depending on the number of
chips/particles.
Because of the larger fluctuations, the simulation of
classic IDLA takes significantly longer and has to be
repeated many times to get statistically significant es-
timates for size and fluctuations. For this, we have
used some of the HPI Future SOC Lab resources with
many cores, but not necessarily large main memory.
Figure 3 (b) shows some results for the classic IDLA
model.

5 Outlook

Combining recent results from random walk theory
and recent hardware from the HPI Future SOC Lab,
we have analyzed several physical growth models and
gained statistical data of up to four magnitudes higher
quality than previously possible. As next step we want
to analyze higher moments of classic IDLA and other
quasirandom variants of IDLA. We also hope to ex-
tend this analysis to other types of abelian distributed
processors, for example to the well-known Bak-Tang-
Wiesenfeld abelian sandpile model [2].

References

[1] http://rotor-router.mpi-inf.mpg.
de.

13

[2] P. Bak, C. Tang, and K. Wiesenfeld. Self-
organized criticality: An explanation of the 1/f
noise. Physical Review Letters, 59(4):381–384,
1987.

[3] R. D. Barve, E. F. Grove, and J. S. Vitter. Simple
randomized mergesort on parallel disks. Parallel
Computing, 23(4-5):601–631, 1997.

[4] J. Cooper and J. Spencer. Simulating a random
walk with constant error. Combinatorics, Proba-
bility & Computing, 15:815–822, 2006.

[5] J. Cooper, B. Doerr, T. Friedrich, and J. Spencer.
Deterministic random walks on regular trees.
Random Structures and Algorithms. To ap-
pear, preliminary version appeared in 19th An-
nual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA’08), pages 766–772, 2008.

[6] J. Cooper, B. Doerr, J. Spencer, and G. Tar-
dos. Deterministic random walks on the inte-
gers. European Journal of Combinatorics, 28:
2072–2090, 2007.

[7] P. Diaconis and W. Fulton. A growth model, a
game, an algebra, Lagrange inversion, and char-
acteristic classes. Rend. Sem. Mat. Univ. Pol.
Torino, 49:95–119, 1990.

[8] B. Doerr and T. Friedrich. Deterministic random
walks on the two-dimensional grid. Combina-
torics, Probability & Computing, 18(1-2):123–
144, 2009.

[9] B. Doerr, T. Friedrich, and T. Sauerwald. Quasir-
andom rumor spreading. In 19th Annual
ACM-SIAM Symposium on Discrete Algorithms
(SODA’08), pages 773–781, 2008.

[10] A. Fey, L. Levine, and Y. Peres. Growth rates
and explosions in sandpiles. Journal of Statisti-
cal Physics, 2010. To appear, arXiv:0901.3805.

[11] T. Friedrich and L. Levine. Fast simu-
lation of large-scale growth models, 2010.
arXiv:1006.1003.

[12] T. Friedrich, M. Gairing, and T. Sauerwald.
Quasirandom load balancing. In 21th Annual
ACM-SIAM Symposium on Discrete Algorithms
(SODA’10), pages 1620–1629, 2010.

[13] A. E. Holroyd and J. Propp. Rotor walks and
Markov chains, 2009. arXiv:0904.4507.

[14] M. Kleber. Goldbug Variations. Mathematical
Intelligencer, 27(1):55–63, 2005.

[15] G. F. Lawler. Subdiffusive fluctuations for in-
ternal diffusion limited aggregation. Annals of
Probability, 23(1):71–86, 1995.

[16] G. F. Lawler, M. Bramson, and D. Griffeath. In-
ternal diffusion limited aggregation. Annals of
Probability, 20:2117–2140, 1992.

[17] L. Levine and Y. Peres. Spherical asymptotics
for the rotor-router model in Zd. Indiana Univ.
Math. J., 57(1):431–450, 2008.

[18] L. Levine and Y. Peres. Strong spherical asymp-
totics for rotor-router aggregation and the divisi-
ble sandpile. Potential Analysis, 30:1–27, 2009.

[19] J. Machta and R. Greenlaw. The parallel com-
plexity of growth models. Journal of Statistical
Physics, 77:755, 1994.

[20] C. Moore and J. Machta. Internal diffusion-
limited aggregation: Parallel algorithms and
complexity. Journal of Statistical Physics, 99(3–
4):661–690, 2000.

[21] T. A. Witten and L. M. Sander. Diffusion-
limited aggregation, a kinetic critical phe-
nomenon. Physical Review Letters, 47(19):
1400–1403, 1981.

[22] T. A. Witten and L. M. Sander. Diffusion-limited
aggregation. Physical Review B, 27(9):5686–
5697, 1983.

14

Towards Scalable and Self-Optimizing Software
for Multi-Core and Cloud Computing

Sebastian Wätzoldt, Stephan Hildebrandt, Andreas Seibel, Gregor Gabrysiak and Holger Giese
System Analysis and Modeling at Hasso Plattner Institute for IT Systems Engineering

Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany
sebastian.waetzoldt@student.hpi.uni-potsdam.de

[stephan.hildebrandt|andreas.seibel|gregor.gabrysiak|holger.giese]@hpi.uni-potsdam.de

Abstract
Developing software that really exploits the poten-
tial of multi-core and cloud computing is inherently
more difficult than traditional software development
as the essentially required development of parallel be-
havior is much more difficult than for sequential be-
havior. However, multi-core and cloud computing is
more about scalability of service-oriented architec-
tures than only performance as in case of parallel
computing and instead of a given fixed hardware con-
figuration the possibility to exchange the underling
hardware or provider to handle even higher loads is
key. We propose to approach these new challenges by
a model-driven approach where the higher-level ab-
straction of the software description enables to derive
several optimized platform-specific solutions for dif-
ferent as well as changing hardware settings. In order
to ensure that the system operates always with a good
solution, the software should be able to adapt itself
such that in the spirit of autonomic computing the soft-
ware takes care of the permanent self-optimization of
its execution strategies to ensure scalability. To eval-
uate different initial static options for our related cur-
rently developed self-adaptive model-driven approach,
we employed the HPI Future SOC lab as a test bed.

1. Introduction

Moore’s law today still holds concerning the increase
in number of gates we can integrate on a chip and it
will probably still hold for a few generations of chips
before we hit the atom size as limiting factor. How-
ever, the related speedup for sequential processing we
could also observe in the last decades has already
come to a halt. The increase in number of gates is to-
day used to for multi-core computing [2] that integrate
multiple cores on one CPU rather than to speedup the
sequential processing of a single program. In addition,
virtualization and massive parallelization of compu-
tational tasks using cloud computing [1] has become
popular. Here server farms running many standard

PCs rather than dedicated high-performance comput-
ers with special hardware are employed to achieve re-
quired computations in a cost efficient manner.

On the one hand, both trends promise to speed up
the computing by doing it in parallel. On the other
hand, developing software that really exploits the po-
tential of multi-core and cloud computing is inherently
much more difficult than traditional software develop-
ment due to the need to do parallel processing. At first,
today’s development languages have been optimized
for sequential processing on single-core systems. In
addition, decades of research in the field of parallel
computing have shown that generic, easy to program,
and platform independent solutions usually result in
severe performance penalties.

But the raised challenge is not the same as parallel
computing. We see two characteristics that distinguish
developing software for multi-core and cloud comput-
ing from parallel computing: (1) the former is more
about scalability of service-oriented architectures than
only performance as from a business perceptive the op-
tion to add resource to serve more customers and not
optimal performance is what counts. (2) In the parallel
computing view the goal is to optimize the software for
a given fixed hardware configuration and a given task,
while in the considered case the possibility to handle
unpredictable loads and the option for the provider to
exchange the underling hardware is key.

We propose to approach these new challenges by a
model-driven approach where the higher-level abstrac-
tion of the software description enables to derive sev-
eral optimized platform-specific solutions for different
as well as changing hardware settings. In order to en-
sure that the system operates always with a good so-
lution, the software should be able to adapt itself such
that in the spirit of autonomic computing [6] the soft-
ware takes care of the permanent self-optimization of
its execution strategies to ensure scalability.

We at first want to the support control flow paral-
lelism given either explicitly in the specification or im-
plicitly by detecting it by analyzing the specification.
In addition, we also exploit data parallelism when the

15

specified behavior is executed on large data sets. Here,
highly abstract specification of the data queries and
data manipulation only implicitly permit to parallelize
their execution.

To achieve this goal, a high-level modeling approach
for the software and its deployment, a suitable runtime
environment to support the monitoring as well as adap-
tation, and alternative execution strategies as well as
selection strategies for them have to be developed. To
evaluate different static options in a first initial step for
our related currently developed self-adaptive model-
driven approach, we employed the HPI Future SOC
lab as a test bed in a series of tests that only started
recently.

To report on the project, we at first explain the em-
ployed high-level specification language in Section 2.
Then, the studied parallelization strategies are pre-
sented in Section 3. In Section 4, the preliminary
evaluation of the strategies is presented and final con-
clusions and an outlook on planned additional work
closes the report.

2. High-Level Specification Language
Story diagrams are an established high-level specifi-
cation language for the definition of behavior in di-
verse contexts. They have been employed in several
applications ranging from behavior specification [3]
of software systems, reverse engineering [7], consis-
tency checking [8], and as implementation technique
for model transformations with triple graph grammars
[5].

Story diagrams are basically a combination of UML
activity diagrams and UML collaboration diagrams.
The activities of a story diagram are called story pat-
tern. A story diagram defines the control flow between
story patterns. A story pattern is interpreted as a graph
transformation and can be used for data queries and
manipulation. The notation of story pattern is to some
extent similar to UML collaboration diagrams. In the
following, the control flow of story diagrams and story
patterns are explained in more detail.

The content of a story pattern is basically a single
graph query and graph manipulation rule (called graph
rewriting rule) suitable for systems, whose structure
has been defined by UML class diagrams. The story
pattern defines one or more instance graphs that can
be matched on a given host graph (a specific instance
situation). The story patterns contain a left-hand side
(LHS) and a right-hand side (RHS). The LHS defines
the graph query that has to be found in the current host
graph. The resulting graph manipulation is defined as
follows: All elements only included in the LHS but
not the RHS are deleted and all elements present in
the RHS but not in the LHS are created.

Figure 1 shows an exemplary story pattern A. The
LHS contains the instances x:X, y:Y, z:Z, t:T and g:G.
Modifications to the instance graphs are defined by ad-
ditional annotations to the instances, which are - - for

A

x:X

y:Y

z:Z t:T

a

b t

g:Gk:K k- -
++- -

++

RHSLHS

Figure 1. Exemplary story pattern

deleting an instance or a reference and ++ for creating
an instance or a reference. All elements that have no
or a ++ annotation are part of the RHS. All elements
that have no annotation are part of the LHS and RHS.
y:Y, for example, is part of the LHS only because it has
to be matched before it can deleted. When deleting a
node, all references pointing to this node are implicitly
deleted too.1

x:X

y1:Y

y2:Y

a

a

z1:Z

z2:Z

b

b

t1:Tt

t2:Tt

g:G

x:X

y2:Y a

z1:Z

z2:Z

b

b

t1:Tt

t2:Tt

g:G

k:K

k

execute (A, {x:X, g:G})

ho
st

 g
ra

ph
 (b

ef
or

e)
ho

st
 g

ra
ph

 (a
fte

r)

instances that will be matched

Figure 2. Executing the story pattern

Figure 2 depicts the execution of the story pattern A
on a specific host graph, which is shown at the top of
Figure 2. First, the interpreter will find a match for the
story pattern on this host graph (executing the LHS),
which can be y1:Y, x:X, z2:Z, t1:T and g:G. Second,
the match in the host graph is modified according to
the RHS, which results in deleting y1:Y and creating
k:K that is connected to g:G via reference k.

If the story pattern A would be defined as being a
foreach story pattern, all matches that can be found
in the host graph would be modified according to the
RHS. When executing a story pattern, at least one in-
stance of the current instance graph has to be already
bound. In Figure 1, x:x and g:G are declared to be
already bound.

The control flow of a story diagram is pretty simi-
lar to a control flow in UML activity diagrams. The
elements of a story diagram are start nodes, decision
nodes, story patterns for the regular activities, fork
nodes, join nodes, join specifications, final nodes and
edges connecting these nodes. Figure 3 shows an ex-
emplary story diagrams to give an overview about the
graphical notation.

1In terms of graph transformation systems this behavior of im-
plicitly deleting references is called single push-out (SPO).

16

A

B

C
Decision

Node
Start
Node

Final
NodeJoinFork

Edge {B and C}

Join specification

Story Pattern

Figure 3. Exemplary story diagram

Executing a story diagram always starts from a start
node and terminates whenever a final node is reached.
This may include parallel processing in case of fork
and join nodes. Edges between story patterns trans-
port the resulting bindings from one story pattern to
another. Thus, executing the example story diagram
would start in the start node and then deciding whether
continue executing story pattern A or directly termi-
nate the execution by executing the final node. After
activity A has been executed, the activities B and C
have to be executed in parallel. These two nodes could
be executed sequentially or even in parallel, denoted
by the fork and join nodes. After the join, the execu-
tion terminates.

Story Action
Node 1B C

[end]

[each]

DA

Foreach blockForeach story pattern

Figure 4. Exemplary foreach block

An important concept of story diagrams are foreach
loops. The loop condition of a foreach loop is a sin-
gle story pattern, whose query determines for which
bindings the loop is executed. The body is given by
the set of activities that are reached via an [each] edge
and subsequent edges. The body is then executed for
each binding determined by the loop condition. Figure
4 shows a foreach loop whose body contains a single
story pattern C. The loop condition of the foreach loop
is given by a foreach story pattern B. The annotated
edge [each] indicates the start of the foreach loop. The
other edge [end] denotes the termination of the foreach
loop.

Each valid result found for the query specified by
the loop condition in form of a foreach story pattern
initiates the execution of the whole foreach body (tak-
ing the [each] edge). When all valid query results of
story pattern B have been processed, the edge [end] is
traversed. It is to be noted that in principle the execu-
tion of the loop bodies for different query results could
happen in parallel.

3. Parallelization Strategies
In the previous section, we explained the basic story
diagrams and its operational semantics. The current
story diagram interpreter [4] only supported a sequen-
tial execution of story diagrams and thus did not sup-
port fork and join nodes. Therefore, we developed a

new interpreter that supports explicitly defined concur-
rency (fork and join nodes; see Figure 3), exploits that
foreach loops allow a concurrent execution and also
parallelize the query processing. In the following, we
will briefly explain the parallelization capabilities of
the newly developed interpreter for story diagrams and
story pattern.

The new story diagram interpreter introduces the
concept of a scheduler for threads and a task pool as
primary concepts for parallelization. Tasks are used to
capture possible next steps in the execution of story di-
agrams and story patterns. In the context of executing
a complete story diagrams, a pool of current tasks and
a pool of worker threads is used to dynamically assign
task to threads by a scheduler.

The scheduler manages a fixed number of threads,
which are currently dynamically created depending on
the given platform.2 The interpreter provides a pool of
tasks to the scheduler, which should be concurrently
executed. Thus, the scheduler also manages a pool of
tasks, which have to be mapped on threads for execu-
tion.

Tasks that are waiting for execution are passive tasks
whereas tasks that are currently executed by a thread
are active tasks. Any task can have dependencies to
other tasks. Thus, the scheduler has to adhere to these
dependencies to ensure a proper execution.

An important capability of tasks is that during their
execution by a thread other tasks may be created and
added to the task pool. Each thread executing a task
has read access to a global variables context managed
by a variables context manager. Additionally, it has
read/write access to a local variables context.

Basically, the control flow of story diagrams is a
proper sequence of story pattern. Nevertheless as
UML activity diagrams, join nodes and fork nodes
can be employed to explicitly define concurrency in
the control flow.3 In addition, the UML permits that
synchronization of the control flow at join nodes can
be explicitly specified by means of join specifications,
e.g., (B and C) in Figure 3 will force to stop the exe-
cution of the story diagram until B and C have finished
their execution (see Figure 5.

time

task

A

B

C

final

fork join

Figure 5. Execution of the fork/join

2Currently we create two threads per physical CPU core.
3Usually, a modeler will manually specify fork and join nodes.

However, also an automated analysis could be envisioned that au-
tomatically add fork and join nodes to maximize concurrency in a
given story diagram. Such an automated analysis would require a
detailed analysis of individual story pattern in the control flow con-
cerning possible data dependencies.

17

Story Diagrams additionally provide semaphores to
provide a more sophisticated synchronization concept.
UML activity diagrams had a similar construct called
sync states that were skipped with the transition from
UML 1.4 to UML 2.0.

In the old interpreter foreach nodes and foreach
loops were executed sequentially. In the new inter-
preter we can execute them in parallel exploiting im-
plicit control flow and data parallelism. Each foreach
story pattern is related to a task. When a thread exe-
cutes this task, it creates subtasks for each valid query
result. In case of a foreach loop, the subtask initiates
the execution of the story patterns in the loop body.
When all subtasks have been executed, the parent task
synchronizes the results of its subtasks and terminates
(see Figure 6).

time

task

A

B.1

D

B.n

C.1

C.n
... ...

Figure 6. Execution of the foreach loop

Not only the control flow of story diagrams is subject
to parallelization, but also the query processing for a
story pattern. Tasks are used to separate the query pro-
cessing of a story pattern, so that each task defines a
part of a processing that can be executed in parallel
by other tasks. The interpreter first analyzes if there
are parts of the query that are completely independent.
These are assigned to different tasks. Each task can
itself be split again into several additional tasks. The
top of Figure 7 shows how a single task has been split
into two tasks.

A

x:X

y:Y

z:Z t:T

a

b t

g:Gk:K k- -
++- -

++

Task 2

Task 1

Figure 7. Split a task into two tasks

4. Preliminary Evaluation
We only recently started with the evaluation of the
outlined parallelization strategies. In this report, we
can only report on first, small experiments done to
study the performance for the parallelization strate-
gies for concurrency explicitly specified via fork and
join nodes as well as implicit concurrency for foreach
loops.

As test platforms we use our sequential interpreter
running on a 1,87 GHz core, a dual core with 2,4

GHz (windows 7), a quad core with 2,5 GHz (win-
dows server 2003) and the future soc lab with 24 cores
(with hyper threading 48) with 1,87 GHz. Therefore, a
slightly better speedup could be expected for the dual
and quad core as the sequential processing is faster.

As test scenarios we consider different simple cases
for story diagrams that work on data sets of different
complexity. It holds that E1, E2 and E3 increase in
complexity. The same applies for I1, I2 and I3.

A simple case for explicit parallelism resulting from
a combination of fork and join nodes is depicted in
Figure 8. The story pattern permits to parallelize the
queries, which is not always the case. The details of
the story pattern are omitted to meet the space con-
straints we have for the report.

Figure 8. Story diagram with explicit par-
allelism via fork/join nodes

The results of running the story diagram for the three
data sets are depicted in Figure 9. The time required
by the sequential interpretation is used to normalize
the results. The presented speedup factor is the time
required for the sequential case divided by the time
required on the specific hardware platform. Therefore,
the sequential processing always has a speedup equal
to one.

1	
 1	
 1	

7,62	
 8,06	

8,73	

6,78	

8,92	

12,96	

9,58	

12,09	

15,73	

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

20	

E1(1	
 =	
 0,56	
 sec)	
 E2	
 (1	
 =	
 2,36	
 sec)	
 E3	
 (1	
 =	
 4,55	
 sec)	

Sp
ee
d	

up

	

Serial	
 Execu;on	
 Dual	
 core	
 Quad	
 core	
 Future	
 SOC	
 lab	

Figure 9. Results for explicit parallelism

The results presented in Figure 9 for the explicit con-
currency due to fork/join nodes indicate that at first the
new interpreter with its parallel processing has general
performance benefits as superlinear improvements for
the dual core in particular cannot result only from the
higher chip frequency. In addition, we can observe that
speedup for the 24 cores is only moderate. Here only
the effects of parallelizing the matching matter and the

18

two parallel story pattern are equally well exploited al-
ready on a dual core machine.

The case of a foreach loop studied in our first experi-
ments is shown in Figure 10. Also in this case the story
pattern permits to parallelize the queries. We omit the
details of the story pattern due to the limited space we
have for the report.

Figure 10. Story diagram with implicit
parallelism of a foreach loop

1	
 1	
 1	

7,27	

6,73	

4,61	

7,95	

7,58	

6,43	

14,81	

13,46	
 12,93	

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

I1	
 (1	
 =	
 2,47	
 sec)	
 I2	
 (1	
 =	
 18,51	
 sec)	
 I3	
 (1	
 =	
 60,75	
 sec)	

Sp
ee
d	

up

	

Serial	
 Execu<on	
 Dual	
 core	
 Quad	
 core	
 Future	
 SOC	
 lab	

Figure 11. Results for implicit parallelism

The achieved speedup for the three test data sets are
reported in Figure 11. Here also the data indicates that
at first the new interpreter with its parallel processing
has general performance benefits due to the superlin-
ear improvements for the dual core. We can further
observe that for more complex examples for the given
test data the speedup for the 24 cores is not increasing.
This is not what we expected and we hope to iden-
tify the source of this weak elasticity in further exper-
iments.

5. Conclusions and Future Work
Currently, we can only show that there is high poten-
tial for major performance improvements by means of
parallelizing the execution of story diagrams and story
patterns. However, there are also cases where the over-
head of parallelization in fact can result in a decrease
of the performance.

Thus, we need to further investigate the character-
istics for those cases where the parallel execution re-
ally outperforms the sequential execution. If we could
characterize and detect these cases via heuristics, this
would enable hybrid execution strategies for story dia-
grams and story patterns that only employ the parallel
execution when major performance improvements are

highly likely. In addition, the decision could be done
context-dependent depending on the fact whether it is
economically useful to speedup the execution of the
story diagram at hand or not (e.g., if a certain response
time is desirable and the current processing time in-
dicates that it may be missed, more parallelization to
achieve a speedup would make sense).

In the last month of the project it is planned to
more thoroughly study the parallelization strategies
for different data and therefore establish a founda-
tion to identify the characteristics that may guide the
heuristics. In the planned follow-up project we coop-
erate with SAP to ensure a more industrial perspec-
tive. We plan to mainly address the question which
language constructs are relevant for SAP application
domain and will only partially cover the needed run-
time systems as well as self-adaptation. The project
will be supported also by a joint bachelor project en-
titled ”Model-Driven Software Development for Mul-
ticore and Cloud Systems”. In later projects we then
plan to also address the run-time systems and in par-
ticular self-adaptation in more depth.

References

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica,
and M. Zaharia. Above the Clouds: A Berkeley View of Cloud
Computing. Technical Report UCB/EECS-2009-28, EECS De-
partment, University of California, Berkeley, February 2009.

[2] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Hus-
bands, K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W.
Williams, and K. A. Yelick. The landscape of parallel computing
research: A view from berkeley. Technical Report UCB/EECS-
2006-183, EECS Department, University of California, Berke-
ley, Dec 2006.

[3] T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story Di-
agrams: A new Graph Rewrite Language based on the Unified
Modeling Language. In G. Engels and G. Rozenberg, editors,
Proc. of the 6th International Workshop on Theory and Appli-
cation of Graph Transformation (TAGT), Paderborn, Germany,
LNCS 1764, pages 296–309. Springer Verlag, 1998.

[4] H. Giese, S. Hildebrandt, and A. Seibel. Improved Flexibil-
ity and Scalability by Interpreting Story Diagrams. In T. Ma-
garia, J. Padberg, and G. Taentzer, editors, Proceedings of the
Eighth International Workshop on Graph Transformation and
Visual Modeling Techniques (GT-VMT 2009), volume 18. Elec-
tronic Communications of the EASST, 2009.

[5] H. Giese and R. Wagner. From model transformation to incre-
mental bidirectional model synchronization. Software and Sys-
tems Modeling (SoSyM), 8(1), 28 March 2009.

[6] J. O. Kephart and D. Chess. The Vision of Autonomic Comput-
ing. Computer, 36(1):41–50, January 2003.

[7] J. Niere, W. Schäfer, J. P. Wadsack, L. Wendehals, and J. Welsh.
Towards Pattern-Based Design Recovery. In Proc. of the 24th
International Conference on Software Engineering (ICSE), Or-
lando, Florida, USA, pages 338–348. ACM Press, May 2002.

[8] R. Wagner, H. Giese, and U. Nickel. A Plug-In for Flexible
and Incremental Consistency Management. In Proc. of the In-
ternational Conference on the Unified Modeling Language 2003
(Workshop 7: Consistency Problems in UML-based Software
Development), San Francisco, USA, Technical Report. Blekinge
Institute of Technology, San Francisco, October 2003.

19

Evaluation of the CMPSs Programming Model for Consumer Applications

Ben Juurlink
TU Berlin

Einsteinufer 17
D-10587 Berlin

juurlink@cs.tu-berlin.de

Michael Andersch
TU Berlin

Einsteinufer 17
D-10587 Berlin

michael.andersch@mailbox.tu-berlin.de

Chi Ching Chi
Chi Ching Chi

TU Berlin
Einsteinufer 17
D-10587 Berlin

cchi@cs.tu-berlin.de

Abstract

Since the advent of mainstream multicore systems,
developing multicore software has been an increas-
ing concern. Many challenges arise when trying to
develop multicore software that is both efficient and
portable on the one hand, as well as extensible and
modular on the other hand. To ease the development
of multicore software, the abstraction layers between
the execution hardware and the application need to
be changed. In the EU Strep project Encore [1], a
task-based programming model called SMP Supers-
calar (SMPSs) [2] is investigated. In this program-
ming model the programmer annotates potential pa-
rallel parts of the serial base code with task direc-
tives and input and output directives that specify the
inputs and outputs of each task. Based on these di-
rectives, the compiler framework and underlying
runtime system ensure correctness, parallel execu-
tion, and locality-aware scheduling.

Our goal is to implement consumer applications and
benchmarks using SMPSs and other more established
multicore programming models such as Pthreads and
compare them based on performance and code quali-
ty. An important application in this comparison is
H.264 video decoding. Unlike H.264 encoding, par-
allelism is not obvious and hard to exploit. Our anal-
ysis of implementing H.264 decoding on the Cell
processor [3] has shown that H.264 decoding re-
quires high memory bandwidth, especially at higher
resolutions. Furthermore, locality- and resource-
aware scheduling could bring significant perfor-
mance improvements.

Image processing and ray-tracing are also investi-
gated to have a good coverage of the application
domain. This includes both simpler image rotation
and color conversion kernels as well POV-Ray [4], a
widely used ray-tracer benchmark.

The HPI machines provide the necessary platforms
for this analysis, as they are multicore, multisocket,
SMT and NUMA capable machines. This allows us to
investigate the behavior of our target applications as
well as showing the capabilities of and potential
areas of improvements to the SMPSs programming
model. In particular, we want to investigate if func-
tion-level (pipeline) parallelism can be conveniently
expressed in SMPSs and if additional directives are
needed to control the placement of threads and data
onto the cores.

References

[1] http://www.encore-project.eu

[2] Barcelona Supercomputing Center. SMP Superscalar
(SMPSs) User's Manual. Available via
http://www.bsc.es/media/1002.pdf

[3] C. C. Chi, B. H. H. Juurlink, C. H. Meenderinck.
Evaluation of Parallel H.264 Decoding Strategies for the
Cell Broadband Engine. Proc. Int. Conf. on Supercomput-
ing, 2010.

[4] http://www.povray.org/

21

Query Processing on Prefix Trees

Matthias Boehm Patrick Lehmann Peter Benjamin Volk Wolfgang Lehner
TU Dresden, Database Technology Group; Dresden, Germany

matthias.boehm@tu-dresden.de

Abstract

There is a trend towards Operational BI (Business
Intelligence) that requires immediate synchronization
between the operational source systems and the data
warehouse infrastructure in order to achieve high up-
to-dateness for analytical query results. The high
performance requirements imposed by many ad-hoc
queries are typically addressed with read-optimized
column stores and in-memory data management.
However, operational BI additionally requires trans-
actional and update-friendly in-memory indexing due
to high update rates of propagated data. For example,
in-memory indexing with prefix trees exhibits a well-
balanced read/write performance because no index re-
organization is required. The vision of this project is
to use the underlying in-memory index structures, in
the form of prefix trees, for query processing as well.
Prefix trees are used as intermediate results of a plan
and thus, all database operations can benefit from the
structure of the in-memory index by pruning working
indices during query execution. While, this is advan-
tageous in terms of the asymptotic time complexity of
certain operations, major challenges arise at the same
time. In this paper, we sketch our preliminary project
results. Efficient query processing over huge evolving
data sets will enable a broader use of the consolidated
enterprise data. Finally, this is a fundamental prereq-
uisite for extending the scope of BI from strategic and
dispositive levels to the operational level.

1 Introduction

Advances in information technology combined with
rising business requirements lead to an exponentially
growing amount of digital information created and
replicated worldwide [7]. In addition to this huge
amount of data, there is a trend towards Operational BI
(Business Intelligence) [6, 10, 13] that requires imme-
diate synchronization between the operational source
systems and the data warehouse infrastructure in or-
der to achieve high up-to-dateness for analytical query
results. The high performance requirements imposed
by many ad-hoc queries are typically addressed with
read-optimized, in-memory data management.

R

S

T

σa<107

γ

(a) Traditional Query Plan

S

T

σa<107

γ

R

(b) Prefix Tree Query Plan

Figure 1. Solution Overview

However, Operational BI additionally requires trans-
actional and update-friendly main-memory indexing
due to the existence of high update rates. For exam-
ple, in-memory indexing with prefix trees, in combi-
nation with optimistic concurrency control, exhibits a
well-balanced read/write performance [12] because no
index reorganization is required. In addition, advanced
data analytics [4, 5] such as forecasting [1], which
go beyond traditional data aggregation and analytical
query processing, also require in-memory indexing to
enable efficient point and range queries.
The vision of this research project is to use the un-
derlying in-memory prefix tree index structures, which
are required for a balanced read/write performance, for
query processing as well. As shown in Figure 1, prefix
trees are used as intermediate results of a query execu-
tion plan and thus, all database operations can benefit
from the structure of the in-memory index by pruning
working indices during query execution.

Example 1 Consider the query γ(σa<107(R) on S on
T). A traditional query execution plan as shown in
Figure 1(a) might also use the underlying index struc-
tures, e.g., for index nested loop joins of ∗ on S and
∗ on T . In contrast, our idea is to use the underlying
index structure as intermediate results of all operators
rather than just at the leaves of a query plan.

While, this is advantageous in terms of the asymptotic
time complexity of certain operations and thus, allows
for efficient query processing on very-large amounts
of data, major challenges in terms of memory man-
agement, query processing and scalability arises at the
same time. The objective of this project is to lever-
age the HPI Future SOC Lab infrastructure in order to

23

evaluate our initial prototype in large-scale infrastruc-

tures and to adapt our framework with regard to these

preliminary results.

With the aim to provide an overview of the project

idea, we make the following contributions that also re-

flect the structure of the paper. In Section 2, we ex-

plain selected prefix-tree-based operators and sketch

the query transformation. Subsequently, in Section 3,

we present preliminary experimental results. Finally,

we review the project status and planned future work

in Section 4 and conclude the paper in Section 5.

2 Query Processing Overview

As our underlying in-memory index structure, we use

the generalized trie [2] that is a prefix tree (trie) with

variable prefix length of k′ bits. We define that (1)

k′ = 2i, where i ∈ Z
+, and (2) k′ must be a divi-

sor of the maximum key length k. Given an arbitrary

data type of length k and a prefix length k′, the trie

exhibits a fixed maximum height h = k/k′ and each

node of the trie includes an array of s = 2k
′

references

(node size). The trie path for a given key ki at level l
is then determined with the lth k′-bit prefix of ki. In
addition, we use trie expansion such that subtries are

only expanded if required (if multiple keys share the

same prefix). This trie exhibits (1) the deterministic

property such that any key has exactly one path within

the trie and (2) a constant worst-case time complexity

of O(h). Combining this in-memory index structure

and our vision of query processing on prefix trees, in

this section, we present selected prefix-tree-based op-

erators and the related query transformation.

2.1 Selected Operators

In general, we use the relational algebra but extend it

on physical and logical level to a closed prefix-tree-

based algebra, where the input and output of each

operator, except ixEmit, is represented by a prefix

tree. The generalized trie with its deterministic prop-

erty then allows for specific optimizations.

Query Plan Leaf Operators: There are three possibili-

ties of query plan leaf operators. The ixCopy sim-

ply copies the complete memory block of an index

because due to pruning during query processing, we

would destroy our underlying in-memory index struc-

tures. However, for tries (1) that are read-only during

query processing, or (2) that can be reused from previ-

ous query executions [8], we use the ixRef to simply

reference an existing index. Finally, for equality selec-

tion predicates, the ixGet operator obtains a single

key partition of the underlying trie by a point query.

Conjunctive, Disjunctive, and Range Selection Predi-

cates: While conjunctive selection predicates are re-

alized by a sequence of ixGet operators, disjunc-

tive predicates on the same attribute are addressed

by the concept of query-data joins [3]. Having

Level=1

Level=4

10 2 15

Level=3

10 2 15

Level=3

10 2 15

Level=2

1 2 15

Level=1

10 15 10 2 15

Key

107

Key

96

P “value2“

P “value3“

Key

2

11

P “value3“P “value4“

P “value2“

6

Key

65409

Key

15

P “value7“

P “value2“

P “value8“

Level=2

10 2 15

Level=1

10 2 15

8

Level=2

10 2 15

Level=1

10 2 1511

Key

61451

P “value9“
L2Items

L1Items

L0Item

2

0

0000 0000 0110 1011rkey = 107

rpath 0 0 6 11

0000 0000 0000 0010lkey = 2

lpath 0 0 0 2

Figure 2. Example ixSelect Operator

long IN-lists of disjunctive predicates in mind, the

ixSelectOr operator builds a prefix tree over all

predicates and executes a semi-join between the in-

put trie and this predicate trie. In contrast, disjunc-

tive predicates on different attributes require a linear

scan by ixSelectMultiple or a union of multiple

ixGet. For range predicates, we use the ixSelect:

Example 2 Assume a simple range predicate query

σ2≤a≤107R. Using a working index over R.a (e.g.,

created with an ixCopy operator), we use an

ixSelect operator in order to prune the trie as

shown in Figure 2. We go down the trie for the left

key (2) and prune all subtries left of this path. Subse-

quently, we repeat this for the right key (107). Thus,

the range predicate can be evaluated independent (ex-

cept for the trie height) of input and output sizes of this

query, while an index scan depends on the output size.

Natural-, Equi- and Theta-Joins: For joins we com-

pare tries by exploiting their deterministic property.

There, we recursively compare the references of both

join inputs. For each join input side, we distinguish

the cases (1) subtrie, (2) key partition, and (3) null ref-

erence. If at least one side is a null reference, we can

prune the complete subtries of both sides. Thus, we

might observe sublinear asymptotic behavior, where

only the worst-case complexity is linear. Similar con-

cepts are used for the other binary operators such as

ixUnion, ixDiff, and ixIntersect.

Group-By and Order-By: The generalized trie is in-

herently partitioned due to the deterministic trie paths.

Thus, the ixGroupBy operator for multiple attributes

recursively creates tries for each attribute with the

scope of the current key partition only. Due to order-

preserving indexing, the ixSort for multiple at-

tributes uses exactly the same conceptual idea. As a

result, both operators exhibit a linear time complexity.

2.2 Query Transformation

Putting it altogether, we use the query transformation

procedure to show how these operators are combined

in order to answer traditional analytical queries.

24

lo_suppkey=s_suppkey

lo_orderdate=d_datekey σs_region=’AMERICA’

γ(d_year,p_brand1), SUM(lo_revenue)

lineorder date supplier

lo_partkey=p_partkey

σp_category=’MFGR#12’

part

sortd_year,p_brand1

SELECT SUM(lo_revenue), d_year, p_brand1
FROM lineorder, date, part, supplier
WHERE lo_orderdate = d_datekey AND

lo_partkey = p_partkey AND
lo_suppkey = s_suppkey AND
p_category = 'MFGR#12' AND
s_region = 'AMERICA'

GROUP BY d_year, p_brand1
ORDER BY d_year, p_brand1

(a) Traditional Query Processing

ix lo_suppkey=s_suppkey

ix lo_orderdate=d_datekey

ixγ(d_year,p_brand1), SUM(lo_revenue)

ix lo_partkey=p_partkey

ixBuildd_year,p_brand1

ixBuildp_partkey

ixGetpart.
p_category=’MFGR#12’

ixCopylineorder.
lo_orderdate

ixRefdate.
d_datakey

ixBuilds_suppkey

ixGetsupplier.
s_region=’AMERICA’

ixBuildlo_suppkey

ixBuildlo_partkey

(b) Query Processing on Prefix Trees

Figure 3. Example Query Transformation for SSB Q2.1

Before discussing query transformation, we need to in-
troduce the additional ixBuild operator. We use sec-
ondary indices as intermediate results. If subsequent
operators require different attributes, we need to invert
the obtained intermediate index. This is realized by a
linear scan over the input trie and inserting all tuples
into a new temporary index over the required attribute.
However, there are many different alternatives on log-
ical plan level that might be used for optimization.
Query transformation (without optimization) is then
realized as follows: We start with an traditional query
plan. For each leaf node, we decide on the prefix-tree-
based access (ixCopy, ixRef, or ixGet). Subse-
quently, we replace the logical non-leaf operators with
our prefix-tree-based operators. If the attributes of in-
put tries do not match up the operator description, we
insert an ixBuild before this operator. Finally, we
remove unnecessary operators such as single attribute
ixGroupBy or redundant ixSort operators.

Example 3 Assume the query Q2.1 of the Star
Schema Benchmark (SSB) [11] as shown in Fig-
ure 3(a). The query plan consists of a left-deep join
tree, two equality selection predicates as well as a final
group-by and sort including two attributes. In contrast
to this, the prefix-tree-based query plan includes sev-
eral modifications. We create the lineorder index by an
ixCopy operator, while the date index can be simply
referenced by an ixRef operator because it is used
read-only as the right side of a join. Equality selec-
tion predicates on supplier and part lead to the use of
point queries in the form of ixGet operators. In ad-
dition, we insert five ixBuild operators in order to
invert intermediate result tries. Due to the equality of
group-by and order-by attributes (d year, p brand1),
we finally remove the redundant ixSort operator.

Such prefix-tree-based query plans exhibit potential
for optimization. For example, we can reuse in-
termediate results [8], of rather static dimension ta-
bles, such as the result tries of ixBuildp partkey

or ixBuilds suppkey by an ixRef operator because
they would be used read-only as the right side of a join.

3 Experimental Evaluation

As an example, we evaluate the scalability for range
queries of the form Q : σx≤R.a≤yR, where N = |R|
denotes the table cardinality and N ′ = |σx≤R.a≤yR|
denotes the result cardinality. Our prototype (imple-
mented in C) maintains a table R(a INTEGER(4),
b VARCHAR(100)) with a secondary index on a.
As our test environment, we used a Desktop Intel Ne-
halem with one processor (quad core Intel i7 Core at
2.67GHz), hyper-threading (2 threads per core), Fe-
dora Core 13 (64bit) as operating system and 6GB
of RAM. We inserted a sequence of N tuples and
compared the traditional index scan ixScan (point
query on x, scan until y) with our prefix-tree-based
ixSelect ((1) with ixCopy, and (2) with ixFork
for lazy copy-on-write as used for shadow paging
[9]) for an query result size of N ′. We observe that
ixScan is only influenced by the number of output
tuples (Figure 4(b)). In contrast, our ixSelect only
depends on the number of input tuples (Figure 4(a))
because it is dominated by the ixCopy operator. Note
that the reuse of allocated memory blocks for tempo-
rary indices within the ixCopy reduces the execution
time by 52.5 % (not shown in the figures). Most impor-
tantly, the use of fork led to significant improvements.
The major finding is that the percentage (N ′/N) from
where the ixSelect is beneficial decreases with in-
creasing data size (lower slope), which makes it espe-
cially applicable for large-scale data sets.

(a) Varying Input Size N (b) Varying Output Size N ′

Figure 4. Range Query Performance

25

4 Project Status and Future Work

Despite the just recent project start of September 1st

2010, we give a brief overview of the current project
status and our planned future work.

4.1 Current Project Status

Based on our conceptual ideas and the initial proto-
type of the generalized trie, we started to build the re-
quired prefix-tree-based query processing framework
for this project. This includes a runtime for prefix-tree-
based operators and query processing, memory and
record management as well as meta data management.
We also investigated the inter-influences to transaction
management and query compilation.
The current status of the project is a partially finished
promising initial prototype that allows for preliminary
experimental investigation. However, many aspects
that offer further optimization potential are not ad-
dressed so far such that a first completely finished pro-
totype is expected in the second quarter of 2011.

4.2 Used Future SOC Lab Resources

The objective of this project is to leverage the HPI Fu-
ture SOC Lab infrastructure in order to evaluate our
initial prototype in large-scale infrastructures. Thus,
we use the available resources mainly with the aim
of experimental evaluation. This includes, in partic-
ular (1) the scalability with increasing data size (in-
memory), and (2) the scalability with increasing num-
ber of threads.
Until now, we used the HPI Future SOC Lab resource
Fujitsu RX600 S5 1, CPU: 4 x Xeon
(Nehalem EX) E7530, RAM: 256GB. The
major benefit for us is the possibility to evaluate our
in-memory prototype on large-scale data sets due to
the available main memory resources. This allows us
to adapt our framework with regard to the obtained
results, which enables a future-oriented investigation
of the idea of query processing on prefix trees.

4.3 Next Steps

Beside the outstanding work for the integrated proto-
type, there is plenty of future work regarding further
optimization potential. This includes the following
three major research directions.

• Memory Management (garbage collection, opti-
mized lazy copy-on-write for efficient copying)

• Query Processing (recycling intermediates, hy-
brid row/column storage, physical operator alter-
natives, cost-based query optimization)

• Scalability (scalability with increasing data sizes,
inter-operator parallelism by pipelining subtries,
intra-operator parallelism by task partitioning)

5 Conclusions

Based on the requirements of (1) balanced read/write
performance and (2) efficient index support for point
and range queries, we proposed the vision of query
processing on prefix trees. We sketched the project
idea as well as promising preliminary conceptual and
experimental results. Efficient query processing over
huge evolving data sets will enable a broader use of
the consolidated enterprise data. Finally, this is a fun-
damental prerequisite in order to (1) extend the scope
of BI from strategic and dispositive levels to the oper-
ational level, and to (2) enable advanced data analytics
that goes beyond traditional data aggregation.

Acknowledgment

We want to thank Frank Dietze, Steve Reiniger, and
Thomas Dedek for their efforts on implementing parts
of this prefix-tree-based query processing framework.

References

[1] Deepak Agarwal, Datong Chen, Long ji Lin, Jayavel
Shanmugasundaram, and Erik Vee. Forecasting high-
dimensional data. In SIGMOD Conference, 2010.

[2] Matthias Boehm, Benjamin Schlegel, Peter Benjamin
Volk, Ulrike Fischer, Dirk Habich, and Wolfgang
Lehner. Efficient in-memory indexing with generalized
prefix trees. In BTW, 2011.

[3] Sirish Chandrasekaran and Michael J. Franklin.
Streaming queries over streaming data. In VLDB, 2002.

[4] Jeffrey Cohen, Brian Dolan, Mark Dunlap, Joseph M.
Hellerstein, and Caleb Welton. Mad skills: New anal-
ysis practices for big data. PVLDB, 2(2), 2009.

[5] Sudipto Das, Yannis Sismanis, Kevin S. Beyer, Rainer
Gemulla, Peter J. Haas, and John McPherson. Ricardo:
integrating r and hadoop. In SIGMOD Conference,
2010.

[6] Umeshwar Dayal, Malú Castellanos, Alkis Simitsis,
and Kevin Wilkinson. Data integration flows for busi-
ness intelligence. In EDBT, 2009.

[7] IDC. The Digital Universe Decade - Are You Ready?
IDC, 2010.

[8] Milena Ivanova, Martin L. Kersten, Niels J. Nes, and
Romulo Goncalves. An architecture for recycling in-
termediates in a column-store. In SIGMOD Confer-
ence, 2009.

[9] Alfons Kemper and Thomas Neumann. Hyper: Hybrid
oltp&olap high performance database system. Techni-
cal report, 2010. TUM-I1010.

[10] William O’Connell. Extreme streaming: business opti-
mization driving algorithmic challenges. In SIGMOD
Conference, 2008.

[11] Pat O’Neil, Betty O’Neil, and Xuedong Chen. Star
Schema Benchmark - Revision 3, 2009.

[12] Elizabeth G. Reid. Design and evaluation of a bench-
mark for main memory transaction processing systems.
Master’s thesis, MIT, 2009.

[13] Richard Winter and Pekka Kostamaa. Large scale data
warehousing: Trends and observations. In ICDE, 2010.

26

Build Automation as a Service

Martin v. Löwis
Hasso-Plattner-Institut

Postfach 900460
D-14440 Potsdam

Martin.vonLoewis@hpi.uni-potsdam.de

Bernhard Rabe
Hasso-Plattner-Institut

Postfach 900460
D-14440 Potsdam

Bernhard.Rabe@hpi.uni-potsdam.de

Abstract

Build Automation assumes new roles in software
development as availability of fast hardware increas-
es. One wide-spread application is continuous inte-
gration, the other software production. In this
project, we experiment with the usage of high-
performance hardware to provide build automation
as a service, in a manner where the developers of the
software don’t require access to the hardware, and
the operators of the hardware can rely that even
malicious code inject by a developer (or an adver-
sary masquerading as a developer) will not harm the
infrastructure or data of other users. The specific
experiments were performed in the context of the
Python language project.

1 Introduction

Build and test automation is a core aspect of Conti-
nuous Integration (CI). As developers complete the
implementation of a new feature, this feature can get
integrated immediately if it is known not to break the
current code base. The software needs to be rebuilt,
and the test suite needs to be re-run. If the test suite
fails, the change needs to be reverted, or (if a patch
queue manager2 is used) not be integrated in the first
place. Martin Fowler recommends that the build
should be quick, and that it should be performed once
for every commit to the source code repository.
Unfortunately, for a larger project, building the soft-
ware and running the test suite can take between
several minutes and several hours. The productivity
gain of continuous integration is quickly lost if the
result of the automated build are available only a few
hours after the change was made – the developer
might be working on something else meanwhile, and
other developers may get stalled by the broken build.
Fortunately, using multi-core systems, build automa-
tion can be significantly accelerated: most build
processes already support parallel execution. Unit
test suites often would allow independent and parallel
execution of tests as well, even though the test run-
ners currently often enforce sequential execution;
developers typically don’t invest into parallel testing

as they do not have the necessary hardware available,
anyway.
Another aspect of build automation is software pro-
duction: every time a software system is released, a
number of build steps have to be performed. Some
are manual (e.g. updating the release notes, bumping
the version number), while others can be automated.
In many larger projects, production is fairly auto-
mated already.
However, in some settings, running the entire pro-
duction process on a single computer is not feasible.
For example, building installation packages for dif-
ferent processor architectures or operating systems
will typically require separate computers (unless
cross-compilation can be used).
In this project, we investigated some aspects of build
automation on future systems, using service-oriented
approaches. We investigated two different build
tasks, which we will describe first. Then we elaborate
the architecture used, and finally we report the results
we received so far, along with identifying remaining
issues.

2 Continuous Integration in Python

The oldest and most widely used implementation of
the Python programming language is based on an
interpreter written in C; this implementation is often
referred to as CPython [1]. The interpreter along with
various standard library modules that access operat-
ing system facilities has been ported to various hard-
ware platforms and operating systems; the most
common target systems are Microsoft Windows, the
POSIX family of operating systems, and Apple Mac
OS X. The core group of developers currently con-
sists of about 130 contributors [2].
The CPython source code is currently maintained in a
central Subversion repository [3]. For further discus-
sion, we restrict attention to the build procedures
used for POSIX target systems, in particular Linux,
as this was the system we used in the Future SOC
experiment. To build the interpreter, an autoconf-
based configure run is followed by a make-based
compilation.

27

The CPython source code also includes a unit test
suite, consisting of about 350 test modules, each
performing a varying number of tests. Developers are
expected to run the test suite before every commit.
However, practice demonstrates that developers
sometimes skip running some or all of the tests if
they are convinced that the change cannot possibly
break tests cases. Also, they can only run the test
suite on the hardware they have available; however,
incompatibilities between operating systems may
cause some change to break the test suite on some
particular systems.
To improve the stability of the code base, a conti-
nuous integration process was set up by one of the
authors a few years ago, using the buildbot system.
As shown in figure 1, each commit operation to the
source repositories triggers a notification to the build
master, which in turn notifies all build slaves. Each
slave then performs a full build and test suite run, and
reports all output and the summary status to the mas-
ter. The master, in turn, sends out email notifications
if the modification has broken the build on some
system (i.e. if the build was working before the
change, but failed afterwards).

In the past, problems specific to only selected plat-
forms were often detected only months after the
change had been made, in many cases only after a
release of the interpreter had been made. With the CI
process, problems are detected much earlier (for the
systems which participate as build slaves).
However, a remaining issue is that the errors are
detected after the change has been committed to the
source control system. If the change causes problems,
somebody would need to investigate the problem and
devise a solution. Practice has shown that this is often
not the original author of the change, since she felt
that she had accomplished the objective (of getting
the change integrated into CPython). This is some-
times viewed as unfair among contributors, as the
convention says that whoever introduces the errors
should also work to remove them.

One cause of this problem is that the buildbot feed-
back is not timely. Build times vary between 30 mi-
nutes and 2 hours. Developers will often be busy with
other tasks when the results arrive, and unable to
react immediately.
To improve this situation, the objective of this project
is to significantly reduce build times on a selected
system, to give developers an instantaneous feedback
whether the change has caused problems.

2.1 Buildbot Slave Setup
In the Future SOC lab, a buildbot slave was set up on
the Fujitsu RX600S5 system. Standard Debian pack-
ages were used; in the course of the project, the build
area was moved from a local hard disk to the EMC
storage via NFS.

2.2 Buildbot Master Changes
In addition to setting up a slave, changes to the mas-
ter have been implemented, in order to facilitate the
available hardware. These changes request that all
build steps for which parallel execution is possible
are indeed executed in parallel. While it might be
more appropriate that the slave requests parallel ex-
ecution (instead of this being a master-side configu-
ration), buildbot does not currently support such
slave-side configuration.
In particular, the following changes have been made:

• The make build program is invoked with the
option ‘-j48’, which requests the execution
of up to 48 processes in parallel. This num-
ber was chosen to match the number of vir-
tual (hyper-threaded) processors in the
hardware.

• Likewise, the test runner (Python’s regr-
test.py) was invoked with the option ‘-j48’,
having the same effect on the tests as well.

The actual results of this setup are reported further
below.

3 Automated Builds in the Python
Package Index

PyPI, the Python Package Index [4] is a central infra-
structure in Python community which allows open
source authors to announce their Python-related
projects, and also publish the actual source code and
documentation if they desire (alternatively, they may
only link to their project home page from the index).
Many authors do indeed provide source code as well
as selected pre-packaged binary packages, typically
for Windows. Developers typically can’t provide
binary packages for all systems, as they don’t have
access to all the systems for which users may request
binary packages.
Within this Future SOC project, we experimented
with automatically building binary packages for all
projects listed in PyPI, for selected operating systems
(namely different Ubuntu versions). The objective

Figure 1. Information flow in buildbot.

Informs

notifies

Developer Repository
commits

Build Master

Build Slaves

Master initiates
builds; slaves
report results

28

would be to provide an Ubuntu package repository
which would allow Ubuntu users to install PyPI
packages using their regular package management
tools (i.e. aptitude(8)). In principle, this approach
would also work for other systems (such as FreeBSD
or Solaris), however, the specific build procedure
will need to be adopted for every system.
In dealing with this build task, we detected to major
challenges: integration with the Debian packaging
system, and security threats for the build infrastruc-
ture.

3.1 Integrating with the Debian Packaging
System

A Debian package is a collection of files to be in-
stalled on the target machine, plus a number of pack-
age management metadata. These metadata primarily
consist of three groups:

• human-targeted package information (name,
description)

• package dependencies (which other pack-
ages are needed to use this package)

• custom installation procedures (pre/post in-
stall/uninstall scripts)

In order to automatically generate Debian packages,
this information must also be obtained in an auto-
mated manner. Fortunately, Python packages in PyPI
often are based on distutils [5], which then already
provides much of the needed information. Missing
information can then be left blank or filled with boi-
lerplate text.
Dealing with package dependencies is more compli-
cated for two reasons: First, many PyPI packages
don’t include dependencies, and if they do, they only
refer to other PyPI packages, not to Debian packages
which they also may depend on. Second, a number of
PyPI packages are already available in Ubuntu, al-
though perhaps not in the latest version. It would be
desirable to record dependencies to these versions of
the packages, so that users don’t have to deal with
conflicting versions on their systems.
Fortunately, Andrew Straw’s stdeb package [6] al-
ready deals with much of the metadata problems for
Debian packages (and is applicable to Ubuntu also);
hence the automated build process relies mostly on
stdeb to fill out the package metadata correctly.
The issue of custom installation procedures can be
solved in a uniform manner for Python packages.
Even though custom steps are indeed necessary (in
particular, to create Python bytecode files on the
target system), the Debian python-support library
simplifies this task; stdeb uses this library by default.

3.2 Executing Untrusted Code
One key issue for build automation as a service is the
trust into the foreign code. In the majority of build
procedures, authors of the software can integrate
arbitrary algorithms, to deal with specific tasks that
arise in building the software. Unfortunately, this

means that, in principle, developers could also inject
malicious code that then forms a threat for the opera-
tor of the build automation service.
In the first part of the project, this was only a minor
concern: the possible developers that have access to
the build procedures are all well-known and trusted,
and the build process runs under an unprivileged
account.
In building PyPI packages, the authors are not indivi-
dually known. While it is likely that they will have
no malicious code in their build procedures, the
threat of somebody uploading a package to specifi-
cally attack the build infrastructure is real.
To cope with this problem, we have used virtual
machines to perform all build steps in a sandbox. At
the end of the build, all system modifications were
discarded, except that the actual build results (i.e. the
Ubuntu packages) were preserved.
The details of the setup so far are described in the
results section.

4 Results

The two different build projects have a different
degree of completion, with different insights that we
have gained.

4.1 Continuous Integration
The main objective of the project was to reduce the
build time. This objective has been achieved: a typi-
cal build of the Python 3 branch now completes in ca.
8 minutes. This speedup was primarily achieved from
the parallel execution of the test suite, which uses ca.
6 minutes of the total.
However, a number of questions remain:

1. Given that there are 48 processes running tests,
and given that there are 350 test modules that
could be run in parallel, why is the speedup so
low (below 10)? Most likely, some individual
tests take a long time to complete; this has not
been analyzed further.

2. Some of the test cases fail on the Future SOC
hardware, yet pass on other systems. By a shal-
low inspection, this is likely due to non-
standard behavior of the storage system.

Elaborating on the second issue, we see two kinds of
failures: First, file names with non-ASCII characters
apparently cause problems (e.g. a file that ought to be
named “Grüß-Gott” is actually reported as having the
name “Gr\udcfc\udcdf-Gott”). Second, files show
incorrect time stamps: a file that should have been
modified at time 1041808783 is reported to have
1041808783.000001 as its modification time).

4.2 Building PyPI packages
After researching alternatives, we decided to use the
Sun/Oracle product VirtualBox [7] to perform the
virtualization. This product allows users to create
operate the hard disk in a “immutable” mode, where

29

changes are discarded after the machine shuts down.
In this project, we set up a virtual hard disk with all
build tools in place, and then change the hard disk to
be immutable. All disk changes made in an individu-
al build can then be discarded at the end of the build,
preventing some build from tampering with the files
on the disk.
To automatically integrate the individual builds, we
use again buildbot: a build slave will start a virtual
machine, wait for the build to complete, and then
upload the build results to the master.
One particular challenge is the communication be-
tween the build slave (which runs in the host system)
and the virtual machine. Currently, we concentrate on
the Shared Folders feature of VirtualBox: a dedicated
directory of the host system is integrated into the
virtual machine. Before the build starts, the build
configuration is placed into that folder. As part of the
boot process, the build process is launched and
processes the build task. It then needs to shut down
the virtual machine, leaving only the build results
behind in the shared folder.
This project is still in progress; actual results on the
build time for the entire package index are not yet
available. In particular, the following tasks are still
not done:

• Computation of dependencies between
packages, and a global scheduling of the or-
der in which builds should occur.

• Shutdown of the virtual machine at the end
of the build

• Production of packages for multiple Ubuntu
releases, in particular for the Intel x86 and
AMD-64 architectures.

5 Future Work

As indicated above, further tasks need to be per-
formed in each of the subprojects. For the continuous
integration project, the critical path must be investi-
gated, to determine whether build times can be fur-
ther reduced. For the automated package builds, the
build infrastructure needs to be completed and run at
least once.

6 References

[1] Alex Martelli. Python in a Nutshell (2nd
edition ed.). O’ Reilly 2006.
[2] Python Software Foundation. Python Com-
mitters. http://www.python.org/dev/committers
[3] Python Software Foundation. Python Source
Repository. http://svn.python.org/projects/python/
[4] Python Software Foundation. Python Pack-
age Index. http://pypi.python.org/pypi
[5] Greg Ward, Anthony Baxter. Distributing
Python Modules.
http://docs.python.org/distutils/index.html

[6] Andrew Straw. stdeb.
http://pypi.python.org/pypi/stdeb
[7] Oracle. VirtualBox.
http://www.virtualbox.org/

30

Parallel Aggregation and Join Computation in NewDB
– Project Status October 2010 –

Christian Bensberg, Nico Bohnsack, Christian Mathis,
Kai Stammerjohann, Frederik Transier

SAP AG

Stephan Müller, Jan Schaffner, Christian Tinnefeld
Hasso Plattner Institute

Abstract

Database architecture follows hardware trends. Cur-
rent hardware trends like very large amounts of main
memory, multi-core processors, and big data centers
for cloud computing are pioneered by SAP’s NewDB—
a parallel main-memory database system with multi-
tenant support. In this project proposal, we apply for
the support of the Future SOC Lab to investigate two
algorithms specially developed for NewDB: parallel
in-memory variants of relational join and aggregation.
These operations are among the most frequently exe-
cuted algorithms, both in OLAP-style and OLTP-style
data processing. Based on the expected results, we will
develop a cost model for parallel aggregation and join
algorithms and a calibrator tool to automatically pa-
rameterize our algorithms for specific hardware plat-
forms. This paper presents the intermediate status of
the project obtained till October 2010.

1 Introduction

Hardware trends have always influenced database ar-
chitectures. This will also be true for the following
developments, from which we believe that they will
heavily impact software development in general and
database system design in particular:

∙ The Shift in the Memory Hierarchy: Dropping
DRAM prices and exponentially growing DRAM
capacities modify the classical memory hierar-
chy. Nowadays, a single blade can hold 1 TB of
main memory. Systems with 50 of these blades
can store the ERP data of the worlds largest com-
panies [6].

∙ Multi-Core Architectures: Chip manufacturers
banged against several walls known as the “heat
wall”, the “ILP wall” (Instruction Level Paral-
lelism), and the speed of light [1]. These walls
effectively ended the exponential CPU frequency

growth. To nevertheless cope with performance
demands, chip manufacturers put multiple cores
inside a CPU. As a simple corollary, software
vendors now cannot rely on frequency-based per-
formance speed-up anymore. Instead, they have
to parallelize their software to—ideally—scale
linearly with the number of available cores.

∙ Data Centers: Many large IT companies invested
in data centers, where they centralize computing
power and storage capabilities to build the infras-
tructure for flexible computing clouds. Hardware
virtualization is the major enabler for this trend.
Customers do not have to invest in hardware any-
more. Instead, they rent virtual computers and
storage space “in the cloud”.

Next generation database management systems will
have to cope with these developments. Although par-
allelism and large main memories have always been an
issue to database systems, we think the above sketched
developments take data processing to the next level:

∙ Purely in-memory systems overcome the clas-
sical external-memory gap rendering database
buffers superfluous. On the flip side, main-
memory I/O becomes the limiting factor. Now,
issues like the cache-miss ratio, cache alignment,
cache-line splits, cache flushes, and prefetching
strategies become the dominant factors influenc-
ing query execution performance.

∙ Database servers were almost always designed to
exploit parallelism (e. g., inter-query, intra-query,
inter-operation, and intra-operation parallelism).
However, we will soon get machines with more
than 64 cores per server node (like the machine
announced in the “Call for Projects” of the Fu-
ture SOC Lab), and we will be able to build clus-
ters with more than 100 blades. Database vendors
will have to think about how to make the most out
of these highly parallel systems.

31

∙ A data store is part of every cloud platform.
Many cloud vendors have chosen to develop
proprietary data store implementations (e. g.,
Google’s BigTable [3] or Amazon’s S3 [2]) rather
than building on traditional database systems.
However, many customers will want to build
their applications on the well-known and well-
established features provided by classical sys-
tems, thus requiring “cloud-aware database sys-
tems”.

SAP’s next-generation database management system
(called “NewDB”) responds to these hardware trends.
In short, NewDB is a highly parallel main-memory
database system which can be installed on a cluster
of blades. At its core, it has a columnar table store
and provides ACID transactions, a SQL interface, and
multi-tenancy support.

2 Research Questions

Within NewDB, the authors are working on query pro-
cessing algorithms. Our goal is to design and imple-
ment algorithms that meet the above sketched hard-
ware developments, i. e., that are aware of the mem-
ory hierarchy and scale well with the available num-
ber of cores on a blade. In the focus of the present
Future SOC Lab project proposal are two recently de-
veloped algorithms for parallelized join and aggrega-
tion computation. Join and aggregation operations oc-
cur in almost every relational query (be it OLTP-style
or OLAP-style). Due to the computational complex-
ity and/or vast data access, join and aggregation are
potentially expensive and have a major impact on any
relational database system. Therefore, we think our
work is not only interesting w. r. t. NewDB, but to re-
lational database research in general.
Surrounding our new algorithms, we identified the fol-
lowing research topics to be tackled with the help of
the Future SOC Lab:

1. Our algorithms are internally parallelized (intra-
operator parallelism). How do our algorithms
scale with the number of available cores?

2. How do our algorithms scale with the input size
and what is the best degree of parallelism for a
given input size?

3. How can we adjust our algorithms to the specific
characteristics of the memory hierarchy (cache
size, memory access time, I/O bandwidth)?

4. How does main memory consumption depend on
the input size and the query complexity? How is
memory allocated/freed during processing? What
are the implications for memory management?

5. In multi-user/multi-tenant scenarios: how do we
best schedule multiple concurrently running ag-
gregation/join queries? Is it better to serialize the

execution of concurrently issued aggregation/join
operations or should we allow the scheduler to
run multiple aggregation/join operations in paral-
lel (inter-operator parallelism)?

Based on the results of our measurements at the Future
SOC Lab, we will develop a cost model for parallel
aggregation and join algorithms. Such a cost model
provides valuable information for the query optimizer
and the scheduler. The results will also provide the
basis to develop a calibrator tool (similar to [5]), which
can automatically parameterize our algorithms w. r. t. a
specific hardware platform at system startup.

3 SOC Lab Experiments

As a first step, we tackled the first point in the above
list of research questions: “How do our algorithms
scale with the number of available cores?”. To assess
the performance of the algorithm under various input
distributions and orderings, we generated a data set of
168 tables, each table containing roughly about 100
Million entries. The tables have the following schema
(simulating a table for material management):
CREATE TABLE generated:<D><#(S)>(
id integer primary key,
matno integer,
value decimal(14,2))
Attribute id identifies each row. Attribute matno is a
material number, drawn out of a set S of predefined
materials. The order of material numbers depends on
the distribution D of a table. The value attribute con-
tains a decimal number, which indicates a flow of the
material (+ for incoming, - for outgoing flows). We
generated the following distributions D, following the
experiment in [4]:

∙ Uniform – For each row, a material number is
randomly chosen from S.

∙ Heavyhitter – 50 % of the rows contain a certain
material number (the heavy hitter), all other rows
are distributed uniformly.

∙ Sorted – The distribution of the material numbers
is uniform, but the rows are sorted by the material
number.

∙ Sequential – The distribution is again uniform,
but the material numbers form a consecutive and
repetitive sequence of size card(S). For exam-
ple, if we had material numbers from 1 to 100,
the sequence would be 1, 2, 3, , 100, 1, 2, 3, 100,
and so on.

∙ Movingcluster – The material number for
row i is chosen uniformly from the range
⌊(card(S)W)i/R⌋ to ⌊(card(S)W)i/R + W ⌋,
where R is the size of the table (e.g., 100 Mil-
lion rows) and W is the window size (we chose

32

W = 1024). This distribution generates some
“locality” within a window of size W .

∙ Pareto – Is a self-similar distribution that adheres
to the 80-20 rule: 20% of the rows in the table
contain 80% of all material numbers. The re-
maining 80% of the rows contain only 20% of all
material numbers, whose distribution again ad-
heres to the 80-20 rule.

∙ Zipf –The frequency of a certain material number
is inversely proportional to its position in the fre-
quency table, e.g., material number X at position
y in the frequency table occurs twice as often as
material number X at position y + 1.

We used the Python numpy package to generate the
Pareto and the Zipf distributions. For the different dis-
tributions, we generated tables with 100 Million rows
and the following cardinalities: 2, 22, 23, . . . , 224 re-
sulting in 168 tables. These tables were imported into
NewDB, resulting in a 250 GB database.
On each table, we executed the following three queries
10 times and took the median execution time of the
aggregation in milliseconds (see [4]):

∙ Q1:
select count(*), sum(value),
sum(value*value), matno from
generated:<D><S> group by matno

∙ Q2:
select max(value), min(value),
min(value), matno from
generated:<D><S> group by matno

∙ Q3:
select distinct matno from
generated:<D><S>

The additional min aggregation in Q2 facilitates the
comparison with Q1. To make the results comparable,
we calculated the throughput (number of rows per mil-
lisecond) of the aggregation algorithm, rather than the
absolute computation time. We used the NewDB de-
fault parameters for the parallel aggregation algorithm,
except for the number of cores, which we varied to
asses the aggregation algorithm.
The benchmark was conducted on Fujitsu RX600S5
– a machine with 32 Cores (Intel(R) Xeon(R) CPU
X7550) and 1024 GB main memory and OpenSUSE
11. The benchmark client was implemented in Python
and ran on the server machine. We used a preliminary
version of NewDB. Note, with 64 cores, we rely on
Intels Hyper Threading.
We executed each query 11 times. The first run was
omitted, because this run contains the time to load the
queried table into main memory. Of the remaining 10
times, we recorded the median run time. The run time
was measured with an internal stop watch, which only
recorded the time for the aggregation (i.e., no commu-
nication overhead was recorded).

4 Findings and Next Steps

The findings of the experiments not available for pub-
lication yet. The above described synthetic data set
helped to identify the behavior of the algorithm in cor-
ner cases.
As next steps, we would like to proceed our experi-
ments by further elaborating on question 1 and tack-
ling question 2 from Section 2. To do so, we plan the
following experiments:

∙ Repeat the experiment on a real-world data set
(instead of the synthetic one used).

∙ Repeat the experiment on standard benchmarks
(TPC-H) with different scaling factors.

Help from the SOC lab with finding a real-world data
set would be appreciated. Ideally, this data set would
already be available in a star schema.

References

[1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J.
Gebis, P. Husbands, K. Keutzer, D. A. Patterson,
W. L. Plishker, J. Shalf, S. W. Williams, and K. A.
Yelick. The landscape of parallel computing re-
search: A view from berkeley. Technical Report
UCB/EECS-2006-183, EECS Department, Uni-
versity of California, Berkeley, Dec 2006.

[2] D. Barth. An update on amazon s3. http:
//developer.amazonwebservices.
com/connect/servlet/KbServlet/
download/254-102-510/amzns3_
6-14-06.pdf.

[3] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh,
D. A. Wallach, M. Burrows, T. Chandra, A. Fikes,
and R. E. Gruber. Bigtable: A distributed storage
system for structured data. In In Proc. Conf. on
Usenix Symposium on Operating Systems Design
and Implementation, pages 205–218, 2006.

[4] J. Cieslewicz and K. A. Ross. Adaptive aggre-
gation on chip multiprocessors. In VLDB, pages
339–350, 2007.

[5] S. Manegold. Understanding, Modeling, and
Improving Main-Memory Database Performance.
PhD thesis, Universiteit van Amsterdam (UvA),
2002.

[6] A. Zeier, M.-P. Schapranow, and C. Tinnefeld.
Impact of column-oriented main-memory
databases on enterprise applications, October
2009. http://epic.hpi.uni-potsdam.
de/pub/Home/MatthieuSchapranow/
091015_BI123_SAP_TechEd09_
Impact_of_Column-Oriented_
Main-Memory_Databases_on_
Enterprise_Applications.pdf.

33

IDS Alert Correlation using In-Memory and Multi-Core

Sebastian Roschke
Hasso-Plattner-Institute

Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam

sebastian.roschke@hpi.uni-potsdam.de

Feng Cheng
Hasso-Plattner-Institute

Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam

feng.cheng@hpi.uni-potsdam.de

Christoph Meinel
Hasso-Plattner-Institute

Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam

meinel@hpi.uni-potsdam.de

Abstract

Intrusion Detection Systems (IDS) have been widely
deployed in practice for detecting malicious behavior
on network communication and hosts. The problem
of false-positive alerts is a popular existing problem
for most of IDS approaches. The solution to address
this problem is correlation and clustering of alerts. To
meet the practical requirements, this process needs to
be finished as fast as possible, which is a challenging
task as the amount of alerts produced in large scale de-
ployments of distributed IDS is significantly high, due
to the deployment of IDS sensors in Cloud computing
and open network designs (e.g., SOA). We identify the
data storage and processing algorithms to be the most
important factors influencing the performance of clus-
tering and correlation. We propose the utilization of
memory-optimized algorithms and a column-oriented
or In-memory databases for correlation and clustering
in an extensible IDS correlation platform. The utiliza-
tion of the column-oriented database, an In-Memory
Alert Storage, and memory-based index tables leads
to significant improvements on the performance. The
platform can be distributed over multiple processing
units to share memory and processing power, i.e., it
can make use of both paradigms: multi-core and In-
memory. The efficiency of the proposed platform is
tested by practical experiments with several alert stor-
age approaches and different simple algorithms.

1. Project Description

The problem of false positive alerts is a well known
problem for many IDS approaches [14]. Suboptimal
patterns or insufficient thresholds for pattern-based
and anomaly-based IDS approaches are the main rea-

sons for a huge number of false-positive alerts. By de-
ploying the IDS sensors in a distributed environment,
the number of false positive alerts increases as a sin-
gle event may be detected and reported multiple times
by different involved sensors. The popular solution to
address this problem is correlation and clustering of
alerts. To improve the efficiency of clustering and cor-
relation, several techniques have been proposed [3].
As high security requirements of networks need real-
time reporting of attacks and malicious behavior, the
performance of these techniques is a critical factor. In
particular in large scale distributed IDS (DIDS), pro-
viding high-performance correlation and clustering re-
mains to be a difficult challenge, due to a huge amount
of alerts. The performance of alert correlation can be
improved by using table indexes in main memory for
hyper alerts [13], i.e., clusters of alerts with the same
properties. Furthermore, correlation in real-time is of-
ten based on filtering and clustering of alerts to hy-
per alerts [12], which reduces the number of processed
alerts significantly. The approach reaches a correlation
rate on the order of 100, 000 alerts per second based
on the massive reduction of alerts by clustering them.
However, a general approach that can handle a higher
amount of alerts per second without the need of alert
reduction is considered to be useful.

In-Memory and column-based databases are usually
used for costly analytical processing of huge amounts
of data [5]. A column-based organization of the
database improves analytical operations, which often
consist of comparison of all values from a single or
multiple columns. As described in [6], database sys-
tems can benefit from the use of main memory. In-
memory and column-based databases are suitable for
future computing paradigms, such as multi-core sys-
tems, which are supposed to have more CPUs and a
huge amount of main memory. By storing a database

35

in the main memory, analytical operations can be pro-
cessed in parallel by several CPUs with direct access
to the main memory. There are many implementations
for column-based database systems, such as MonetDB
[7, 8], which is an open-source database system for
high-performance analytical operations, e.g., Online
Analytical Processing (OLAP), Geographic Informa-
tion Systems (GIS), XML Query, text and multimedia
retrieval. MonetDB often achieves a significant speed
improvement for SQL over other open-source systems,
e.g., MySQL[9] or PostgreSQL[10]. The general ben-
efits of in-memory and column-based databases can be
useful to correlation and clustering of IDS alerts.

In large scale deployments of DIDS, huge number of
alerts are produced in a short time. To fulfill the chal-
lenging task of fast correlation and clustering, we iden-
tified the data storage and processing algorithms to be
the most important among several other influential fac-
tors for the performance. To improve those factors,
we propose the utilization of improved algorithms us-
ing a memory based index table and the deployment
of In-Memory or column-oriented databases for corre-
lation and clustering. A flexible correlation system is
needed, which synchronizes, unifies, and analyzes all
the security related events produced by the integrated
sensors. To meet these requirements, we implement
an extensible IDS correlation platform in this paper,
which consists of several Correlation Handlers, a uni-
fied Alert StorageController, a unified AlertUpdate-
Controller, and a RequestController for visual presen-
tation and network communication. The utilization of
a Column-oriented Database and an In-Memory Alert
Storage in connection with Improved Algorithms using
Memory-based Index Tables for correlation and clus-
tering lead to significant improvements of the perfor-
mance. Different types of correlation modules can be
easily integrated and compared on this platform. A
new plugin concept for Receivers provides flexible in-
tegration of various sensors and additional IDS man-
agement systems. The platform can be distributed over
several units to share memory and processing power.
The IDMEF [4] standard is used to represent and ex-
change the alert information. A standardized interface
is designed to provide a unified view of result reports
for users. The efficiency of the proposed platform is
evaluated by practical experiments for various alert
storage approaches and simple algorithms, within lo-
cal or distributed deployment of the platform.

We believe that research in the area of IDS and net-
work security as application for multi-core and In-
memory based platforms can provide new paradigms
for conducting security. Correlation and clustering is
currently only done in a limited way using filtered data
sets. Using the multi-core and In-memory platforms,
it might be possible to do correlation and clustering on
an unfiltered data set. Thus, it might not be necessary
to fine tune (e.g., exclude certain detection rules) the
IDS sensors anymore, as the correlation and clustering

can do meaningful reasoning on all alerts in a short
time. Furthermore, we expect correlation and cluster-
ing services offered in the Cloud. A flexible and exten-
sible correlation platform can provide the foundation
work for a new paradigm in security.

2. Results and Achievements

During the last few month, we have been able to
achieve multiple results by using the system in the
Future SOC infrastructure. We fully implemented
the correlation platform with In-Memory and column-
based DB support. We conducted practical experi-
ments using an IDE integrated performance measure-
ment framework. Apart from the practical achieve-
ments, we have been able to publish papers on the cor-
relation platform [1] and started research on a complex
correlation algorithm using attack graph data and envi-
ronmental information for IDS correlation [2]. Some
results are summarized in the following subsections.

2.1 Implementation

The architecture of the correlation platform is shown
in Figure 1. It consists of four major components:
the Controller, the RequestController, the AlertUp-
dateController, and the AlertSourceController. The
Controller is responsible for starting the platform with
all other controllers, loading the Correlation Mod-
ules, and initializing the In-Memory Alert Storage and
the Index Tables. The AlertSourceController provides
the interface to the source storage, e.g., a row or
column-oriented database. By using Source Adapters
as plugins, the AlertSourceController provides an easy
and flexible mechanism to connect different types of
databases. The UpdateSourceController provides the
interface to a running IDS management system. The
plugin concept of Alert Receivers offers the possibil-
ity to connect different management systems as well
as different IDS sensors directly [11]. The Request-
Controller provides the interface to the Correlation-
Frontend, which is responsible for presenting the cor-
relation results to the user. The Correlation Mod-
ules implement the different correlation algorithms.
Each module is working independently based on a data
source, which is either the database provided by the
AlertSourceController, or the In-Memory Alert Stor-
age created at startup. The In-Memory Alert Storage
can also be disabled if needed, as it is memory con-
suming. Furthermore, each module can update and
read the Index Tables to cluster and correlate the alerts.
We deployed the prototype of the correlation platform
a FutureSOC VM (1 CPU, 4 GB Ram) and developed
multiple features to improve performance and usabil-
ity:

• Snort alert generator that generates IDS alerts us-
ing a network description

36

Figure 1. IDS Correlation Platform

• Dynamic module loading by uploading a module
through the frontend

• Usability and performance improvements for the
GUI

• Integration of environmental data into the plat-
form that can be used for correlation (network
and system descriptions, attack graph data)

• Development of the information pool concept
that enables access to correlation results and envi-
ronmental information for all correlation modules

2.2 Experiments

We conducted practical experiments to perform a per-
formance analysis on the different approaches. The
analysis has been performed on a system with two In-
tel Core(TM)2 Duo CPUs running on 1.4GHz with a
cache size of 3, 072kB each. The system possesses
2GB RAM and Solid-State-based hard drive with a
size of 128GB. The running operating system (OS)
was a Gentoo Linux. The time and memory consump-
tion are measured by the Eclipse Test & Performance
Tools Platform Project (Eclipse TPTP). Therefore, the
measurements have not been done on the FutureSOC
VM. The following additional software packages were
used for the experiments:

• MySQL version 5.0.70

• MonetDB Release Aug2009-SP2

• Sun Java Development Kit (JDK) version
1.6.0.15

• Snort version 2.8.3

We used an alert data set collected by running a Snort
IDS sensor connected to the backbone of the univer-
sity network. The sensor generated 1, 391, 520 real
alerts in six month of runtime. Based on this data set,
we generated three databases: one with 43, 485 alerts
(called DB1), one with 695, 760 alerts (called DB2),
and one with 1, 391, 520 alerts (called DB3). DB1

and DB2 are a part of the basic data set and have a cho-
sen size (i.e. exactly 1/16 and 1/32 of the original data
set). We created these databases based on MySQL and
MonetDB to conduct the experiments. We measured
the inserts within the creation process, the clustering,
and the correlation based on the improved simple al-
gorithms using a row-oriented database (MySQL), a
column-oriented database, and the In-Memory Alert
Storage. The index tables are used in connection
with the In-Memory Alert Storage to clearly separate
memory-oriented and database-oriented approaches.
By comparing the results, we conclude that a row-
oriented database shows poor performance for clus-
tering and correlation. It handles between 2, 034
and 2, 784 alerts per second for the simple cluster-
ing, and between 3, 018 and 5, 156 alerts per second
for the simple correlation. However, with approxi-
mately 16, 000 alerts per second, the creation of the
database is as fast as the creation of an In-Memory
Alert Storage, which can be important for an IDS man-
agement system that needs to insert many alerts in a
short time frequently. The column-oriented database
shows better performance for correlation and cluster-
ing. It handles between 4, 714 and 17, 177 alerts per
second for the simple clustering, and between 49, 018
and 102, 792 alerts per second for the simple correla-
tion. With approximately 63 alerts per second, an im-
portant problem is the poor performance for database
creation, which makes it difficult to use as main alert
database for IDS management. The best performance
is shown by the In-Memory Alert Storage. It han-

37

dles between 153, 188 and 779, 672 alerts per second
for the simple clustering, and between 261, 367 and
725, 600 alerts per second for the simple correlation.
By using index hash tables, the aggregated clustering
can handle between 153, 188 and 5, 288, 716 alerts per
second. A major issue is the memory consumption of
this approach. It uses 144 MB, 884 MB, and 1.6 GB
of memory for an In-Memory Alert Storage with the
databases DB1, DB2, and DB3.

3. Future Work

Within the next few months, we prepared the correla-
tion platform for further research and experiments. We
would like to work towards our vision with the follow-
ing steps:

• Conduct performance experiments on the im-
proved platform

• Research on storage mechanisms: fast access and
persistence

• Research on correlation algorithms that are using
environment information and attack graphs

• Research on multi-core support for IDS correla-
tion

• Research on collaboration approaches for IDS
correlation

• Research on visualization techniques for correla-
tion results

References

[1] S. Roschke, F. Cheng, Ch. Meinel: A Flexi-
ble and Efficient Alert Correlation Platform for
Distributed IDS In: Proceedings of 4th Interna-
tional Conference on Network and System Se-
curity (NSS’10), IEEE Press, Melbourne, Aus-
tralia, pp. 24-31 (September 2010).

[2] S. Roschke, F. Cheng, Ch. Meinel: Using Vul-
nerability Information and Attack Graphs for In-
trusion Detection In: Proceedings of 6th Interna-
tional Conference on Information Assurance and
Security (IAS’10), IEEE Press, Atlanta, United
States, pp. 104-109 (August 2010).

[3] R. Sadoddin, A. Ghorbani: Alert Correlation
Survey: Framework and Techniques, In: Pro-
ceedings of the International Conference on Pri-
vacy, Security and Trust (PST’06), ACM Press,
Markham, Ontario, Canada, pp. 1-10 (2006).

[4] Debar, H., Curry, D., Feinstein, B.: The Intru-
sion Detection Message Exchange Format, Inter-
net Draft, Technical Report, IETF Intrusion De-
tection Exchange Format Working Group (July
2004).

[5] H. Plattner: A Common Database Approach for
OLTP and OLAP Using an In-Memory Column
Database, In: Proceedings of the ACM SIG-
MOD International Conference on Management
of Data (SIGMOD’09), ACM Press, Providence,
Rhode Island, USA, pp. 1-2 (2009).

[6] P. A. Boncz, S. Manegold, and M. L. Kersten:
Database Architecture Optimized for the New
Bottleneck: Memory Access, In: Proceedings
of 25th International Conference on Very Large
Data Bases (VLDB’99), Edinburgh, Scotland,
UK, pp. 54-65 (1999).

[7] MonetDB: WEBSITE: http://monetdb.cwi.nl/
(accessed Nov 2009).

[8] P. Boncz: Monet: A Next-Generation DBMS
Kernel for Query-Intensive Applications, PhD
Thesis, Universiteit van Amsterdam, Amster-
dam, The Netherlands, 2002.

[9] MySQL: WEBSITE: http://www.mysql.com/
(accessed Nov 2009).

[10] PostgreSQL: WEBSITE:
http://www.postgresql.org/ (accessed Nov
2009).

[11] S. Roschke, F. Cheng, Ch. Meinel: An Extensi-
ble and Virtualization-Compatible IDS Manage-
ment Architecture, In: Proceedings of 5th Inter-
national Conference on Information Assurance
and Security (IAS’09), IEEE Press, vol. 2, Xi’an,
China, pp. 130-134 (August 2009).

[12] Tedesco, G. and Aickelin, U.: Real-Time Alert
Correlation with Type Graphs, In: Proceedings
of the 4th international Conference on Informa-
tion Systems Security (ISS’09), Springer LNCS
5352, Hyderabad, India, pp. 173-187 (2008).

[13] Ning, P. and Xu, D.: Adapting Query Optimiza-
tion Techniques for Efficient Intrusion Alert Cor-
relation, Technical Report, North Carolina State
University at Raleigh, 2002.

[14] Northcutt, S., Novak, J.: Network Intrusion De-
tection: An Analyst’s Handbook, New Riders
Publishing, Thousand Oaks, CA, USA (2002).

38

Report on the Project: Enlargement of the Search Domain of the
tele-TASK Portal

Maria Siebert, Franka Moritz and Christoph Meinel
Hasso-Plattner-Institute
University of Potsdam

maria.siebert|franka.moritz|christoph.meinel@hpi.uni-potsdam.de

Abstract

The tele-teaching project tele-TASK of the Hasso-
Plattner-Institute is a large-scale lecture recording
system with increasing popularity amongst the stu-
dents and external people. Searching within the eas-
ily generated and quickly growing video archive is not
an easy task. All available meta data sources have to
be taken into account and additional meta data will
be created by processing the available data streams.
Therefore the search domain is quite large and pow-
erful engines are needed to compute search request in
nearly real-time. Several experiments with the future-
SOC server in connection with the tele-TASK project,
their results and drawbacks are described in this paper
and the next steps are outlined.

1 Introduction

This report explains the experiments conducted with
the futureSOC server on account of the tele-teaching
project tele-TASK by the chair of internet technologies
and systems of the Hasso-Plattner-Institute in Pots-
dam. At first we will introduce the tele-TASK project
and explain bottlenecks of the current system. Second
the two parts of the project - the tele-TASK recording
system and the tele-TASK web portal are explicated in
more detail. Next we describe preliminary experiment
results that limit the current system and motivate why
a futureSOC project was applied for and what our vi-
sion about the outcome of the futureSOC experiments
is. Furthermore the actual experiments that we con-
ducted are explained and their drawbacks and prob-
lems stated. We conclude this report with an outlook
to further research we plan with the futureSOC server.

2 Project Description

The tele-teaching project tele-TASK is being devel-
oped since about 2002 [4]. Tele-TASK is a shortcut for
Tele-teaching Anywhere Solution Kit and was origi-
nally the name for the recording system. In the last

years the recording system has been continuously de-
veloped. The good usability and growing demand for
lecture recordings has resulted in a requirement of a
management solution for all lectures recorded. There-
fore the tele-TASK portal (http://www.tele-task.de)
was developed, which serves the purpose to manage,
organize and provide the recordings.
The tele-TASK project provides a large amount of
lectures and videos recorded at the HPI. It is widely
adopted and enjoys great popularity among our stu-
dents. Also a large number of external persons are us-
ing the portal. More than 3000 lectures can be found in
the portal held by about 750 lecturers. These lectures
are grouped in over 200 series. For a better usage of
the lectures, they are split into smaller scenes, to cre-
ate handy video clips which can also be used through
the iTunes U portal. Some details of the two parts of
the tele-TASK project, the recordings system and the
portal, are explained in the next paragraph.

2.1 tele-TASK Recording System

The tele-TASK recording system is a unique innova-
tion which received the Einstein Award in 2002. Its
outstanding feature is the synchronous recording of
one audio and two video streams [4]. This enables its
users to record the speech of a lecturer, a video of the
lecturer as well as a screencast of everything that hap-
pens on the presenters laptop, like the digital presen-
tation or the presentation of a website, simultaneously.
The capturing system allows to create a huge number
of recordings of lectures without much effort.

2.2 tele-TASK Portal

The tele-TASK portal (http://www.tele-task.de) is a
web portal programmed in Python, based on the
Django framework. It is implemented using MySQL
as database backend. The database currently consists
of over 100 tables. The last version of the portal has
been online since one year ago, having thousands of
users each month. The portal is set up using a plug-
in architecture [6]. This means that all modules are

39

Figure 1. Advanced Search Form in tele-TASK Portal

loosely coupled and the portal can easily be extended
with further functionality. Further meta data sources
and search options can therefore be integrated easily so
that the complexity of the portal may increase rapidly
without disturbing the structure and the core function-
alities.

2.3 Research and Development

The current development focus of the portal is to gain
more meta data and use it for better usage experiences.
The following structured meta data are available or
will be available soon:

• Manually inserted meta data for the media, like
title, description, lecturer, etc.

• Data from the users: Enhancing the portal with
community functions like rating or tagging [1],
new meta data is created.

• Data from the audio stream: Using speech recog-
nition, the spoken text can be extracted [2].

• Text from the slides: Using OCR tools, the text
of the slides can be parsed [3].

• Usage data from the logs: Evaluating the logs
more data about related content can be found [7].

In order to find the most appropriate content, all avail-
able meta data should be used to browse through the
content and extract all content items which fulfil the
required search query. Afterwards filters can be ap-
plied to reduce the number of search results. Also it

is possible to order the content according to different
criteria.
Through the new plug-in architecture of the portal [6],
it is an easy task to enhance the search functions with
new filters and order by criteria [5] to make the new
meta data searchable. But these possibilities cannot
be utilized, because of constraints connected with the
resources available. For generating complex search re-
quest, big database table joins are required.

3 Preliminary Experiment Results

In the development version of the portal, the following
search requests where tested:

• Search for all titles: Searching inside all titles
of the different content types, like series, lecture,
scene or even playlist is possible in the actual de-
velopment version, but needs a lot of ram and cpu
power, increasing the search time and sometimes
resulting in crashes of the system. That is why
it is not possible to use this function in the live
application.

• Usage of user data: Ordering the search result by
rating results is possible in the development ver-
sion, but results in the same performance prob-
lems.

• Search for audio: Searching for content of the au-
dio stream is available in the development ver-
sion, but due to a lack of generated data, could
not be used in the live application so far. In future

40

a lot of data, which has to be analyzed in search
requests, will be generated and therefore needs a
lot of cpu power and ram to be processed.

• Other search of meta data will be added soon,
enhancing the search domain even more. These
queries however cannot be executed with the
hardware utilized at the moment as cpu and mem-
ory resources are exhausted.

4 Vision

The search amongst the broad variety of learning con-
tent is one of the main challenges for learners in our
society nowadays, where content can be produced so
easily. Therefore it is a key task for us as providers
of tele-teaching content to also offer a most conve-
nient and comprehensive search to all users of the tele-
TASK portal.
Before starting this project it was not possible to in-
clude a search amongst all currently available meta
data into the search query, let alone all meta data that
will be generated in the near future. This constraint
exists due to ram and cpu limitations of the server the
database is currently running on. Therefore only lim-
ited search queries can be executed and only simple
joins can be permitted for all users at present. This
constraint shall be erased with the help of the new in-
memory technology.
A first application of the new server technology that
we suggest is to keep the whole database of the tele-
TASK portal in the memory. Using this new set-up
we expect all currently implemented search query, fil-
ter and order options to be executable at once without
performance problems. As second step the meta data
that will be generated in another part of the tele-TASK
project will be included as query options in the search.
A much larger query set will have to be executed in
this option. Performance issues will be taken into con-
sideration as well, but we still expect a fast and com-
prehensive processing of combined joins.
Finally it is also planned to use more search request
for the detection of related content to the shown data.
This should result in a recommendation system for the
users of the portal.

5 Experiments

The inital idea for an application for a futureSOC ex-
periment platform was to store the database for the live
tele-TASK portal in the ram of the futureSOC server,
in order to test the performance of the search function-
ality in the portal under real circumstances. The idea
for the setup was to store the database of a clone of the
tele-TASK web portal on the futureSOC server and ac-
cess it by the Django instance running on the Apache
web server (see figure 2). But a remote database ac-
cess from our live system is not possible, as we will

Future SOC

www5 (tele-TASK Web Server)

TTWeb-Database

Figure 2. Idea of Communication Be-
tween tele-TASK Webserver and future-
SOC

explain in more detail in section 5.2. Therefore our
first desired experiment setup could not be tested.
A second option was to store the whole tele-TASK
system including database and framework on the fu-
tureSOC server and then do a performance test on the
system. But of course those performance tests would
work by inserting search queries via the search in-
terface of the tele-task website. Accessing the tele-
TASK website that is hosted on the futureSOC via
webbrowser is not possible with the current security
setup of the futureSOC either, which is why that op-
tion could not be tested as well.
A third option was the pre-processing of meta data
sources in order to provide data base tables to the
system that can be queried much faster. This pre-
processing would involve a transformation of for ex-
ample audio data in ready-made keywords. Once all
keywords for existing content have been generated, the
database tables can be indexed and the query perfor-
mance can be improved a lot with this procedure. This
is an option we would like to explore in the future. But
with the first trial of this method we also experienced
difficulties.
A first test that was executed on the futureSOC server
was to process audio transcription on that machine in-
stead of processing it on a standard desktop computer
or another server. Unfortunatly we had to make the ex-
perience that no increase in speed could be observed
during that test. More to the contrary the test took
nearly double the time than on a standard computer.
Therefore we possibly still need to work on the pa-
rameters of our futureSOC virtual machine and find
out which settings work best for our purpose. The
setup we used initially will be explained in the follow-
ing section.
Afterwards we tried to use the futureSOC server for
pre calculation of search data. Therefore we combined
the existing meta data in one index database table and

41

searched this table. This approach allowed us to search
for search terms in one table column using indices pro-
vided by MySQL. Using that approach we were able
to search all searchable database fields in one search
request. It costs the time, which is needed to combine
all these fields in the search field.
The problem with that approach is, that the calculated
data could not be used on the live system, because on
that system the data is changing frequently and there-
fore must be updated often. That is why we used
the futureSOC for testing the combined algorithm, but
have to write a final algorithm, which works on the live
systems web server.

5.1 Used FutureSOC Lab Resources

On the futureSOC Lab we tried to use a similar setup
than what we have on the tele-TASK server in terms of
the operating system. That was why we decided to use
a Debian Lenny package. Furthermore we put much
hope in operating the tele-TASK database in the RAM
of the futureSOC server. The initial RAM we asked to
be set up for us therefore was 4GB which is enough to
hold the database in this cache.

CPU 4 Cores
RAM 4GB
HDD 50GB
OS Debian Lenny

Database MySQL

Table 1. Overview of FutureSOC Re-
sources Used in the Experiment Setup

The CPU power was adjusted according to the initial
requirements for out database trials and was therefore
set to 4 cores. In order to achieve more increase of
speed for the third experiment option with the pre-
processing of meta data sources, we would need to in-
crease the number of CPUs and test if this would result
in the desired speed-up.

5.2 Problems During the Experiment

A major disadvantage for our ongoing experiments is
the mode of accessing the server. Our idea to utilize
the futureSOC resources that we received in order to
store the whole tele-TASK database in ram memory
cannot be successful with this kind of setup (see fig-
ure 2). The reason for that is that we are not able to
run our portal on its regular server while just remotely
accessing the database on the futureSOC server. The
access restrictions only allow us to access the server
via a VPN connection with using a personal login and
a certificate. That is why it cannot be used from our
remote server which hosts the Django framework with
the tele-TASK web server. Also an access of the web-
site via a web browser is not possible.

Therefore we were not able to use the futureSOC
server for live tests with a larger number of users and
real database queries, which would be one desired ex-
periment for our project goal. This means that we will
only ever be able to use this setup for single tests with
simulated users and not a real-life performance test.

6 Outlook

For being able to simulate the real user behaviour on
the futureSOC server we are collecting search request
by users. It is also planned to use the apache web
server log for evaluating the behaviour of the users af-
ter sending a search request. With this data the search
function can be expanded with new algorithms.
It is planned to provide additional data to the user,
when he starts a search request, like proposing related
search terms and doing spelling corrections. With the
help of semantic data, which can be gained from dif-
ferent data sources like DBpedia, the search function
can become even more powerful. With this data it is
possible to decide what the user is looking for and to
handle synonyms and homonyms of search terms.
Having knowledge about the search behaviour of the
user will help here too, because the interest of a user
can influence his search goals. For example, some-
one who is interested in human computer interfaces
wants to get different results for the search term inter-
face than a user interested in software architecture.

References

[1] F. Moritz, M. Siebert, and C. Meinel. Community
Tagging in Tele-Teaching Environments. In 2nd In-
ternational Conference on e-Education, e-Business, e-
Management and E-Learning (to appear), Mumbai, In-
dia, 2011. IEEE Computer Society.

[2] S. Repp and C. Meinel. Automatic Extraction of Se-
mantic Descriptions from the Lecturer’s Speech. In
I. Press, editor, Proc. 3rd ICSC, pages 513–520, Berke-
ley, CA, USA, 2009.

[3] H. Sack. Automated Annotation of Synchronized Mul-
timedia Presentations. In In Workshop on Mastering the
Gap: From Information Extraction to Semantic Repre-
sentation, CEUR Workshop Proceedings, Berkeley, CA,
USA, 2006.

[4] V. Schillings and C. Meinel. Tele-TASK – tele-
teaching anywhere solution kit. In Proceedings of ACM
SIGUCCS, Providence, USA, 2002.

[5] M. Siebert and C. Meinel. Realization of an Expand-
able Search Function for an E-Learning Web Portal. In
Workshop on e-Activity at the Ninth IEEE/ACIS Inter-
national Conference on Computer and Information Sci-
ence Article, page 6, Yamagata/Japan, 2010.

[6] M. Siebert, F. Moritz, and C. Meinel. Establishing
an Expandable Architecture for a tele-Teaching Plat-
form. In Ninth IEEE/ACIS International Conference on
Computer and Information Science Article, Yamagata,
Japan, 2010. IEEE Computer Society.

[7] L. Wang. X-tracking the Usage Interest on Web Sites.
PhD thesis, University Potsdam, 2009.

42

Workload Management for Main Memory Databases in Data Clouds

Jan Schaffner, Alexander Zeier, Hasso Plattner
Hasso Plattner Institute for IT System Engineering

University of Potsdam
Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam, Germany

{firstname.lastname}@hpi.uni-potsdam.de

Tim Kraska, Michael J. Franklin, Michael I. Jordan, David A. Patterson
UC Berkeley

465 Soda Hall MS-1776
Berkeley, CA 94720, USA

{franklin,jordan,pattrsn,kraska}@berkeley.edu

Dean Jacobs
SAP AG

Dietmar-Hopp-Allee
Walldorf, Germany

dean.jacobs@sap.com

Abstract

In this report we give a formal description for the
problem of assigning tenants to servers of an on-
demand system, which is one of the key problems in our
Future SOC Lab project. We will pose this problem as
an optimization problem and omit database specifics
and pose the problem in an abstract fashion, using the
metaphor of assigning tokens to baskets (i.e., tenants
to servers). We present a first set of greedy algorithms
and describe how we used the computing resources of
the Future SOC Lab in the process of experimentation.
We outline the next steps for our project .

1. Introduction

For traditional data warehouses, mostly large and ex-
pensive server and storage systems are used. For
small- and medium-sized companies, it is often too ex-
pensive to implement and run such systems. Given this
situation, the SaaS model comes in handy, since these
companies might opt to run their OLAP at an external
service provider. The challenge is then for the ana-
lytics service provider to minimize total cost of own-
ership by consolidating as many tenants onto as few
computing resources as possible, a technique often re-
ferred to as multi-tenancy.
The Rock project at the HPI [6, 4, 7] seeks to maxi-
mize throughput in a cluster of main memory column

databases: The goal is to support the highest possible
number of concurrently active users while guarantee-
ing hard service level objectives on end-user response
times (e.g. “99 percent of all queries have to com-
plete in less than 1 second”). We suggest different
data placement strategies for deciding which tenants
are co-located on which servers in order to minimize
the number of servers when running a given number
of users. This problem is at the heart of large-scale In-
ternet services trying to minimize the cost of their data
centers.

In this Future SOC Lab project we seek to com-
pare several different placement strategies for Ana-
lytic Databases in a Cloud Computing environment.
Rock uses an active/active load balancing scheme in
the presence of multiple replicas. If a server goes
down, the workload which was handled by this server
is re-distributed to the servers holding the other copy
of the tenants’ data. The re-distribution of workload
in the event of a server failure differs depending on
how the tenant replicas are assigned to the servers in
the cluster. Using the off-the-shelf replication capabil-
ities offered by most modern databases would result
on replicating the data on the granularity of a whole
server. In doing so, all tenants appearing together on
one server will also co-appear on a second server in the
cluster. This technique is often referred to as mirror-
ing (cf. Figure 1). The downside of mirroring is that
in case of a failure all excess workload is re-directed
to the other mirror. In doing so, the mirror server is

43

a local hotspot in the cluster until the failed server is
back online. A technique for avoiding such hotspots is
to use interleaving, which was first introduced in Ter-
adata [8]. Interleaving entails performing replication
on the granularity of the individual tenants rather than
all tenants inside a database process. This allows for
spreading out the excess workload in case of a server
failure across multiple machines in the cluster.

T1

T2

T3

T4

Mirrored Strategy

T1

T2

T3

T4

T1

T2

Interleaved Strategy

T3

T2

T5
T6

T1

T4
T5

T4

T6
T3

Figure 1. Example Layouts of Tenant
Data

This report is structured as follows: Section 2 will
formulate the above placement problem described in
the previous paragraph as an optimization problem.
Given the length restrictions of this report, we will
omit database specifics and pose the problem in an ab-
stract fashion, using the metaphor of assigning tokens
to baskets (i.e., tenants to servers). In Section 3, we
present a first set of algorithms for solving this place-
ment problem and describe how we used the comput-
ing resources of the Future SOC Lab in the process
of experimentation. In Section 4, we outline the next
steps for our project. Section 5 concludes this report.

2. Problem Statement

Let N = {i1, . . . , i|N |} be a set of baskets and T =
{t1, . . . , t|T |} a set of tokens. An assignment of to-
kens to baskets is given, as shown in Figure 2. All
tokens have a radius r(t) and a color c(t), which are
also known for all tokens. Each color occurs exactly
twice (or, in other words, each token occurs exactly
twice, which means that there are 2|̇T | tokens in an
assignment). The problem to be solved is to find a
new assignment of tokens to baskets with the follow-
ing properties:

• No color occurs twice in the same basket.

• The sum of all token radiuses in each basket does
not exceed a fixed upper bound cap(i).

• The sum of all token radiuses should have a sim-
ilar value for all baskets.

• Any two colors appearing together in one basket
should preferably not appear togther in a second
basket.

Figure 2. Assignment of tokens to bas-
kets

2.1. Formal Description

To denote the assignment of tokens to baskets we de-
fine a decision variable y as follows:

y
(k)
t,i =

{
1 if token t is in basket i
0 otherwise

with k ∈ {0, 1}, t ∈ T, i ∈ N

The index k identifies the first and the second token of
the same color, respectively. An assignment of tokens
to baskets Y ′, the number of baskets N , and the set of
tokens T with their respective radiuses and colors is
given as an input for this problem. The goal is to de-
vise an algorithm which calculates a new assignment
Y (i.e. the transformation f : Y ′ → Y).
Token radiuses increase and decrease as time pro-
gresses, although they are fixed for any given instance
if the problem. The model is that a new instance of the
problem is created each time one or more changes in
token radius have been observed. We are looking for
an algorithm that—when invoked—balances the sum
of token sizes across all baskets and, at the same time,
tries to minimize color co-appearance across the bas-
kets. An optimal assignment in this respect would be
such that no two colors appearing together in one bas-
ket appear together in any other basket at the same
time. To do so, the algorithm moves tokens between
the baskets.
The sum of all radiuses r(s) of the tokens in a given
basket i is defined as

R(i) :=
∑
t∈T

1∑
k=0

y
(k)
t,i r(t), i ∈ N.

To describe how good (or bad) a given assignment of
tokens to baskets is w.r.t. color co-appearance, we in-
troduce a penalty function P (i). It is computed from
the perspective of an individual basket and is defined

44

as the sum of all token radiuses of co-appearing tokens
in one of the other N − 1 baskets. Since this value de-
pends on which of the other N − 1 baskets is chosen
as a partner in this binary comparison, P (i) is defined
relative to the partner yielding the maximum value:

P (i) = maxj∈N

(∑
t∈T

1∑
k=0

y
(k)
t,i y

(1−k)
t,j r(t)

)

with i, j ∈ N, i 6= j

Constraints

1. A valid assignment Y must contain each color ex-
actly twice.∑

i∈N

y
(0)
t,i + y

(1)
t,i = 2, ∀t ∈ T

2. No basket must contain any two tokens of the
same color.

y
(0)
t,i + y

(1)
t,i ≤ 1, ∀t ∈ T, ∀i ∈ N

3. The sum of all token sizes in a basket i must be
less than or equal to the capacity of the basket.

R(i) ≤ capi, ∀i ∈ N

Objective Functions

1. All baskets shall be balanced w.r.t. aggregate to-
ken size (in addition to constraint no. 3, which
only specifies an upper bound for the sum of all
token radiuses within one basket Ri). One way
of progessing towards a similar value for the dif-
ferent R(i)s is to minimize their variance:

min V ar(R(1), . . . , R(|N |))

2. Co-appearances of colors in the baskets shall be
minimized:

min
∑
i∈N

P (i), ∀i ∈ N

3. In addition to minimizing the co-appearance
penalty per basket (the previous optimization
goal), all baskets should have a similar penalty.
One way of progessing towards a similar value
for the different P (i)s is to minimize their vari-
ance:

min V ar(P (1), . . . , P (|N |))

2.2. Possible Extensions

For simplification, the following extensions of the
problem will be left out when devising a first set of
solutions. They will, however, be considered at later
stages in this project.

Varying number of baskets For the problem stated
above we assume a fixed number of baskets N . It
might be the case that the observed changes in token
size create a situation in which the current number of
baskets is not sufficient for finding an assignment of
tokens to baskets such that none of the above con-
straints is violated. Given such a situation, the algo-
rithm is allowed to create a new basket. Similarly,
when the changes in token size result in a situation
where all of the above constraints could be satisfied us-
ing fewer baskets, then the algorithm can empty a bas-
ket by migrating its tokens to other baskets and delete
the basket. It would also be conceivable to trade-off
the the number of baskets against the balancing of the
R(i)s as well as the values and the balancing of the
P (i)s.

Minimizing the number of migrations So far we
have not imposed a limit on the number of movements
of tokens between baskets necessary to provide the
transformation f : Y ′ → Y . However, it would be
conceivable to try to minimize the number of move-
ments in this sequence. It would also be interesting to
study how fast the other goal functions converge to an
optimal value, varying the number of allowed migra-
tions in f .

3. Preliminary Results

In this section, we will present three greedy placement
algorithms, which make simplifying assumptions. We
will then describe our implementation of a brute force
solver, which enumerates all possible combinatorial
placements for a given number of servers and tenants.
Due to space restrictions, we omit an evaluation of our
greedy placement algorithms against the optimun so-
lutions obtained from brute force placement, which is
thus left for the next report.

3.1. Greedy Algorithms

All algorithms presented in this section are concerned
with placing a set of tenants to servers such that the re-
quirements discussed in Section 2 are met. The work
imposed on a server by adding a tenant to a server
(called workload) is known a priori for all tenants.
Therefore, the tenants can for instance be ordered by
workload size prior to placement by the algorithms.
As a ground rule, all layouts must be able to absorb
one server failure at any point in time.

3.1.1 Naı̈ve Best Fit with Mirroring

This algorithm servers as a baseline against which the
other algorithms will be evaluated. It varies the num-
ber of servers during execution and starts out with a
two empty servers to which it adds the a single copy
of the first tenant to be placed. It then continues to fill

45

up this server with more tenants until the capacity of
the server is reached, at which point a new server is
started. To determine whether a server i has enough
capacity to fit a tenant t, the algorithm simply evalu-
ates the condition R(i)+r(t) < cap(i)

2 . The reason for
allowing only half of a server’s capacity to be used is
the rule that all assignments produced by the alorithm
must be able to absorb a server crash in the cluster in
the sense that there is enough capacity to serve all ten-
ants. In the presence of multiple servers, a given tenant
is assigned using a best fit strategy on this condition
(which behaves similar to first fit since the number of
servers is increased only in case no server has enough
capacity to fit an additional tenant). After all tenants
have been assigned, the servers are mirrored thus dou-
bling the number of servers and providing each tenant
with a second copy. The number of servers produced
in the end by this algorithm is assumed the worst-case
by the other algorithms, in the sense that they try to
find assignment such that a server crash can be ab-
sorbed but less servers are required.

3.1.2 Best Fit Considering Penalty Only

This algorithm takes the co-appearance penalty into
account, which was defined in Section 2. Unlike the
previous algorithm, this variant is run with a fixed
number of servers, and the copies of each tenant are
placed in a single step. Since there might be multi-
ple valid assignments satisfying the constraints of the
problem for different numbers of servers, the algo-
rithm in run multiple times while varying the num-
ber of servers N . The range across which N is varied
is determined by the result of the previous algorithm,
naı̈ve best fit, taking the number of servers it produces
as an upper bound for N . The lower bound for N is set
to half the numbers of server produced by naı̈ve best
fit.
Within a run with a given number of servers, the al-
gorithm performs what we call a local bruteforce. In
each step when trying to place a tenant, it tries all pos-
sible assignments of the two copies of the tenant to be
placed to the available servers.
One possible way of enumerating all possibilities two
assign the two copies of a tenant to N servers will now
be briefly discussed. Given that both copies of a ten-
ant must be on different servers and that both copies
are equivalent, all possibilities to assign a single ten-
ant to two servers can be done by creating a matrix
with dimensions N ×N . The elements of this matrix
are defined as follows:

(i, j) =
{

1 if i < j
0 otherwise , i, j ∈ N

An example for N = 4 servers:
0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0



The number of possibilities for assigning two copies
of a tenant to N servers is thus N(N − 1)/2. We
refer to all 1-valued elements of this matrix as possible
configurations of a tenant.
Section 2 stated three different (possibly conflicting)
objectives for a tenant placement algorithm. With-
out resorting to multi-criterial optimization methods
(which we plan to do in future work), we need to build
a single objective function combining all the objec-
tives we want to cover. This algorithm combines the
three objectives into one by defining the capacity of a
server using both R(i) and P (i). The basic idea is that
the failure of a single server is masked, in which case
the following constraint must be met:

R(i) + P (i) < cap(i) ∀i ∈ N

In addition to that, we define the objective function by
minimizing the difference of value for P (i) before and
after assigning the tenant to be placed. Since the co-
appearance function is sensitive to tenant co-location,
this difference must be computed for both servers to
which a copy of the tenant is to be assigned:

Min P (i) + P (j)− P (i)′ − P (j)′

P (i)′ denotes the penalty before assigning tenant t to
server i. If multiple servers have the same value w.r.t.
this objective, the first two servers are picked.
Since all tenants are ordered by workload prior to in-
voking the algorithm, this variant achieves strong in-
terleaving of the large tenants. Given this strong inter-
leaving and the fact that actual server load is not taken
into account, this algorithm leaves servers ununtilized
as N progresses towards its upper bound. An example
of this is omitted due to space restrictions.

3.1.3 Best Fit Considering Penalty and Workload

This algorithm is similar to the previous variant, al-
though it also takes server load into account. The ob-
jective funtion is defined as follows:

Min P (i) + R(i) + P (j) + R(j)

Since this algorithm strives to evenly spread load
across servers it utilizes all available servers.

3.2. Brute Force

For being able to compare how far the values of the
objectives described in Section 2 deviate from the op-
timal values, we developed for enumerating all pos-
sibilities to assign T tenants to N servers. As we
have already established in Section 3.1.2, there are
N(N − 1)/2 possibilities to assign two copies of one
tenant to N servers. The number of combinatorial pos-
sibilities to assign T tenants to N servers is thus:(

N(N − 1)
2

)T

46

We encode each combination using a sequence of
length T with each element of the sequence being
an integer encoding a tenants configuration (cf. Sec-
tion 3.1.2):

(a0, . . . , aT−1), 0 ≤ ai ≤
N(N − 1)

2
− 1

This sequence obeys lexicographic ordering in the
sense that the next combination can by computed sim-
ply by incrementing the rightmost element of the se-
quence which is smaller than (N(N−1)/2)−1. Brute
force enumeration can nicely be parallelized: In our
implementation, we use recursion to generate multiple
ranges of the sequence with equal sizes. Each of those
ranges is then enumerated in parallel. Our implemen-
tation uses Scala actors [5] and fits well with the large
number of available cores on most Future SOC Lab
resources.

4. Next Steps

All algorithms presented so far fall into the category of
offline algorithms, in the sense that all tenants and their
workload is known a-priori. Much more challenging
(and also more relevant) is to deal with changing work-
loads given a current assignment of tenants to servers.
To capture changes in workload we are currently in
the process of obtaining production logs from a large
on-demand service capturing changes in request rates
over time. In an online setting, we need to make in-
cremental changes to the existing assignment, since
there is a high cost associated with re-organization
during normal operations. Instead, we want to in-
vestigate algorithms which make local changes to the
placement, such as in Amazon Dynamo [3] or Google
Bigtable [2]. In doing so, we plan to minimize the
number of tenant migrations required to transform one
layout into another.
Other directions of future work include creating re-
laxed variants of the complete multi-dimensional op-
timization problem. One approach to try are genetic
algrithms, which can be set up such that they incorpo-
rate the number of migrations as part of the model.
Another promising approach for relaxation is semi-
definite programming [9].
A more long-term goal is to create an algorithm which
leverages statistical machine learning techniques to
model workload spikes [1]. We plan to build a pre-
dictive algorithm which learns based on production
logs and request rate changes in the past. Training
machine learning algorithms is often compute inten-
sive and could be done using HPI Future SOC Lab re-
sources.

5. Conclusion

In this report, we have given a formal definition of the
tenant placement problem, which we have identified

as one of the key problems in workload management
for in-memory database clusters. We presented three
greedy algorithms for solvong this problem, although
we leave their evaluation for the next report. We have
illustrated how we use resources of the HPI Future
SOC Lab to solve the compute-intensive aspects of this
study. While we focused on the algorithm design as-
pect of our project in this report, this project also has
a large experimental component, which will involve
running tests on Future SOC Lab resources. Specifi-
cally, we need to experimentally explore how the dif-
ferences for the objectives of our multi-criterial opti-
mization problem translate back to actual throughput
in the Rock clustering framework.

References

[1] P. Bodı́k, A. Fox, M. J. Franklin, M. I. Jordan, and D. A.
Patterson. Characterizing, modeling, and generating
workload spikes for stateful services. In Proceedings
of the 1st ACM Symposium on Cloud Computing, SoCC
2010, Indianapolis, Indiana, USA, June 10-11, 2010,
pages 241–252, 2010.

[2] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A Distributed Storage System for
Structured Data. ACM Trans. Comput. Syst., 26(2),
2008.

[3] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: amazon’s
highly available key-value store. In Proceedings of the
21st ACM Symposium on Operating Systems Principles
2007, SOSP 2007, Stevenson, Washington, USA, Octo-
ber 14-17, 2007, pages 205–220, 2007.

[4] M. Grund, J. Schaffner, J. Krüger, J. Brunnert, and
A. Zeier. The effects of virtualization on main mem-
ory systems. In Sixth International Workshop on Data
Management on New Hardware, 2010.

[5] P. Haller and M. Odersky. Actors That Unify Threads
and Events. In Coordination Models and Languages,
9th International Conference, COORDINATION 2007,
Paphos, Cyprus, June 6-8, 2007, Proceedings, pages
171–190, 2007.

[6] J. Schaffner, D. Jacobs, B. Eckart, J. Brunnert, and
A. Zeier. Towards enterprise software as a service in
the cloud. In Second IEEE Workshop on Information
Software as Services in Conjunction with ICDE 2010,
Long Beach, CA, USA, 2010.

[7] J. Schaffner, J. Krüger, S. Müller, P. Hofmann, and
A. Zeier. Analytics on historical data using a clustered
insert-only in-memory column database. In 16th Inter-
national Conference on Industrial Engineering and En-
gineering Management (IEEM), Beijing, China, 2009.

[8] DBC/1012 Database Computer System Manual Release
2. Teradata Corporation Document No. C10-0001-02,
1985.

[9] L. Vandenberghe, S. P. Boyd, and S.-P. Wu. Semidefi-
nite Programming and Determinant Maximization. In
Encyclopedia of Optimization, Second Edition, pages
3375–3380. 2009.

47

An Architecture-Aware Compaction Process

Jens Krueger, Martin Grund, Alexander Zeier, Hasso Plattner
Hasso-Plattner-Institut

{firstname.lastname}@hpi.uni-potsdam.de

Abstract

In mixed workload environments with OLTP1 and
OLAP2 queries, the process of periodically compress-
ing the data becomes essential when using read-
optimized compressed in-memory column stores. To
achieve the best analytical performance usually sepa-
rate systems are used for transactional and analytical
purposes and the modification from the transactional
system are applied in batches into the analytical sys-
tem, where they are stored highly compressed and op-
timized for fast reading.
A next generation enterprise application database,
suitable for a mixed workload has to keep up with the
ongoing data changes in transactional systems while
still providing support for fast analytical queries as
depicted in [3]. For optimal query execution in this fu-
ture system data is stored compressed. In order to also
support transactional queries we keep a small write
optimized store, which gets periodically compressed
and merged with the read optimized store. A com-
paction process accomplishes this transformation. The
process has to encode data efficiently while affecting
running queries as little as possible. We plan to study
different implementation of this compaction process,
improve it to benefit from the concretely used hardware
by optimizing the cache behavior, prefetching mecha-
nisms and thread level parallelism and data level par-
allelism.

1. Introduction

We propose a compaction process that works online
without downtime for the transactional system and
has a minimal effect on the performance of running
queries. For an transactional enterprise application it is
crucial that the current data is always available and in
a 24/7 environment system down-times are not accept-
able and as such the merge must be run online without
interference to other components. Traditionally, load-
ing new data into an OLAP system is done offline —
new data is not immediately visible and/or the system
is not available during load. This is due to the fact

1Online Transactional Processing
2Online Analytical Processing

that during load cleansing, reconciliation, aggregation,
and even transformations are executed. Those opera-
tions are very expensive and even require own business
logic. The importance of the merge is intensified in an
enterprise system with hundreds or even thousands of
tables that need to be scheduled for merge so that the
overall system performance is kept optimal.
Applications like real-time stock level calculation,
price calculation and online customer segmentation
will profit from up-to-date data. A combined database
for transactional as well as analytical workloads saves
ETL costs and reduces the level of indirection between
the different systems in the enterprise environment.
However, we do not advocate a complete bonding of
OLAP and OLTP systems. The requirements of data
cleansing, system consolidation and very high selec-
tivity queries cannot be met with our system approach
and require additional systems. Our approach can sig-
nificantly increase the value of OLTP systems by clos-
ing the described abstraction gap and level of indiffer-
ence.

2. Architecture

For our evaluation we use HYRISE, an in-memory
compressed vertical partitionable database engine.
The main storage type in HYRISE is a read-optimized
column-oriented table that uses dictionary encoding
on each column. The dictionary is a vector of all dis-
tinct values in the column and the offset of a value
in the vector is its corresponding value id. HYRISE
stores each value id in the document vector bit-
compressed with only the number of bits needed to
store the maximum value id. This results in an im-
proved compression ratio and still guarantees fixed
length value ids. Inserting in such a compressed per-
sistence is as complex as inserting in a sorted column
like shown in [2], because the whole compression has
to be rebuild. A common approach to still achieve
good update performance, is a technique called differ-
ential updates. A small and for fast writes optimized
second storage stores the difference to the read opti-
mized storage [4], thereby decreasing the read perfor-
mance. To avoid the problem of constantly rebuilding
the compression for every modification, all modifica-
tions are accumulated and merged from time to time.

49

3. Merge Description
We assume the architectural and design choices stated
in [1]. The read optimized store is dictionary encoded
and keeps its dictionaries in a sorted order. Further-
more bit compression and valid bit vectors are used.
The write optimized store uses the same techniques
with the difference that the dictionary is not sorted,
so that new values can be appended without reorganiz-
ing the table. Additionally, a CSB+ tree is maintained
for the write optimized dictionary for enabling binary
searches and sorted iterating for the merge.
An unoptimized merge algorithm is outlined as pseu-
docode in Algorithm 4.1, consisting of two steps.
First, the dictionaries are combined into one result-
ing sorted dictionary and a value id mapping is cre-
ated. This is achieved independently from the doc-
ument vectors, by iterating simultaneously over the
dictionaries. The dictionary iterators enable a sorted
iteration over the dictionary values by leveraging the
CSB+ tree for the write optimized dictionary. The cur-
rent values of both dictionaries are compared in ev-
ery iteration, the smaller value is added to the result
and the corresponding iterator is incremented. In the
case that both values are equal the value is only added
once and both iterators are incremented. In order to be
able to later update the document vectors to the newly
created dictionary, every time a value is added to the
merged dictionary the mapping information from the
corresponding old dictionary to the merged one is also
added to the mapping vectors. In 1) and 2) one of the
two dictionaries is already worked off and empty, so
that the values can be added directly without compar-
isons.
Second, the values from the two document vectors are
copied into a combined document vector and the map-
ping is applied on the fly.
The merge process runs asynchronously. At the be-
ginning of the merge the table is locked and an empty
write optimized store is created. As soon as the merge
has finished, the lock is released and all write access
queries go against the newly created write optimized
store.
When the merge of the stores is finished, the merged
version is committed by locking the table and switch-
ing the old read and write optimized parts with the new
merge read optimized version. During the merge, the
process consumes additional resources (CPU and main
memory), but should affect running queries as little as
possible.

Merge by Example Figure 1 shows the content of
a sample table. The table is internally structured in
one read optimized and one write optimized part and
consists of one column. The read optimized part is
outlined at the top, whereas the write optimized part
is located at the bottom of the figure. On the very
left, the logical view of the table is outlined, inter-
nally divided into read and write optimized parts. Ex-

1
0
2
2
0

0
1
2
3
4

Australia
Germany

United States

0
1
2

0
1
0

0
1
2

United States
Greece

0
1

Germany
Australia

United States
United States

Australia

0
1
2
3
4

United States
Greece

United States

5
6
7

Table (logically)
Document
Vector

Read Optimized Storage

Write Optimized Storage

Dictionary

Figure 1: Merge by Example. Table Layout.

Australia
Germany
Greece

United States

0
1
2
3

Merged Dictionary

0
1
3

0
1
2

3
2

0
1

MappingROS Mapping WOS

(a) Tail of the dictionaries

1
0
3
3
0
3
2
3

0
1
2
3
4
5
6
7

Merged
Document
Vector

(b) Number of tuples. Cy-
cles per Row.

Figure 2: Merge by Example. Step 1 and Step 2

ternally, the separation into read and write optimized
parts is not communicated. Each storage is dictio-
nary encoded and consists of one attribute vector and
one dictionary. However, in the current implementa-
tion the dictionary of the read-optimized part is order-
preserving, while the write-optimized dictionary is
order-indifferent. Both attribute vectors are bit com-
pressed, which is not pictured in the figure. The at-
tribute vector references the actual values in the dictio-
nary, which are variable length strings. We use country
names as an example.
After the last reorganization, three new rows have
been inserted - ”United States”, ”Greece”, ”United
States”. These inserts are accumulated in the write
optimized store, which manages its own unsorted dic-
tionary. Therefore, ”United States” gets the value id
0 and ”Greece” the value id 1. For the third inserted
row, the value ”United States” is already contained in
the dictionary and therefore uses the existing id 0.
Figure 2 shows the results of the two merge steps.
First, the dictionaries of the write and the read opti-
mized parts are merged into one resulting dictionary.
A mapping for each part’s dictionary is created, trans-
lating the old value ids from the original dictionary to
the corresponding value ids in the merged dictionary.
In the example, ”Greece” is inserted between ”Ger-
many” and ”United States”, so the mapping for the
read optimized storage maps the old value id 2 (en-

50

coding ”United States”) to 3 in the merged dictionary.
The mappings created in the first step, are used in the
second step when the document vectors are merged.
The document vectors are merged by appending the
write optimized after the read optimized and translat-
ing the old value ids for the merged dictionary using
the mapping vectors.

3.1 Parameters for Merge
The total costs of the merge process are determined by
a) nr the number of tuples in the read optimized stor-
age, b) nw the number of tuples in the write optimized
storage, c) dι the intersection of the dictionaries and d)
dτ the tail of the dictionaries.

Description
M number of tuples in the ROS
N number of tuples in the WOS
Md size of the ROS
Nd size of the WOS
u compressed value size in the WOS (bits)
l compressed value size in the ROS (bits)
U uncompressed value size (bits)
i intersection of the dictionaries (percent)
t tail of the dictionaries (percent)

Table 1: Parameters influencing the merge.
The total number of tuples that have to be touched dur-
ing the merge is the most dominant parameter for the
costs of the merge process. For more tuples the costs
per tuple increase logarithmic. The intersection dι of
the dictionaries describes the amount of values that oc-
cur in both dictionaries, but will occur only once in the
resulting dictionary. The bigger the intersection of the
dictionaries the faster the merge, although the impact
compared to the overall merge costs is fairly small. dτ
is the size of the so called tail. The tail of two dictio-
naries are all values of one dictionary that are greater
than the last and therefore biggest value of the other
dictionary. The tail values can be added as a bulk to
the merged dictionary and do not have to be compared
with values from the other dictionary which results in
performance improvements. Therefor a big dictionary
tail results in a faster merge. Similarly to the intersec-
tion of the dictionaries, the total impact is fairly small.

4 Status
The merge as described in the previous section was
implemented in our main-memory research prototype
HYRISE[1]. Currently we are optimizing the different
steps of the algorithms based on the underlying lat-
est Intel hardware. Special focus during this phase is
to exploit special properties of the hardware by using
e.g. Intel SSE operations. Furthermore, our goal is to
evaluate the impact of the different parameters during
the next phase of the project and to increase the per-
formance of the merge process. The next steps are to
parallelize the merge process and to observe the im-
pact to the running system.

References

[1] M. Grund, J. Krueger, H. Plattner, A. Zeier, P. Cudre-
Mauroux, and S. Madden. Hyrise - a hybrid main mem-
ory storage engine (to appear). PVLDB, 2011.

[2] S. Héman, M. Zukowski, N. J. Nes, L. Sidirourgos,
and P. A. Boncz. Positional update handling in column
stores. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data 2010, pages
543–554, 2010.

[3] H. Plattner. A common database approach for OLTP
and OLAP using an in-memory column database. In
Proceedings of the ACM SIGMOD International Con-
ference on Management of Data 2009, pages 1–2, 2009.

[4] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden,
E. J. O’Neil, P. E. O’Neil, A. Rasin, N. Tran, and S. B.
Zdonik. C-Store: A Column-oriented DBMS. VLDB,
2005.

Algorithm 4.1: MERGE(main, delta)

comment: Step1: Merge the dictionaries

itmain ← main.dict.begin()
itdelta ← delta.dict.begin()
mappingmain ← Array()
mappingdelta ← Array()
merged← Array()

while not itmain.end and not itdelta.end

do



if itmain.value < itdelta.value

then

{
mappingmain[itmain.pos]← merged.size
merged.push back(itmain.pos)
itmain.increment()

else if

then

{
mappingdelta[itdelta.pos]← merged.size
merged.push back(itdelta.pos)
itdelta.increment()

else

then


mappingmain[itmain.pos]← merged.size
mappingdelta[itdelta.pos]← merged.size
merged.push back(itmain.pos)
itmain.increment()
itdelta.increment()

while not itmain.end

do

{
mappingmain[itmain.pos]← merged.size (1)
merged.push back(itmain.pos)
itmain.increment()

while not itdelta.end

do

{
mappingdelta[itdelta.pos]← merged.size (2)
merged.push back(itdelta.pos)
itdelta.increment()

comment: Step2: Merge the document vectors

for row ← 0 to main.size

do

{
valueId = main.getV alueId(row)
valueId = mappingmain[valueId]
merged.setV alueId(row, valueId)

for row ← main.size to main.size+ delta.size

do

{
valueId = delta.getV alueId(row)
valueId = mappingdelta[valueId]
merged.setV alueId(row, valueId)

return (merged)

51

Pro-Active Virtual Machine Migration
in the HPI FutureSOC Lab

Peter Tröger, Matthias Richly
Hasso Plattner Institute

Prof.-Dr.-Helmert-Str 2-3
14482 Potsdam, Germany

Felix Salfner
Humboldt University
Rudower Chaussee 25

12489 Berlin, Germany

Abstract

Next generation technologies such as multi-core
processors and large memory modules will result in
tremendously increased computing power. However,
this comes at a price: Due to the growing number of
transistors and increased complexity, overall system
reliability of future server systems is about to suffer
significantly.

The HPI FutureSOC Lab project „Towards an Archi-
tectural Pattern for Pro-Active Virtual Machine Mi-
gration“1 investigates an architectural blueprint for
managing system dependability in a pro-active fash-
ion. The approach is based on virtual machine live
migration technologies and new failure prediction
approaches.

Within this article, we present initial experimental
results of the project, with a focus on virtual machine
live migration capabilities.

1 Introduction

Achieving system dependability by employing repli-
cation in space and time is a traditional approach in
distributed and cluster- based systems. Middleware
implementations such as CORBA, .NET or DCOM
have implemented various protocols to cope with
transient and permanent faults above operating sys-
tem level through redundant resources. High-
performance computing (HPC) environments and
large computing clusters were extended by similar
redundancy concepts in the past, with special consid-
eration of their tight integration and high number of
components. Example analyses of large-scale HPC
systems have shown a mean time between failures
(MTBF) in the order of 6.5 to 40 hours, depending on
installation maturity. Google for example experiences
a MTBF in the order of one hour, although hidden
from the users through fault-tolerant middleware and

file systems.
With the advent of multi-core and many-core CPUs
in commodity clusters such as blade centers, prob-
lems and challenges that once were of interest only to
a small community of researchers and HPC users will
now seriously impact the computing environment
of tomorrow’s average server environments.
One commonly agreed problem with smaller struc-
tural sizes, extreme memory increase (as in the Fu-
tureSOC lab with 2TB machines) and dynamic fre-
quency / voltage scaling in the CPU is the overall
dependability of hardware components. Industry re-
acted on this upcoming challenge - which is already
well-known in the Exascale computing community -
with a set of new fault monitoring and fault tolerance
solutions.
One interesting layer of reactive fault tolerance are
distributed virtualization-based failover clusters (see
Figure 1). This machine-level approach adds to an
existing set of solutions on hardware, firmware, op-
erating system, middleware, and application level.

Figure 1: Reactive Live Migration of
Virtual Machines

1 The project is a cooperation of the Operating Systems and Middleware Group (Prof. Dr. Andreas Polze) at
Hasso Plattner Institute, and the Computer Architecture and Communication Group at Humboldt University.

53

2 Approach

Our FutureSOC lab project investigates an approach
where virtualization is used in a pro-active fashion
for increased system dependability. Running virtual
machines should be moved away from unreliable
hosts, without disrupting running applications or the
virtualized operating system. The given technical
foundation is the recent availability of live migration
capabilities in virtualization products. So far, these
features only operate in a reactive fashion, leaving a
relatively small time window for recovery activities
in the face of a system failure. Current approaches
are also solely based on performance counter thresh-
old analysis at one level of the system stack (usually
the VMM), and a subsequent reaction.
The pro-active solution for the migration decision is
intended to rely upon a system health indicator,
which is based on short-term online prediction of
upcoming failures. Such anticipation requires the
continuous monitoring and investigation of a sys-
tem’s state, in order to detect anomalies that indicate
an upcoming failure. One key concept is the integra-
tion of status assessments from all system levels, in
order to foster a maximum amount of system state
information and domain knowledge.

Figure 2: Pro-Active Virtual Machine Migration
through Failure Prediction

Until today, such an approach would have had a seri-
ous performance impact due to the monitoring and
prediction computation overhead. However, the iden-
tified problem source – complex and powerful paral-
lel hardware in every server – becomes part of the
solution here. In our proposed architecture, spare
computational resources are utilized for all prediction
activities. This allows combining existing approaches
for system monitoring and failure prediction, given
by our own earlier research results, into a new archi-
tecture for anticipatory virtual machine migration.
Our concept relies on the fact that a standard com-
puter system can be divided into different layers of
hardware and software, each with its own set of
performance-related monitoring parameters. For each
layer, we suggest the identification of relevant per-
formance and / or health indicators that can be used
in an online failure prediction facility. In contrast to
threshold-based reactive patterns, this variable selec-

tion can be realized in a semi- automated training
phase. Most prediction approaches demand this train-
ing phase in which a functional system is profiled for
the ‘normal’ pattern of monitored events. The predic-
tion approach then utilizes this data for online pattern
matching. With the huge variety of different informa-
tion sources, we focus our discussion on four major
prediction layers for the system health indication –
the hardware level, the virtual machine monitor level,
the operating system level, and the application level.

It should also be noted that our investigation focuses
on bare-metal virtualization only, since today’s most
capable live migration implementations are based on
this model.

3 Initial Experiments

We started the FutureSOC lab project with an in-
depth analysis of virtual machine (VM) migration
capabilities, since this technology forms one of the
cornerstones of our approach. We already developed
a testing framework consisting of several load gen-
erators and test scripts which implement the meas-
urement procedure. We applied the tests to VMware
vSphere 4.0 and Citrix XenServer 5.6 so far, further
tests for KVM and Microsoft Hyper-V are under way.
We focus on two metrics in the live migration inves-
tigation - the overall migration time and the blackout
time of the VM. The migration time is the time from
requesting the hypervisor to migrate the VM until it
reports the successful migration. The blackout time is
the period were the VM is not responsive to network
I/O due to the migration. The latter can be signifi-
cantly less than the migration time, because most
hypervisors support minimizing the blackout time by
ballooning, pre-copying or incremental copying the
VMs state.
Load generation is done in the following ways:
• CPU load generator (CLG): To generate a certain

CPU load we use burnP6 from the cpuburn suite in
conjunction with cpulimit.

• Locked pages generator (LPG): To increase the
physical memory utilization of the VM, we created
a new load generator tool that allocates a given
amount of memory, writes random data to it and
locks it in physical memory using the accordant
system call (such as mlock in Linux). The migra-
tion is started when the tool is waiting (after the
tool has allocated and locked the memory).

• Dirty pages generator (DPG): Another tool was
created to generate dirty pages during the migra-
tion by continuous memory writes. This increases
the load for live migrations and therefore influ-
ences blackout time, because the VMs state con-
tinuously changes during the migration.

All tests were executed on hardware provided by the
HPI FutureSOC lab: 2x FUJITSU PRIMERGY
RX300 S5, with Intel Xeon E5540 @ 2.53GHz (4

54

cores + HT), 12GB RAM, and 2 Gigabit-NICs (mi-
gration link, external link).
The migration was performed with a Debian 5.0.4
"Lenny" virtual machine (kernel 2.6.26-2, 64 bit),a
CentOS 5.5 virtual machine (same kernel) and a
Windows Server 2008 R2 virtual machine. All ma-
chines were configured with one virtual CPU and a
varying amount of (virtualized) physical RAM. In all
cases, the virtualization guest tools / drivers were
installed. Native operating system swapping was
activated, but not aggressively in use due to the ex-
plicit limitation of the allocated amount of memory.
Despite the CLG test cases, the virtual machine was
having no CPU load from running processes.
The result graphs all show the average measurement
results from 10 runs, together with error indicators in
a 95% confidence interval.

3.1 VMWare VMotion - Selected Results
We ran a set of migration tests under different load
conditions with an VMWare ESX 4.0.0 (build
208167) installation.

Figure 3: VMWare Migration and Blackout Time
vs. CPU Load (CLG tool)

Figure 3 shows that the CPU load inside of the run-
ning virtual machine has no impact on the migration
resp. blackout time of VMotion. This underlines the
hypothesis that live migration performance is mainly
influenced by memory copying efforts.

Figure 4: VMWare Migration and Blackout Time
vs. Physical Memory Usage (LPG tool)

Figure 4 shows he average migration / blackout time
plotted against physical memory utilization of the
guest OS with different settings for the (virtual)
RAM of the migrated VM. There is a linear func-
tional correlation of the migration time and physical
memory usage of the guest OS in VMWare. Blackout
time is almost not influenced and still less than one
second in the majority of cases with VMWare.

Figure 5: VMWare Migration and Blackout Time
vs. Dirty Pages Rate (DPG tool)

55

Figure 5 shows migration & blackout time with a
varying dirty pages generation rate. The rate is de-
termined by the period value plotted on the x-axis in
the charts (specifying the interval in which the tool is
active) and the number of page changes within one
period (constantly 10 for both charts). The reference
value in the charts is determined by allocating mem-
ory that is not changed during the migration, but
written only once at the beginning for triggering the
lazy allocation mechanisms of the operating system.
As expected, both migration and blackout time are
influenced by the amount of dirty pages generated
during migration. The interesting aspect here is the
impressive stable behavior of the VMWare solution,
even under high memory modification load during
migration. The dropping of the migration time with
extremely high allocation periods is currently not
understood, and might be either reasoned by meas-
urement errors, or even by a transparent shift of the
migration mechanisms on load.

Figure 6: VMWare Migration and Blackout Time
vs. Dirty Page Filling Rate (DPG tool)

Figure 6 proves the theory that live migration is op-
erating on a page basis. In the experiment, the vary-
ing parameter was the fraction value. It determines
how much of a block resp. page is changed in rela-
tion to the total block size (%). To clearly recognize
potential effects, we chose a short period value,
which causes the migration and blackout times to
differ significantly from the reference value. The
tests show that the fraction parameter has no influ-
ence on the measurement results. As expected, pages
are copied on a whole, no matter how much of them
is changed.

3.2 Xen Live Migration - Selected Results
The first set of comparative tests were performed
with the Citrix XenServer 5.6 product.

Figure 7: Xen Migration and Blackout Time vs.
CPU Load (CLG tool)

Figure 7 demonstrates that in the Xen case, CPU load
also does not influence migration performance. Mi-
gration time is similar to VMotion (~26s here vs.
~22s for VMotion). However, it must be noted that
the blackout time is about 4 times higher than with
VMotion (~4.3s vs. <1s). This is true in all tests, i.e.
the minimal possible blackout time is always >4s for
Xen.

56

Figure 8: Xen Migration and Blackout Time vs.
Physical Memory Usage (LPG tool)

Figure 8 shows he average migration time plotted
against physical memory utilization of the guest OS
with different settings for the (virtual) RAM of the
migrated VM in the Xen case. The blackout time is
not influenced, as for VMware. But in contrast to
VMware VMotion, migration time is independent of
memory usage of the guest OS for Xen. Our initial
interpretation is that the Xen migration approach
seems to copy all memory allocated for the VM, no
matter if it is actually used or not. This results in a
very stable but slow migration performance. Depen-
dening on the amount of guest memory being allo-
cated, VMWare can truly outperform Xen in such
cases.

Figure 9: Xen Migration Time vs.
Virtual Machine Memory Size (LPG tool)

Figure 9 proves that that there is a linear correlation
between migration time and the configured VM
memory size in Xen. The migration time was meas-
ured without any load on the guest OS.
For the dirty pages generation and filling rate ex-
periments, the results were comparable to the ones
obtained with VMotion.

4 Failure Prediction

A key idea of our project is to employ failure predic-
tion at several layers of the system/software stack
(c.f. Figure 2). There exists a plethora of prediction
methods covering the hardware layer, operating sys-
tem layer and application layer. However, existing
work has very rarely, and if so very vaguely investi-
gated the peculiarities of a system with bare-metal
virtualization. Hence one of the questions to be an-
swered in this project is to what extent existing fail-
ure prediction approaches can be applied to a virtual-
ized environment. More specifically the question is
whether there are faults and fault classes that can
only be predicted (or at least predicted best) on the
hypervisor level. In order to do so, we have identified
three groups of input data to failure predictions that
are only available at the VMM layer. This serves as a
strong argument that VMM-layer failure prediction is
a necessity for proactive virtual machine migration.

VMM

Guest OS

Figure 10: Overlap of Monitorable
System Variables

In general, the situation can be characterized as fol-
lows: Some variables (types of input data) can only
be monitored at the VMM layer, some are visible to
both layers and some are visible only to the guest
operating system (c.f. Figure 10). We have investi-
gated three different types of input data:
• EsxTop, a monitoring tool available in the VMware

ESX server
• SMART disk monitoring
• Intel Machine Check Architecture (MCA)
The management console on the ESX Server pro-
vides a tool called “esxtop” to monitor 120 system
variables. We have classified those variables into the
ones capturing properties that are only observable
from the VMM, and the ones that are observable both
from the guest OS and the VMM.
VMM-only VMM and GuestOS

Physical CPU Util time
Physical CPU load

Guest CPU % Idle

Physical memory Free MB
Total swap space used

Guest VM swap space used

Physical disks queued com-
mands

57

Several failure prediction algorithms have been de-
veloped that perform disk crash prediction based on
SMART values. However, such data is only accessi-
ble at the VMM layer as, for example VMware does
not provide this information to guest OSes. This is
especially important for predicting failures of local
disks, which are used, e.g., as swap space. For this
reason, SMART-based failure prediction is covered
as one of the topics in the upcoming project work. A
similar case exists with the correctable and uncor-
rectable error notification from Intels MCA feature,
which is also solely accessible on Hypervisor level.
Since a corrected bit does not lead to any malfunction
of the system but can serve as a valuable input to an
assessment of the system’s health, such input is very
valuable for failure prediction. However, at least
VMware ESX does not supply guest virtual machines
about such misbehavior.

5 Next Steps

The initial investigations have shown that stable vir-
tual machine migration performance seems to be
achievable. This is a cornerstone for continuing the
overall work on a pro-active virtual machine migra-
tion environment, since the demanded time window
for feasible predictions is given by the migration ca-
pabilities. We are currently investigating KVM and
Hyper/V live migration features, in order to complete
the performance picture of virtual machine live mi-
gration. As a second foundation, we are intensifying
the work on hypervisor-level failure prediction, based
on the achieved initial insights.

58

Rule based Business Matrix Processing (RBM) – Business Rules for real-
time Process Management based on In-Memory Technology

Dr. Andreas Hufgard
Dipl.-Kff. Stefanie Krüger

IBIS Labs
Hufgard@ibis-thome.de

skrueger@wiinf.uni-wuerzburg.de

Prof. Dr. Rainer Thome
Chair in Business administration

and business computing
Joseph-Stangl Platz 2

97070 Wuerzburg
thome@wiinf.uni-wuerzburg.de

Abstract

Rule based Business Matrix Processing is an ap-
proach to combine Consultative Information Tech-
nology with In-Memory Data processing. A holistic
and real time Process Cockpit, a Recommendation
Model + Engine and a Code of Good Practice with
Business Rules have to be linked together to reach
the target. As a result a substantiated decision mak-
ing is possible requiring less effort and the productiv-
ity of employees can be increased dramatically.

Implementing a rule based business matrix
processing and integrating it into an In-Memory
based enterprise system like SAP Business ByDesign
requires three separate elements that depend on one
another.

1 Holistic and Real-Time Process
Cockpit

For managers to be able to monitor a section of the
process chain, they must have an overview and real-
time model, like a cockpit, which gives them insight
into the overall status and the dynamics of relevant
business process transactions they are responsible
for. This is the idea behind the Holistic and Real-
Time Process Cockpit.

Figure 1: Holistic Real-Time Process Cockpit as a
precursor of rule based Business Matrix Processing

59

In this context, holistic means
• it examines business process transactions in

their entirety along business process chains,
rather than analyzing individual cases out of
context,

• it illustrates various perspectives of the
business process that focus on management
or decision-making tasks,

• simulation includes information on follow-
up activities.

Exceptions in the process chain are made transparent
by real-time displays of delays in work progress,
anticipated bottlenecks, monetary values and other
issues critical to prioritization.
In contrast to current monitoring approaches, real-
time BPM enables new methods of management and
analysis to leverage positive impact on processes
while they are in progress. It should be possible to
incorporate not only retrograde information from
documents but also associated and progressive in-
formation from downstream sections of the process
chain or from the environment; they can then be
placed in context with the data in the business
process transaction.
A further challenge lies in bringing together the se-
mantic diversity of information stored in ERP sys-
tems in a way that is meaningful and that places it in
interrelation with the environment and Internet data-
bases.

2 Recommendation Model and En-
gine

The second element is the Recommendation Engine.
Its structural model comprises a separate layer based
on the data and process model and the adaptation and
configuration model, respectively. A structure model,
one component of a process cockpit, is responsible
for rapidly furnishing and consolidating the relevant
data fragments into “the bigger picture”. The struc-
ture model can then provide notifications, recom-
mendations and actions via an intelligent knowledge
base. Plus, preventive steps or corrective actions, for
instance, can be taken to positively influence the
outcome.
The new type of engine being researched generates a
modeled knowledge base of recommendations for
good – or at least not incorrect – business practice,
the code of good practice. Its rules need to show the
user undesirable consequences, for example, or avoid
these autonomously.
The anticipated edge gained through the speed of in-
memory technology and the rapid association of
information fragments can provide the employee at
specific points in the process chain a kind of radar or
braking assistant unprecedented in ERP systems.

Business
matrix rule

Protection Productivity Activity

Action Reject follow-
up processing

Additional
calculation/
proposal (in UI)

Trigger
follow-up
activities

Trigger Profit margin
of sales quote

New sales quote New high-
volume
customer
order created

Level of im-
portance:
• Notification

(is)
• Recommen-

dation
(should)

• Action (must)

Profit margin
of sales quote
should exceed
10%.
Profit margin
of sales quote
must be
positive or
must be ap-
proved by
manager.

When a new
sales quote is
entered and
customer de-
faults selected,
values should be
suggested
automatically
for other fields
(pattern identifi-
cation for cus-
tomer and user).

Management
must be
informed if
even one risk
parameter
(liquidity,
currency,
ROI) exceeds
a critical
threshold.

Figure 2: Classification of Business Matrix Rules
(BMR)

This degree of foresight and effective protection must
be based on active rules provided during runtime that
immediately place occurring factors in context and
trigger an appropriate reaction when a rule is vi-
olated. In contrast to configuration rules that only
apply during configuration or reconfiguration, these
rules are active at all times when employees trigger
certain situations; or they work in the background as
permanently active checks on undesirable constella-
tions in the cockpit.
The Recommendation Engine requires fundamental
architecture that enables interdependencies to be
derived between events and information. An action
must then be generated and forwarded via a user
interface to the employee, or the correct subsequent
actions must be triggered automatically.
The Recommendation Engine must also be capable
of generating Business Matrix Rules that can be
adapted to the company’s structure and the current
situation. This can be attained through self-learning
networks or knowledge-based methods.

To reign in complexity and ensure parallel and inde-
pendent development, the Recommendation Model’s
event and action rules must be based on process
chain objects and structured according to these. In
addition, the rules should include heuristic strategies,
phase-by-phase evaluations and semantic concepts
rather than merely declarative model structures. This
will ensure that the rule model is able to evolve con-
tinuously.

60

3 Code of Good Practice – Reliable vs.
Best Practice

In addition to developing the architecture and funda-
mental methodology, it’s essential to create a code of
good practice – to collect, organize and formulate a
set of business rules structured by content. This is not
a one-time activity. Similar to software development,
it is an ongoing process that changes and develops in
turn with legal stipulations, the latest trends and new
insight or advancements in hardware and software.
At the same time, it must be possible to gear these
rules toward and configure them to company-specific
requirements.
A code of good practice can be a collection and for-
mulation of business process dependencies on the
one hand, and it can assimilate and structure a com-
pany’s or a consultant’s rules, ideas and creativity, on
the other. To better visualize the idea of a code of
good practice, put yourself in the shoes of an em-
ployee who is executing a process in the system for
the first time, or one who does so very rarely. Or take
the viewpoint of a manager who needs to supervise
her area as well as and efficiently as possible.
The employee has the disadvantage of knowing only
the data shown on the screen, or will have executed a
report on it at best. He has no further information that
clues him in on the current goings-on unless the sys-
tem or a colleague informs him of the interdependen-
cies of his actions. The code of good practice takes
on the role of an experienced colleague who can
monitor the relevant interactions and tell the em-
ployee whether his actions will cause problems.
From a business viewpoint, a sales order may be
influenced by several things. Earning a positive profit

margin may be a priority. And there’s always the
question of whether there are foreseeable problems
with the customer or with order processing – whether
a product will be available when the customer wants
it or whether a quotation for a specific quantity will
be able to be filled, or whether the quantity fluc-
tuates. The Recommendation Engine advises the
employee, when in doubt, to offer more or less of a
product or propose a different delivery date. It even
suggests additional products the customer may want,
based on customer data. It can also perform real-time
priority changes for the customer; it can determine
liquidity and cash flow, depending on the size of an
order or on previous business contacts. If a customer
is willing to accept longer delivery times, more flexi-
ble and cost effective alternatives can be added to the
logistics chain.
On the one hand, there is the linking of information
from each employee’s part of the process to other
sections in the chain, and on the other, there is the
overview and analytical solving of decision-making
issues and organizational difficulties at manager
level. Management’s task is to provide resources,
identify and dissolve bottlenecks and set priorities.
These kinds of issues are best solved by comparing
and combining various scraps of information rather
than through fixed, pre-formulated rules. For this
reason, the manager requires a very specific type of
rule – one that is capable of filtering relevant frag-
ments of data and compiling them so decision-
making can be recommended or made a high priority
(e.g. like scorecards). The action to be taken may not
be clear, but the constellation and the need for infor-
mation is.

Figure 3: Manager view for prioritization

61

References
[1] A. Hufgard: ROI von SAP Lösungen verbessern.

Galileo Press, Bonn, 2010.

[2] R. G. Ross: Principles of the Business Rule Approach.
Addison Wesley, Boston, 2003.

[3] R. Thome; A. Hufgard: Continuous System Engineer-
ing. Discovering the Organisational Potential of Stan-
dard Software. 1st revised edition in English, Oxygon,
München 2006.

62

Software-Implemented Fault Injection
in the HPI FutureSOC Lab

Peter Tröger
Operating Systems and Middleware Group

Hasso Plattner Institute
Prof.-Dr.-Helmert-Str 2-3
14482 Potsdam, Germany

Abstract

Software-implemented fault injection (SWIFI) is an
established method to emulate hardware faults in
computer systems. Existing approaches either extend
the operating system by special drivers, modify the
runtime environment, or change the application un-
der test.

The FutureSOC project on software-implemented
fault injection investigates new ideas for adding fault
triggering and simulation as standard dependability
assessment tool in modern server environments. The
following report summarizes the results of the initial
analysis phase.

1 Introduction

An in-depth study of fault tolerance capabilities of a
system design can be accomplished at various stages
including the conceptual design phase, system de-
sign, or prototype phase. In order to address the prob-
lem that true failures are a rare event during experi-
mental runs, fault injection is frequently applied.
System components are intentionally modified in
order to trigger single component failures. Once a
component is in an erroneous state, subsequent reac-
tions of the system are monitored and evaluated in
order to assess and quantify fault tolerance capabili-
ties of the system under test.
Several approaches to fault injection have been pro-
posed in the past. They vary by the layer where faults
are injected and how the injection is performed. Ma-
jor criteria for selecting an appropriate fault injection
technique are the assumed fault model, the number of
tests that have to be performed in a given time, con-
trollability of the fault injection, and the number of
changes necessary to implement fault injection in the
tested system.
The representativeness of fault injection experiments
is limited if the system under test has to be modified.
In such cases, tests might not be performed under
conditions similar to the run-time environment of the
productive version. This can be a relevant aspect in
safety-critical applications, such as control systems

for critical infrastructures. Such systems frequently
rely on certified software that must not be modified.
Hence, the alterations necessary to implement fault
injection should be minimal. A second limitation of
most injection techniques is their non-portability
across operating systems and/or hardware platforms.
In order to cope with portability and non-
intrusiveness aspects of fault injection, our Future-
SOC project works on novel approaches to fault in-
jection that operates on or below the operating sys-
tem level.

2 Software-Implemented
Fault Injection

Software fault injection describes the approach of
triggering hardware and software faults by program-
matic modifications. Software fault injection can
target different layers of software, such as the operat-
ing system, a runtime environment, or the application
itself. Beside the generation of faulty software bina-
ries (compile-time injection), most such approaches
rely on the injection at runtime of the system. A spe-
cial variation is software-implemented fault injection
(SWIFI), which emulates hardware component out-
ages by special software activities, such as changing
registers and memory cells.
Our broader analysis of existing SWIFI approaches
showed that they always modify system software to
some extent. Either the tested application has to run
in a special trace mode, the operating system has to
be modified or extended by a driver, or the applica-
tion itself has to be modified.
The new concept investigated by this FutureSOC
project addresses the interference problem by estab-
lishing the fault injector as part of the lower layers in
the hardware / software stack. Beside a traditional
approach of adding fault injection capabilities as op-
erating system kernel module resp. driver, the new
idea is to add them as part of the computer firmware.
This allows to leave operating system and application
stack untouched, while still having the benefits of a
SWIFI approach. Since many relevant server infra-
structures - even in critical environments - rely on
X86/X64 computers today, we focus on realizing this

63

approach with the modern hardware systems avail-
able in the HPI FutureSOC Lab.

3 Solution Space for Firmware-Level
Fault Injection in X86

The standard firmware in X86/X64 systems is still
the Basic Input Output System (BIOS), which was
invented over 20 years ago for the first IBM personal
computer. The BIOS is responsible for initializing
and abstracting the computer hardware, in order to
allow an operating system boot loader to work on
different hardware platforms. With modern operating
systems, the BIOS interfaces are no longer used after
startup, since native software drivers take over con-
trol. Extending BIOS firmware with a fault injection
functionality would demand some source-code modi-
fication – but any standard BIOS software is subject
to strict licensing. One possible alternative is open-
source firmware, with Coreboot as most prominent
example.
A completely different option recently became avail-
able with the introduction of Itanium processors. In-
tel and other companies started to develop an alterna-
tive firmware concept in order to circumvent classi-
cal BIOS limitations such as the 16 bit code base and
the proprietary implementation strategy. The result of
this effort is the Extensible Firmware Interface (EFI)
standard. The EFI specifications define programming
interfaces that allow extension and configuration of a
computer’s firmware in a more flexible way than it
was the case with traditional BIOS. Beside the exclu-
sive usage of EFI in Itanium systems, it is also the
default firmware for all recent Apple computers and
many other recent X86/X64 systems.

Figure 1: Extensible Firmware Interface Stack

Figure 1 shows the relation between EFI and other
system components. All services are implemented by
EFI drivers, which are either stored in the mother-
board option ROM or can be loaded from a dedicated
hard disk partition. EFI drivers provide the firm-
ware’s hardware abstraction, e.g., for console interac-
tion, PCI bus access, or memory access of the boot
loader. EFI-based applications, especially the operat-
ing system boot loader, use the driver-implemented
functionality.
EFI boot service drivers are only available until the
initiation of an operating system startup has been
signaled. EFI runtime service drivers remain in
memory to provide firmware functionality to the op-

trap handlers to emulate CPU, memory, and bus faults. The

tested process triggers the UNIX ptrace() facility in order

to run in a special trace mode.

Xception by Carreira et al. [2] relies on the advanced

hardware capabilities of modern processors. The toolkit uti-

lizes hardware performance monitoring to raise a processor

debug exception when the injection condition occurs. The

exception handler then performs the actual injection. Several

other SWIFI approaches, such as FTAPE by Tasi and Iyer,

also rely on special operating system drivers. This approach

has the comparatively lowest interference with the system

under test - it does not require special trace execution, new

software trap handlers, or any direct modification of the

tested application.

Our broader analysis showed that existing SWIFI ap-

proaches always modify system software to some extent.

Either the tested application has to run in a special trace

mode, the operating system has to be modified or extended

by a driver, or the application itself has to be modified. Our

new concept specifically addresses this interference problem

by establishing the fault injector as part of the computer

firmware. This allows to leave operating system and appli-

cation stack untouched, while still having the benefits of a

SWIFI approach. Since many relevant server infrastructures

- even in critical environments - rely on X86/X64 computers

today, we focus on this hardware architecture in the follow-

ing analysis of possible realizations.

III. SOLUTION SPACE

The standard firmware in X86/X64 systems is still the

Basic Input Output System (BIOS), which was invented over

20 years ago for the first IBM personal computer. The BIOS

is responsible for initializing and abstracting the computer

hardware, in order to allow an operating system boot loader

to work on different hardware platforms. With modern

operating systems, the BIOS interfaces are no longer used

after startup, since native software drivers take over control.

Extending BIOS firmware with a fault injection functionality

would demand some source-code modification – but any

standard BIOS software is subject to strict licensing. One

possible alternative is open-source firmware, with Coreboot
1

as most prominent example.

A completely different option recently became available

with the introduction of Itanium processors. Intel and other

companies started to develop an alternative firmware concept

in order to circumvent classical BIOS limitations such as the

16 bit code base and the proprietary implementation strategy

[3]. The result of this effort is the Extensible Firmware

Interface (EFI) standard. The EFI specifications define pro-

gramming interfaces that allow extension and configuration

of a computer’s firmware in a more flexible way than it was

the case with traditional BIOS. Beside the exclusive usage

1
http://www.coreboot.org/

!"#$%&

'!(&
)*+&,-./01&

234##$%&

!"#$%&

'!(&
)*+&,-./01&

234##$%&

)*+&!,&5$3604&&7&)*+&,8099&

)*+&':%#10&,04;<=0.&)*+&>$$/&,04;<=0.&

!"043#%?&,-./01&

)
*
+&

@
4<
;0
4&

)
*
+&

@
4<
;0
4&

)
*
+&

@
4<
;0
4&

)
*
+&

@
4<
;0
4&

)
*
+&

@
4<
;0
4&

)
*
+&

@
4<
;0
4&

)
*
+&

@
4<
;0
4&

)
*
+&

@
4<
;0
4&

Figure 1. Extensible Firmware Interface Stack

of EFI in Itanium systems, it is also the default firmware for

all recent Apple computers and many other recent X86/X64

systems.

Figure 1 shows the relation between EFI and other system

components. All services are implemented by EFI drivers,

which are either stored in the motherboard option ROM or

can be loaded from a dedicated hard disk partition. EFI

drivers provide the firmware’s hardware abstraction, e.g., for

console interaction, PCI bus access, or memory access of the

boot loader. EFI-based applications, especially the operating

system boot loader, use the driver-implemented functionality.

EFI boot service drivers are only available until the

initiation of an operating system startup has been signaled.

EFI runtime service drivers remain in memory to provide

firmware functionality to the operating system.

A second dimension of the solution space, beside the

firmware extension strategy, is the execution mode of fault

injection code.

A fault injector implementation always runs as ’out-of-

order’ code during normal processor operation, for example

as interrupt-triggered driver, trap handler, or debugger code.

Since our goal is to inject faults without any software

modification on operating system level or above, we propose

to run the fault injector in the System Management Mode

(SMM). Besides the well-known real mode and protected

mode, SMM is the most privileged execution mode of X86-

compatible processors. It is originally intended for special

BIOS software that has to be regularly executed, such as

power and fan management functions or the handling of

hardware error events (e.g. memory parity faults).

The SMM processor mode is triggered by a special

interrupt, the System Management Interrupt (SMI), or by

sending a special APIC message to the processor. The SMI

is a non-maskable interrupt that takes precedence over all

other interrupts. With the switch to SMM, the CPU freezes

all activities in the current mode of operation. The interrupt

handler routine has now full access to computer resources.

All I/O and system machine instructions are allowed, which

is a difference even to the Ring 0 protected mode code.

Memory is accessible in 32bit real mode addressing. When

the SMI handler has completed its operation, it executes a

special instruction that causes the processor to resume the

operation mode that was active before.

erating system.
A second dimension of the solution space, beside the
firmware extension strategy, is the execution mode of
fault injection code.
A fault injector implementation always runs as ’out-
of-order’ code during normal processor operation, for
example as interrupt-triggered driver, trap handler, or
debugger code. Since our goal is to inject faults
without any software modification on operating sys-
tem level or above, we propose to run the fault injec-
tor in the System Management Mode (SMM). Besides
the well-known real mode and protected mode, SMM
is the most privileged execution mode of X86- com-
patible processors. It is originally intended for special
BIOS software that has to be regularly executed, such
as power and fan management functions or the han-
dling of hardware error events (e.g. memory parity
faults).
The SMM processor mode is triggered by a special
interrupt, the System Management Interrupt (SMI),
or by sending a special APIC message to the proces-
sor. The SMI is a non-maskable interrupt that takes
precedence over all other interrupts. With the switch
to SMM, the CPU freezes all activities in the current
mode of operation. The interrupt handler routine has
now full access to computer resources. All I/O and
system machine instructions are allowed, which is a
difference even to the Ring 0 protected mode code.
Memory is accessible in 32bit real mode addressing.
When the SMI handler has completed its operation, it
executes a special instruction that causes the proces-
sor to resume the operation mode that was active
before.
Modern processors with hardware virtualization sup-
port can also be influenced by SMM in the sense that
the currently active logical processor is interrupted
and the state is saved. All software layers above
firmware level are now transparently suspended,
starting from the host operating system itself.

!"#$%&'()*$+,-.*,$

!"#$"-,)/0,*$

12#$30'45*,$

"0&56$#'7*869,$

!"#$%&'()*$+,-.*,$

!"#$"-,)/0,*$

"0&56$#'7*869,$

:&;69)$<#=1$

"-,)/0,*$

12#$30'45*,$

"0&56$#'7*869,$

:&;69)$<#=1$

"-,)/0,*$

"0&56$#'7*869,$

30,4/0,*$

=>*,0('?$1@;6*)$ =>*,0('?$1@;6*)$ =>*,0('?$1@;6*)$ =>*,0('?$1@;6*)$

30,4/0,*$ 30,4/0,*$ 30,4/0,*$

!"#$%&'()*$+,-.*,$

/0,)12$!3*4&(0'$

!"#$%&'()*$+,-.*,$

5678*)$91'1:*)*'8$90;*$

90;-<*;$=#>5$

5678*)$91'1:*)*'8$90;*$

90;-<*;$=#>5$

/0,)12$!3*4&(0'$

Figure 2: Solution Space

By combining firmware extension using EFI or cus-
tom BIOS with fault injection triggering using SMM
or not, we end up with four proposals for firmware-
based fault injection, as shown in Figure 2.

64

4 Initial Analysis

A. Supported Fault Locations

The fault location denotes the specific hardware part
that can be set to an erroneous state under the given
fault model. An analysis of related work showed that
for most approaches the focus is on the main proces-
sor. Some of the SWIFI solutions also support mem-
ory cell or I/O driver fault injection.
In our firmware-based approach, both non-SMM
variants support all explicit modifications (such as
register changes) that are possible for kernel-mode
software running in protected mode. This is also the
case for driver-based related SWIFI solutions.
With the usage of SMM, the set of possibilities for
processor fault injection is substantially extended.
Several X86/X64 processor registers are saved before
the SMI handler starts executing. Parts of the saved
state map are changeable in an SMI handler imple-
mentation, which allows the manipulation of other
general purpose registers, status registers, and even
the instruction pointer on bit-level. Other processor
registers are not automatically saved and restored,
but can still be changed. This includes FPU registers,
cache configuration registers, control registers and
the trap con- troller state. A similar classification
exists for registers in the Itanium processor.
The extended set of fault locations with the SMM
approach enables a set of new opportunities for
hardware fault experiments. Manipulations in the
saved processor state information might even lead to
machine halting on SMM exit, since the processor
hardware itself tries to detect invalid conditions. This
might or might not act as another possible fault type,
for example to emulate a processor hardware crash
fault. The injection from a SMM handler could theo-
retically also support processor caches, if they remain
untouched when SMM is enabled by the processor.
According to the architectural documentation of
SMM, this is a model-specific property of the proces-
sor revision.
When memory cells are targeted as fault location,
SMM approaches are limited to 32bit real-mode ad-
dress- ing, whereas non-SMM approaches can access
the entire protected-mode address space. SMM han-
dlers also have write access to the memory of a po-
tentially running virtualization hypervisor. This is
possible since logical processors are also suspended
on SMM entry. SMM-based fault injection therefore
offers the possibility for hypervisor fault injection, a
topic that is –to the best of our knowledge– not cov-
ered by dependability research at the moment.
When I/O devices are targeted as fault location, both
the non-SMM and the SMM firmware approaches
support the direct access by port-mapped and
memory-mapped I/O. It should be pointed out that
this works without any involvement of the operating
system itself.
From the viewpoint of supported fault locations, the
SMM-EFI approach needs to be favored. It makes the

fault injector available even before the operating
system loader starts to operate. SMM supports a
broader range of manipulations, since neither the
restrictions of the protected mode nor operating sys-
tem security mechanisms are active during SMM
interrupt handling.
B. Portability
From the viewpoint of portability, the usage of BIOS
alternatives demands support for the very specific
combination of chip set, memory controller, and
other parts of the motherboard. EFI, in contrast, is a
standardized interface that tries to solve the portabil-
ity problem for firmware source code. With the envi-
sioned spreading of EFI as default firmware in X86/
X64 systems, more and more hardware platforms
will support the EFI-based realization of a fault injec-
tor. We therefore favor these solutions for the sake of
portability. The level of support for SMM handler
code in EFI runtime drivers is still under investiga-
tion.
C. Fault Trigger
The fault trigger is an explicit condition that, once
met, leads to the injection of a hardware fault. There
is a distinction between the mechanism that checks
the condition, and mechanism that subsequently acti-
vates the fault injection code.
Classical examples for SWIFI activation mechanisms
are timeouts (with unpredictable fault effects, there-
fore suit- able for transient faults and intermittent
hardware faults), exceptions resp. traps, and inserted
code. Firmware-based fault injection theoretically
adds the possibility for hardware interrupts as fault
trigger condition, but since EFI does not support the
hooking on hardware interrupts, the custom BIOS
replacement provides the better solution in this case.
Exceptions, traps, and inserted code can only be im-
plemented by extending or modifying the tested sys-
tem. This is contradictory to our goal of non-intrusive
failure injection.
In the case of using an SMM handler for fault injec-
tion, an SMI is the only available starting point for
the injection. SMIs can be triggered from software
directly or indirectly using I/O controller chips. Such
controllers support a large set of SMI-triggering
events including the power button, real-time clock
timers, serial / USB port activities, or NMIs.
Using the I/O controller to trigger an SMI enables the
re-use of well-known condition checks from other
SWIFI approaches, but would require code in the
operating system. Therefore a trade-off exists be-
tween minimal intrusiveness (where only hardware
timers are available as trigger) and maximum flexi-
bility in fault injection triggering (at the cost of port-
ability).
We conclude that firmware-based fault injection
would not provide any advantage if a rich set of fault
triggers is the primary concern. This property is in-
dependent from the chosen implementation strategy.
With respect to all investigated properties, we de-
cided for the EFI runtime driver approach.

65

5 Intel Machine Check Architecture

Beside our firmware-based approach for fault injec-
tion, the investigation of the FutureSOC lab systems
has lead to a new possibility for sub-OS-level fault
injection. The Intel Machine Check Architecture
(MCA) feature of modern Nehalem EX processors,
ported from the Itanium world to all latest models in
the Xeon series, offers the possibility to simulate
hardware error events for higher layers in the soft-
ware stack. The deeper experimentation with the HP
DL980 has showed that the implemented, very latest,
ACPI Platform Error Interface (APEI) specification
also supports high-level monitoring and fault injec-
tion for hardware components as wrapper around the
processor MCA capabilities.
A relevant aspect in this scenario is the default con-
sideration of MCA information in the operating sys-
tem. Due to its multi-platform support, Linux has
direct support for the Machine Check Architecture of
x86 processors. Since MCA reports correctable, un-
correctable and software-recoverable errors related to
hardware units of the processor, the information in
MCA status registers can be used to analyze whether
the process context which was running before the
error can be resumed or not.

Figure 3: Fault Injection and Management
Capabilities in Linux

Figure 3 shows the current handling of hardware
faults in the Linux operating system kernel. There are
two sets of kernel modules which are handling
hardware-related errors. The first set is called EDAC
- Error Detection and Correction. These modules are
used for fetching corrected and uncorrected error
notifications coming from the hardware. Information
about these errors are then exported into the virtual
sysfs file system. Initially, EDAC supported memory
chipsets only to gather ECC data. The FutureSOC lab
analysis showed that there is also a module for PCI
Bus errors and for Core i7 MCA registers, which
report issues from the integrated memory controller.
At the time of this writing, EDAC modules only had
very basic support for fault recovery. One can only
choose between a kernel-panic and do-nothing on
uncorrectable errors.
Three years after the first inclusion of EDAC into the
main kernel, Nehalem was released as first Intel
x86_64 processor supporting software recovery of

hardware faults. The Linux community therefore
developed hwpoison, an interface of the memory
management subsystem for triggering memory faults,
in order to utilize the new hardware features for test-
ing purposes. The tool maps the faulty reported ad-
dress to a page and marks this page as poisoned
through the help of the memory controller hardware.
Depending on the type of page (user vs. kernel, clean
vs. dirty) it will then either isolate the page or panic
if it can't prevent further propagation of the fault.
Since most of the memory chipsets today have an
interface for injecting some memory faults at arbi-
trary addresses, Linux supports this kind of fault in-
jection too. The operating system also comes with
according software tools, such as the module mce-
inject that can be used to inject arbitrary MCE errors
into the kernel. hwpoison-inject can be used to test
the fault handling of the memory management.

6 Conclusion

The FutureSOC project on software-implemented
fault injection works on novel approaches to fault
injection that operate on or below the operating sys-
tem level. Our initial analysis phase showed that
SMM-based fault injection in the firmware can sup-
port a set of unique fault locations in the processor
that are not accessible to other fault injection tech-
nologies, with the instruction pointer register as most
prominent example. This enables a set of new oppor-
tunities for hardware fault experiments in X86 and
Itanium operating systems. SMM handlers also have
write access to the memory of a potentially running
virtualization hypervisor. This is possible due to the
fact that logical processors are also suspended in their
execution on SMM entry. SMM-based fault injection
therefore offers the possibility for hypervisor fault
injection, a topic that is - to the best of our knowl-
edge - not covered by dependability research at the
moment.
Beside the clarified (and now actively developed)
EFI-based fault injection approach, MCA turned out
to be a promising alternative for firmware-level fault
injection. We are currently investigating both the the
APEI and the MCA capabilities of the different latest
Nehalem EX processors available in the FutureSOC
lab machines.

66

Project Progress Report for the Future SOC Lab Project B-HiP
Business For High-Performance Computing

Andreas Emrich
Institute for Information

Systems (IWi) at the
German Research Center
for Artificial Intelligence

(DFKI)
Stuhlsatzenhausweg 3,

Campus D3.2
66123 Saarbrücken

Germany
andreas.emrich@dfki.de

Frieder Ganz
Institute for Information

Systems (IWi) at the
German Research Center
for Artificial Intelligence

(DFKI)
Stuhlsatzenhausweg 3,

Campus D3.2
66123 Saarbrücken

Germany
frieder.ganz@dfki.de

Dirk Werth
Institute for Information

Systems (IWi) at the
German Research Center
for Artificial Intelligence

(DFKI)
Stuhlsatzenhausweg 3,

Campus D3.2
66123 Saarbrücken

Germany
dirk.werth@dfki.de

Abstract

The project B-HiP investigates the applicability of
high-performance computing infrastructure to sup-
port the execution of business transactions. In two
major research lines organizational business
processes and individual work processes are investi-
gated and mechanisms for real-time support for such
scenarios has been developed. The work in the re-
porting period mainly focused on creating the foun-
dational model layer and to implement prototypes
demonstrating the performance of such analysis me-
chanisms. Within the Future SOC Lab infrastructure,
performance tests have been executed and proved a
considerable performance increase. In future devel-
opments also complete business scenarios should be
evaluated, in order to answer the question, whether a
HPC infrastructure together with the B-HiP functio-
nalities can provide relevant real-time support for
business processes.

1 Project Idea

The project B-Hip is founded by the ministry for
economy and science of the federal state Saarland.
The project has started in January 2010 and will end
in December 2011. It addresses new challenges in the
area of enterprise applications.

B-Hip will explore potentials for the application of
HPC technologies in BPM scenarios. By this means,
real-time business should be enabled, i.e. analytic
tasks that were traditionally performed in OLAP sce-
narios can be performed, when transactions occur and

are thereby an integral part of transaction manage-
ment.

The overall vision of B-Hip is to merge the tradition-
al scenarios of OLTP and OLAP, in order to have
information at that point of time available, when it is
needed: In the actual transaction, in the actual busi-
ness process. This would lead to a paradigm shift in
enterprises: Enterprise do not react on events some
timer later, they directly take action when the event
occurs. Moreover, by the use of simulations even a
proactive behaviour could be achieved: Possible con-
sequences of a transaction can be forecasted before
actually performing this transaction.

For business processes, this provides new opportuni-
ties to control business processes: Depending on the
actual transactions, simulations can be run in real-
time, in order to identify improvement potentials for
the underlying business process. E.g. complex ma-
terial requirements can be determined in real-time
and respective orders can be carried out right away.
By having this “information at your fingertips”, new
opportunities arise to change the business process
itself.

For work processes, this provides new opportunities
to analyze the current work context under considera-
tion of the focused workers skills, abilities and per-
sonal preferences. Complex analytics can be run in
real-time, in order to provide the most appropriate
information, that helps to perform the task in ques-
tion. By this means, information are available for the
respective area of work, people with similar expertise
or who are experts in that area are available to con-
tact, process execution alternatives are recommended
to the user, etc.

67

In case studies, B-Hip will investigate the impact and
potential of HPC infrastructure on business and work
processes. A demonstrator will show how real-time
business software can create proactive assistance in
business and work processes.

In order to leverage insights gained from business
transactions, actions and changes should be assessed
according to their impact on business processes and
related data. Not only business processes themselves,
but also associated resources, organizational units,
data, etc., can be affected by such changes. Accord-
ing to that, any change on workflow artifacts such as
activities, but also changes on organizational units
(e.g. staff decisions) or resources (e.g. machine up-
grades) should be traced. This enables real-time anal-
ysis of the impact of such changes. In order to
achieve that, a context model for BPM is needed, that
is capable of describing these relationships.

2 Used Lab Resources

The context model contains all business related arti-
fact and their relations to each other. This enables the
analysis of an incoming change and moreover allows
forecasting of the impact on related processes and
resources. Therefore a huge amount of data has to be
processed as every involved artifact of the business
has to be mapped in the model.

In a first scenario ontologies are exploited to model
the relations and the artifacts. By using semantic
technologies one can use existing technologies to find
relations between artifacts by the use of logical rea-
soning through the model.

Through the high level of detail in the model a huge
amount of data is generated. Talking in enterprise
size models with a size of several gigabytes have to
be processed and analyzed by software. Usually on-
tologies are bulk loaded from disk as they are needed
by the analyzing software. The more efficient way to
handle the data would be to store the entire ontology
in the main memory.

In-Memory Databases provide the ability to store the
data in the main memory of a server. The advantages
are higher performance in read and write operations.
The disadvantages are the high costs of memory and
the fact that data that has not persisted to disk is de-
stroyed after the loss of power.

With the resources provided by the lab we want to
evaluate the performance of creating and querying
semantic data in disk/memory databases. The goal is
to get results that fast that decisions could be made in
real-time.

In this scenario we used existing business ontologies
to evaluate the time to create the semantic repository
on disk/memory. Through the fact that there are no
huge business centric ontology sets, we connected

business ontologies to other matured ontologies to get
realistic evaluation data. The evaluation tests were
performed on the Fujitsu RX600S5 – 1 Server. Thus
the size of the dataset would not exceed the memory
limitations of this server, a shared access was reason-
able.

3 Findings

This section describes the project progress achieved
in the reporting period. As the project B-HiP started
in January 2010, the focus in the reporting period was
on conceptual work. Nevertheless, certain aspects
have been prototypically implemented and some of
them have been evaluated regarding the performance,
taking advantage of the Future SOC Lab infrastruc-
ture.

3.1 Conceptual Work

In order to provide appropriate support for the scena-
rios as mentioned in section 1, several improvements
have to be achieved in structured as well in semi-
structured or unstructured scenarios. For that purpose,
a semantic context model has been developed, that
allows for a formal, multi-view-enabled view on vari-
ous aspects, whereas search and recommendations, as
well as semantic relationship discovery enable sup-
port in less structured scenarios. The depicted ap-
proach for cross-application traceability shows, how
these different approaches can be unified in a busi-
ness use case.

3.1.1 Semantic Context Model for BPM

The basic knowledge infrastructure for the scenarios
mentioned in section 1 requires a semantic context
model, which is capable of associating process arti-
facts with any other related artifacts. Therefore an
open, standard-based approach for specifying process
artifacts has been developed based on the results of
sEPC and the SUPER project. The major difference
with our approach is, that we chose an upper-level
ontology approach, in order to be independent from a
specific process definition format and to support inte-
roperability with other process-related ontologies
such as sEPC, SUPER-EPC, WSMO, etc. and other
ontologies.

The following figure demonstrates how, sEPC
process artifacts are mapped to concepts from our
upper-level ontology:

68

Figure 1: Semantic Context Model sEPC

�
�
��

��
�

��
	

��

�

�

�
��

��
�

��

�
��

�
�

�
��

�

��
��

�
�

�	
���

�

�����

��������

�������

�����

�������
��
�	���

�	������ ����� ���������
 ����������

��
�	���

!�������

��
�	���

�	
���

�!����������
������� "���
�#���
�������

$��	����

�����

�������

�
%	&���

�

������'�

$��	����

�	&��������

%���	

���	����%���	

Figure 2: Ontology Mapping with B-HiP SCM

69

As figure 1 illustrates, the concepts in an EPC do not
only relate to pure process artifacts, but could certain
people in an EPC process could also be included in
ontologies describing people such as FOAF, as well
as documents could also specified in other business
ontologies, such as the BMO (business management
ontology).

Figure 2 shows, how the upper-level concepts could
be linked with the BMO ontology.

3.1.2 Semantic, Context-Aware Search and
Recommendations

As business context can rapidly change and a process
execution does not solely depend on the model rela-
tionships that are defined for it (even when organiza-
tional units, documents, etc. are covered), but also
changing environmental events, market conditions,
etc. Therefore, the traceability of models helps to
identify related objects very fastly, but does not cover
all possible influences. For that reason, semantic and
context-aware search and recommendation mechan-
isms, which have been developed in the European
FP7 project m:Ciudad were transferred to the B-HiP
scope.

3.1.3 Semantic Relationship Discovery

The semantic context model as proposed in section
3.1.1 also implies a severe problem: According to
that, any information in the enterprise needs to be
modeled and all relationships across various model-
ing languages or ontologies need to be specified ex-
plicitly. On the one hand, intelligent mechanisms are
needed to extract the information intelligently from
enterprise data repositories. This could be achieved
by standard approaches of database mining. On the
other hand, even in contemporary enterprise data de-
finitions important links between artifacts are miss-
ing. One reason for that is an old problem of data
modeling: As only knowledge can be modeled, which
is explicit, implicit knowledge cannot be covered by
traditional modeling approaches.

Therefore an approach has been developed, which
monitors each transaction occurring. A transaction is
considered in this context as a process step, which
requires a certain input, creates a certain output, is
executed by certain organizational units or systems,
etc. Every aspect which characterizes the transaction,
should consequently be mapped to respective ontolo-
gy concepts from the semantic context model (s. sec-
tion 3.1.1. Using machine learning techniques over
these transcaction logs allows to discover model rela-
tionships.

3.1.4 Cross-Application Traceability

One of the major problems of enterprise IT environ-
ments is the heterogeneity of applications, implying

media breaks in the related business processes. E.g. if
a certain process should be handled within a docu-
ment management system, it ceases to be traceable,
once someone in the process forwards the informa-
tion via email.

To tackle this problem, B-HiP has developed an ar-
chitecture approach, which takes advantage of the
semantic context model and the associated traceabili-
ty features. Figure 3 depicts the approach.

Plugins for each application in the enterprise IT infra-
structure allow to exchange interaction logs as de-
scribed in the previous section. By that means, the
necessary ingredients are provided to analyze model-
based traceability and probabilistic semantic search
as described in section 3.2. Thus, all impacts of busi-
ness events can be determined in real-time and ap-
plied in the respective business processes.

Figure 3: Cross-Application Traceability

3.2 Protypical Evaluation

The prototype loads the semantic data into a reposito-
ry either in memory or into a disk database. Incoming
changes and actions for example the use of a resource
during a process or the execution of activities are
analyzed. Related artifacts which are affected by the
incoming event are highlighted and could be used to
provide further information about the process trail.
Despite the gain in the information level, forecasts
could be simulated. What impact has a change in a
resource on other processes and resources? It could
be said which processes are affected by a loss of a
certain resource for example in the case of illness of a
warehouseman.

The software locates the resource in the repository
and tries to find connected artifacts through logical
reasoning. In a further step events could be executed
automatically, such as the notification of a substitute
worker or the corresponding manager.

In scenarios where millions of transactions arise dur-
ing the day, the system has to react in (almost) real-
time. Sesame [1] was used to create the repository. It

70

is possible to use file based storage layer as well as
in-memory databases and traditional relational data-
base management systems.

3.3 Performance Evaluation

In this phase we used three different ontology data-
sets of different size. In a first run the set is loaded
into the repository which resides either in an In-
Memory Database or on the hard drive. After the cre-
ation the repository gets queried with several re-
quests. The aim is to find an artifact in the ontology
and getting all of its related neighbors. In our busi-
ness scenario this would be the analogy of finding
related resources and processes of an observed object
like an invoice or a material resource.

The first Ontology is the OWL Version [3] of the
MIT Process Handbook [2] with a size of 16Mbytes
and ~8000 artifacts like resources and processes
which are interlinked with each other. The second
one is the openCyc [4] Ontology with a size of
~160Mbyte. The Cyc Ontology contains general
knowledge and is therefore not limited to business
related topics. The third used Ontology is the YAGO
[4] Ontology with a size of 20Gbytes and nearly 2
million entities.

An overall goal of this performance evaluation was to
find the right technology and storage method of the
ontology to get query results which are (almost) real-
time. Therefore large datasets must be queried in a
decent time.

In a first step we wanted to benchmark the difference
between disk and In-Memory persistence.

Figure 4: Performance Data Workstation

With the use of an In-Memory Database we had a
gain in speed of the factor 3 in write access and factor

9 in terms of read access. For this test we used the
smallest dataset. We did no further evaluation as this
result fixed our opinion about using In-Memory tech-
nology instead of traditional disk based databases.

In the following step we used the big datasets with the
In-Memory Database to get statistics about the
read/write time. First we ran the benchmark on an
ordinary workstation with a dual core processor and 4
Gbyte of main memory. Then we used the same data
and setup on the HPC environment. To build the re-
pository in the main memory the heapsize was in-
creased to 3Gbytes on the workstation and 32Gbytes
on the HPC environment.

Figure 5: Performance Data HPC Cluster

We performed 10 runs on both systems but the
workstation was only able to create a repository one
time. After the first run the java virtual machine
crashed during limited capacity. To query the whole
dataset it needed in average 80 seconds which is far
away from realtime. New technologies and/or cluster-
ing has to be considered in the next steps.

4 Next Steps

In the next project phase of B-HiP the depicted con-
ceptual threads will be transferred in executable sce-
narios and will use the Future SOC lab infrastructure
for performance evaluations and with real operational
data provided throughout the SOC lab.

4.1 Mined Interaction and Web Data

The usage mining of interactions as well as the min-
ing of web resources should help to provide probabil-
istic means to determine content which is not explicit-
ly covered by the enterprise model. The mining of
this data is not considered within the Future SOC lab

71

tests, as the only time-consuming activity is the
crawling of web resources which is mainly limited by
bandwidth constraints.

In the context of Future SOC Lab it will be evaluated,
how these mined data can be continuously analyzed
in order to discover structures and acquire knowledge
from these data. The timeliness of such analysis is
crucial to provide accurate support in unstructured
scenarios.

4.2 Complex, Multi-View Model Reasoning

The behavior of processes is not only determined
through process artifacts alone, but also documents,
resources, employees have a crucial impact on the
performance of a process. In consequence, mere
process mining approaches cannot gather the whole
complexity of a process, thus its behavior cannot be
predicted in the best possible way.

In terms of an evaluation, all the semantic reasoning
which is needed for such complex relationships of
processes and artifacts, should terminate in less than
one second. Moreover, tests with user groups should
show, that the proactive system which is provided, is
actually useful in structured, semi-structured and un-
structured scenarios.

4.3 Real-time Semantic Search (Indexes)

Modern search engines deliver a considerably fast
response time for search queries, but nevertheless,
they seldomly leverage semantics. Only sporadic
query processing is applied, which e.g. consider
sword stemming, the location of the user, etc. Never-
theless, no operable high-performance search engine
exists, which can meet the needs of huge enterprise
applications.

The developed solutions and algorithms for semantic
search and indexing of information should be applied
to business data. Therefore, simulations for interac-
tion data and search interactions will be performed
within the Future SOC Lab. The time for a search
query thus should be reduced from currently about
80ms to less than 10 ms.

References

[1] Broekstra, J., Kampman, A., van Harmelen, F. (2002):
Sesame: An Architecture for Storing and Querying
RDF and RDF Schema. In: Proceedings of the First
International Semantic Web Conference (ISWC
2002). (LNCS), Springer (2002)

[2] Malone T, Crowston K, Herman G (2003) Organizing
Business Knowledge - The MIT Process Handbook.
The MIT Press

[3] OWL MIT Process Handbook (2010),
http://www.ifi.uzh.ch/ddis/ph-owl.html (01.10.10)

[4] Lenat, D. B. (1995) “Cyc: A Large-Scale Investment
in Knowledge Infrastructure”, CACM 38(11), 1995,
pp. 33-38.

[5] Suchanek, F.M.; Kasneci, G.; Weikum, G.:. (2007)
Yago: A Core of Semantic Knowledge. In 16th inter-
national World Wide Web conference (WWW 2007),
ACM Press, New York, NY, USA

72

Business Process Model Intelligence

Mathias Weske, Sergey Smirnov, Matthias Weidlich, Artem Polyvyanyy
Hasso Plattner Institute

Prof.-Dr.-Helmert-Str. 2-3
D-14482 Potsdam, Germany

{Mathias.Weske, Sergey.Smirnov, Matthias.Weidlich, Artem.Polyvyanyy}@hpi.uni-
potsdam.de

Abstract

Management of large organizations is often driven by
business processes. As a consequence, explicit repre-
sentations of business processes are created in
process modeling initiatives. The inherent complexity
of large organizations results in repositories that
contain up to thousands of process models. Appar-
ently, such a model collection represents an enorm-
ous amount of information about the organization.
This information might be leveraged to support har-
monization of processes run by different organiza-
tional units. Given this state of the art, we would like
to explore how large process model collections can
be analyzed in an intelligent fashion. The focus of
this project is on methods for discovering informa-
tion hidden in large model collections and enabling
business process improvement. Four research ques-
tions are investigated: model consistency analysis,
activity patterns mining, process model refactoring,
and process model execution. The project aims to
deliver solutions for these four challenging questions,
refining the existing algorithms and utilizing a high-
performance infrastructure delivered by Future SOC
Lab for experimentation. While there are process
model collections available, the project would benefit
from a collection of real-world process models and a
complimentary set of event logs of complex enter-
prise systems provided by Future SOC Lab.

1 Project Idea

These days, management of large organizations as
well as design and analysis of their supporting infor-
mation systems is often driven by business processes.
As a consequence, explicit representations of busi-
ness processes are created in process modeling initia-
tives. The inherent complexity of large organizations
along with the wide variety of drivers for business
process modeling initiatives, reaching from business
evolution and process optimization over compliance

checking and process certification to process enact-
ment, results in repositories of process models that
contain up to thousands of process models. Apparent-
ly, such a model collection represents an enormous
amount of information about the organization. This
information, in turn, might be leveraged to support
harmonization of processes that are run by different
units of an organization. To this end, inconsistencies
might be detected or future modeling efforts can be
guided by the knowledge about the existing models.
However, there are two major obstacles. On the one
hand, the heterogeneous representation of process
models created by different organizational units and
for different purposes precludes any direct compari-
son of similar process models. On the other hand, the
sheer amount of information that is materialized in
the process models of a repository imposes serious
challenges. Analysis of process instances is another
promising direction of business process improvement.
Thereby, it is necessary to go beyond process models
and study running processes. This implies the re-
search on design and architecture of process execu-
tion platforms in a highly scalable environment, the
cloud.
We propose concrete approaches of leveraging the
information kept in a large process model repository,
ensuring high model quality, and opening the poten-
tial for process improvement.

1.1 Consistency Analysis
In order to detect inconsistencies in the operations of
different business units, their process models can be
compared in order to identify operational commonali-
ties and differences. Such a comparison, as a first
step, requires the identification of activities in one
business process model that correspond to activities
in the other model. A major challenge for this match-
ing is that business process models often do not use
the same level of detail and the same words to de-
scribe activities, i.e., there is a heterogeneous repre-
sentation. Hence, the comparison of related process
models typically requires an extensive amount of

73

manual preprocessing. Recently, techniques based on
structural analysis and natural language processing
have been proposed in order to identify correspon-
dences between activities or sets thereof [1,2]. Al-
though the techniques and the algorithms are availa-
ble, the problem state space is normally huge: the
analysis stems to a combinatorial problem, where a
research object is a process model of a large size.

1.2 Patterns Mining
While large repositories of process models describe
expected knowledge about the organization, they also
contain lots of hidden information. Hence, a natural
desire is to externalize this knowledge and make it
available to the users. The newly obtained informa-
tion can be used to improve the quality of existing
models and facilitate creation of high quality models
in the future. One way to represent the knowledge
spread over numerous models of a repository is pat-
terns – groups of objects, which often appear together
in business processes. One can suggest different types
of objects to be investigated for patterns identifica-
tion. While [6] investigates activity patterns in
process models, [5,7] explores action patterns. In
[5,7] two types of action patterns are distinguished:
co-occurrence action patterns and behavioral action
patterns. While co-occurrence action patterns capture
the fact that a group of actions reappear together in
several models, behavioral action patterns also de-
scribe the recurrently observed behavioral relations
between them. However, a study of labeling patterns,
i.e., recurrent application of labels, or event patterns
may reveal new strata of information about an organ-
ization. While there are efficient algorithms for deri-
vation of action patterns, the task still remains com-
putationally intensive, see [3-6]. Hence, the search
for recurrent structures in large process model reposi-
tories demands sufficient computing power.

1.3 Process Model Refactoring
Assuring model quality always becomes crucial, once
engineering methods are deployed in an organization.
Assuring the quality of business process models in
large repositories is not an exception. The process
model quality includes several aspects, from the cor-
rectness of behavioral properties to understandability
of models by humans. The latter aspect can be further
refined to a bunch of questions. Among them is the
influence of a model structure on the human compre-
hension. It has been argued that block-structured
process models are easily interpreted by humans,
while models with an arbitrary structure are confus-
ing. There exist approaches addressing this problem
by stemming an arbitrary process model to a block
structured one [8]. However, this task belongs to the
NP class and assumes availability of large computa-
tion powers. A further investigation of the problem

requires thorough experiments with the existing me-
thods and the analysis of their outcomes.

1.4 Process Execution Engine
Going beyond process modeling and aiming at
process instances reveals new horizons for business
process analysis. Hence, deployment, and monitoring
of a process execution platform in a highly scalable
environment, the cloud, is in the focus of this project.
Traditional process execution engines are typically
built as siloed applications with a transactional data-
base at its base, running in a rather static infrastruc-
ture. Such architectures do not scale well in flexible
environments. Cloud providers, such as Google, Mi-
crosoft, and Amazon, offer virtual server platforms
that scale extremely flexible on demand. However,
traditional process engines need to be adapted to ben-
efit from this flexibility. Thereafter, a demand for
highly scalable and elastic software architectures for
process engines running in the cloud emerges.

2 Used Future SOC Resources

To achieve the goals outlined in this project, we ex-
pect technical support from Future SOC lab. In addi-
tion, access to real-world data that could be analyzed
would strengthen project results even more. It would
fit nicely into current developments in business
process management, where real world data and ap-
plication scenarios play an increasingly important
role.

2.1 Infrastructure Support
As the BPT group already has in possession the ap-
plication prototypes to be executed on the infrastruc-
ture proposed by the Future SOC Lab, we expect that
we can receive support services from the Lab. Such
services should include deployment and execution of
the existing code on the high-performance servers. To
this day we have been supported by the Future SOC
Lab with respect to the required hardware and soft-
ware infrastructure.

2.2 Process Model Data
The key aspect of the research project is an availabili-
ty of a suitable research object, i.e., one or more
process model collections and associated execution
logs. Logs record activities that occur during process
execution. We would welcome process logs or, if logs
are not available, an infrastructure in which we could
generate process logs. Logs need to be correlated
with process models so that execution data can be
associated and analyzed with respect to process mod-
el data. Notice that it is of primary importance to
study real world process models originating from the
industry, rather than artificially designed modeling

74

artifacts. This enables the research project to focus on
the challenges relevant in practice and increase the
research impact of the initiative. To this day we have
got an opportunity to get acquainted with the data on
business processes realized in SAP Business ByDe-
sign Software Solution.

2.3 Process Data Contact Person
To maximize the utility of provided process model
data we request to establish a reliable connection with
a contact person who represents the company that
delivers the process data. The Future SOC Lab intro-
duced us to Mr. Thorsten Kugelberg, a contact person
who will guide us through the SAP Business ByDe-
sign system.

3 Findings

At the current stage the project is in the exploratory
phase. As mentioned in Section 2, the declared
project goals assume availability of the following
resources:

1. a hardware and software infrastructure,
2. a process model collection.

With respect to the first resource, we have got ac-
quainted with the infrastructure provided by the Fu-
ture SOC Lab.
With respect to the second resource, process model
collection, a number of alternatives has been investi-
gated. As a backup solution we can use the collection
of 604 process models dating back to year 2000.
While this collection has been thoroughly studied in
the literature on business process technologies, its
process models are rather simplistic and do not exhi-
bit all properties that are in focus of this research
project. This motivates the demand for another col-
lection of real world business process models.
Recently, Future SOC Lab has provided us the con-
tact person, Mr. Thorsten Kugelberg, who can intro-
duce us to the data about processes realized in the
SAP Business ByDesign software solution. As SAP
Business ByDesign delivers preconfigured process
best practices in financing, customer relationship
management, human resources management, to name
a few, we perceive this data as a preferable research
object. However, the process data in SAP Business
ByDesign still requires a thorough evaluation with
respect to the project usage.

4 Next Steps

The direct next step is the study of information about
processes in the SAP Business ByDesign software
solution. Two types of information are of interest: 1)
the business process models explicitly captured by

the system in the form of best practices and 2) the
logs generated through business process execution. If
the SAP Business ByDesign software solution pro-
vides sufficient data, the respective processes can be
selected as the research object. In the opposite case
the backup process model collection can be used.
Once the system is in place, we start the experiment.
This means that the selected process model collection
is analyzed by means of the software developed by
the BPT group members. If the process model collec-
tion of SAP Business ByDesign solution is selected, a
preparatory step might be needed: development of
software components for accessing process data in
Business ByDesign system.

References

[1] M. Weidlich, R. Dijkman, and J. Mendling. The ICoP
Framework: Identification of Correspondences be-
tween Process Models. In Proceedings of the 22nd In-
ternational Conference on Advanced Information Sys-
tems Engineering, Hammamet, Tunesia, 2010, Sprin-
ger.

[2] M. Weidlich, J. Mendling, and M. Weske. Computa-
tion of Behavioural Profiles of Process Models. Tech-
nical report, Hasso-Plattner-Institute, June 2009.
http://bpt.hpi.unipotsdam.de/pub/Public/MatthiasWei
dlich/behavioural_profiles_report.pdf

[3] R. Agrawal, T. Imielinski, and A. N. Swami. Mining
Association Rules between Sets of Items in Large Da-
tabases. In Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data,
pages 207-216, Washington, D.C., 1993, ACM

[4] R. Agrawal and R. Srikant. Fast Algorithms for Min-
ing Association Rules in Large Databases. In VLDB,
pages 487-499, San Francisco, CA, USA, 1994. Mor-
gan Kaufmann Publishers Inc.

[5] S. Smirnov, M. Weidlich; J. Mendling, and M.
Weske. Action Patterns in Business Process Models.
In Proceedings of the 7th International Joint Confe-
rence on Service Oriented Computing, pages 115-129,
Stockholm, Sweden, 2009, Springer

[6] L. H. Thom, M. Reichert, C. M. Chiao, C. Iochpe, and
G.N. Hess. Inventing Less, Reusing More, and Adding
Intelligence to Business Process Modeling. In Pro-
ceedings of the 19th international conference on Da-
tabase and Expert Systems Applications, pages 837-
850, Turin, Italy, 2008, Springer

[7] S. Smirnov, M. Weidlich, J. Mendling, and M. Weske.
Object-Sensitive Action Patterns in Process Model
Repositories. Proceedings of the 1st International
Workshop on Reuse in Business Process Management
(rBPM), Hoboken, NJ, USA, 2010

[8] A. Polyvyanyy, L. García-Bañuelos, and M. Dumas.
Structuring Acyclic Process Models. Proceedings of
the 8th International Conference on Business Process
Management (BPM). Hoboken, NJ, US, 2010

75

Aktuelle Technische Berichte
des Hasso-Plattner-Instituts

Band ISBN Titel Autoren / Redaktion

41 978-3-86956-

108-0
The effect of tangible media on
individuals in business process modeling:
A controlled experiment

Alexander Lübbe

40 978-3-86956-
106-6

Selected Papers of the International
Workshop on Smalltalk Technologies
(IWST’10)

Hrsg. von Michael Haupt,
Robert Hirschfeld

39 978-3-86956-
092-2

Dritter Deutscher IPv6 Gipfel 2010 Hrsg. von Christoph Meinel und
Harald Sack

38 978-3-86956-
081-6

Extracting Structured Information from
Wikipedia Articles to Populate Infoboxes

Dustin Lange, Christoph Böhm,
Felix Naumann

37 978-3-86956-
078-6

Toward Bridging the Gap Between Formal
Semantics and Implementation of Triple
Graph Grammars

Holger Giese,
Stephan Hildebrandt,
Leen Lambers

36 978-3-86956-
065-6

Pattern Matching for an Object-oriented
and Dynamically Typed Programming
Language

Felix Geller, Robert Hirschfeld,
Gilad Bracha

35 978-3-86956-
054-0

Business Process Model Abstraction :
Theory and Practice

Sergey Smirnov, Hajo A. Reijers,
Thijs Nugteren, Mathias Weske

34 978-3-86956-
048-9

Efficient and exact computation of
inclusion dependencies for data
integration

Jana Bauckmann, Ulf Leser,
Felix Naumann

33 978-3-86956-
043-4

Proceedings of the 9th Workshop on
Aspects, Components, and Patterns for
Infrastructure Software (ACP4IS '10)

Hrsg. von Bram Adams,
Michael Haupt, Daniel Lohmann

32 978-3-86956-
037-3

STG Decomposition:
Internal Communication for SI
Implementability

Dominic Wist, Mark Schaefer,
Walter Vogler, Ralf Wollowski

31 978-3-86956-
036-6

Proceedings of the 4th Ph.D. Retreat of
the HPI Research School on Service-
oriented Systems Engineering

Hrsg. von den Professoren
des HPI

30 978-3-86956-
009-0

Action Patterns in Business Process
Models

Sergey Smirnov, Matthias
Weidlich, Jan Mendling,
Mathias Weske

29 978-3-940793-
91-1

Correct Dynamic Service-Oriented
Architectures: Modeling and
Compositional Verification with Dynamic
Collaborations

Basil Becker, Holger Giese,
Stefan Neumann

28 978-3-940793-
84-3

Efficient Model Synchronization of
Large-Scale Models

Holger Giese, Stephan
Hildebrandt

27

978-3-940793-
81-2

Proceedings of the 3rd Ph.D. Retreat of
the HPI Research School on Service-
oriented Systems Engineering

Hrsg. von den Professoren
des HPI

26

978-3-940793-
65-2

The Triconnected Abstraction of Process
Models

Artem Polyvyanyy, Sergey
Smirnov, Mathias Weske

25

978-3-940793-
46-1

Space and Time Scalability of Duplicate
Detection in Graph Data

Melanie Herschel,
Felix Naumann

ISBN 978-3-86956-114-1
ISSN 1613-5652

	Title page
	Imprint

	Contents
	Prof. Dr. Torsten Eymann, Wirtschaftsinformatik, Universität Bayreuth
	Simulating the Internet of Services at the HPI Future SOC Lab
	Abstract
	1. Project Idea
	1.1 Simulation Environment
	1.1.1 Technological Base: Repast Toolkit
	1.1.2 SimIS Architecture

	2 Used Future SOC Lab Resources
	3 Findings
	3.1 Simulation Scenario
	3.2 Metrics
	3.3 Simulation Results
	3.4 Replication

	4 Next Steps
	References

	A protocol-generic Infrastructure for electronic SLA Negotiations in the Internet of Services
	Abstract
	1. Project Idea and Motivation
	2 Research Method
	3 Requirements
	4 Simulation Environment
	4.1 Technological Base: Repast Toolkit
	4.2 SimIS Architecture

	5 Used Future SOC Lab Resources
	6 Findings
	6.1 Design Idea
	6.2 Service Description Documents
	6.3 Role-based Architecture

	7 Next Steps
	References

	Dr. Tobias Friedrich, Algorithms and Complexity Group, Max-Planck-Institut Informatik
	Simulation of Physical Growth Models
	Abstract
	1. Introduction
	2 Derandomization and Quasirandomness
	3 Algorithmic Techniques
	4 Experimental Setup
	5 Outlook
	References

	Prof. Dr. Holger Giese, System Analysis and Modeling Group, Hasso-Plattner-Institut
	Towards Scalable and Self-Optimizing Software for Multi-Core and Cloud Computing
	Abstract
	1. Introduction
	2. High-Level Specification Language
	3. Parallelization Strategies
	4. Preliminary Evaluation
	5. Conclusions and Future Work
	References

	Prof. Dr. Ben Juurlink, Architektur eingebetteter Systeme, Technische Universität Berlin
	Evaluation of the CMPSs Programming Model for Consumer Applications
	Abstract
	References

	Prof. Dr. Wolfgang Lehner, Database Technology Group, TU Dresden
	Query Processing on Prefix Trees
	Abstract
	1 Introduction
	2 Query Processing Overview
	2.1 Selected Operators
	2.2 Query Transformation

	3 Experimental Evaluation
	4 Project Status and Future Work
	4.1 Current Project Status
	4.2 Used Future SOC Lab Resources
	4.3 Next Steps

	5 Conclusions
	References

	Dr. Martin von Löwis, Operating Systems & Middleware Group, Hasso-Plattner-Institut
	Build Automation as a Service
	Abstract
	1 Introduction
	2 Continuous Integration in Python
	2.1 Buildbot Slave Setup
	2.2 Buildbot Master Changes

	3 Automated Builds in the Python Package Index
	3.1 Integrating with the Debian Packaging System
	3.2 Executing Untrusted Code

	4 Results
	4.1 Continuous Integration
	4.2 Building PyPI packages

	5 Future Work
	6 References

	Dr. Christian Mathis, Office of the CTO - Strategic Projects, SAP AG
	Parallel Aggregation and Join Computation in NewDB
	Abstract
	1 Introduction
	2 Research Questions
	3 SOC Lab Experiments
	4 Findings and Next Steps
	References

	Prof. Dr. Christoph Meinel, Internet-Technologies and Systems Group, Hasso-Plattner-Institut
	IDS Alert Correlation using In-Memory and Multi-Core
	Abstract
	1. Project Description
	2. Results and Achievements
	2.1 Implementation
	2.2 Experiments

	3. Future Work
	References

	Enlargement of the Search Domain of the tele-TASK Portal
	Abstract
	1 Introduction
	2 Project Description
	2.1 tele-TASK Recording System
	2.2 tele-TASK Portal
	2.3 Research and Development

	3 Preliminary Experiment Results
	4 Vision
	5 Experiments
	5.1 Used FutureSOC Lab Resources
	5.2 Problems During the Experiment

	6 Outlook
	References

	Prof. Dr. David Patterson, Electrical Engineering and Computer Sciences, University of California at Berkeley
	Workload Management for Main Memory Databases in Data Clouds
	Abstract
	1. Introduction
	2. Problem Statement
	2.1. Formal Description
	2.2. Possible Extensions

	3. Preliminary Results
	3.1. Greedy Algorithms
	3.1.1 Naive Best Fit with Mirroring
	3.1.2 Best Fit Considering Penalty Only
	3.1.3 Best Fit Considering Penalty andWorkload

	3.2. Brute Force

	4. Next Steps
	5. Conclusion
	References

	Prof. Dr. h.c. Hasso Plattner, Enterprise Platform and Integration Concepts, Hasso-Plattner-Institut
	An Architecture-Aware Compaction Process
	Abstract
	1. Introduction
	2. Architecture
	3. Merge Description
	3.1 Parameters for Merge

	4 Status
	References

	Prof. Dr. Andreas Polze, Operating Systems & Middleware Group, Hasso-Plattner-Institut
	Pro-Active Virtual Machine Migration in the HPI FutureSOC Lab
	Abstract
	1 Introduction
	2 Approach
	3 Initial Experiments
	3.1 VMWare VMotion - Selected Results
	3.2 Xen Live Migration - Selected Results

	4 Failure Prediction
	5 Next Steps

	Prof. Dr. Rainer Thome, Betriebswirtschaftslehre und Wirtschaftsinformatik, University of Wuerzburg
	Rule based Business Matrix Processing (RBM) Œ Business Rules for realtime Process Management based on In-Memory Technology
	Abstract
	1 Holistic and Real-Time Process Cockpit
	2 Recommendation Model and Engine
	3 Code of Good Practice – Reliable vs. Best Practice
	References

	Dr. Peter Tröger, Operating Systems & Middleware Group, Hasso-Plattner-Institut
	Software-Implemented Fault Injection in the HPI FutureSOC Lab
	Abstract
	1 Introduction
	2 Software-Implemented Fault Injection
	3 Solution Space for Firmware-Level Fault Injection in X86
	4 Initial Analysis
	5 Intel Machine Check Architecture
	6 Conclusion

	Dr. Dirk Werth, Institute for Information Systems (IWi), German Research Center for Artificial Intelligence (DFKI)
	B-HiP Business For High-Performance Computing
	Abstract
	1 Project Idea
	2 Used Lab Resources
	3 Findings
	3.1 Conceptual Work
	3.1.1 Semantic Context Model for BPM
	3.1.2 Semantic, Context-Aware Search and Recommendations
	3.1.3 Semantic Relationship Discovery
	3.1.4 Cross-Application Traceability

	3.2 Protypical Evaluation
	3.3 Performance Evaluation

	4 Next Steps
	4.1 Mined Interaction and Web Data
	4.2 Complex, Multi-View Model Reasoning
	4.3 Real-time Semantic Search (Indexes)

	References

	Prof. Dr. Mathias Weske, Business Process Technology Group, Hasso-Plattner-Institut
	Business Process Model Intelligence
	Abstract
	1 Project Idea
	1.1 Consistency Analysis
	1.2 Patterns Mining
	1.3 Process Model Refactoring

	2 Used Future SOC Resources
	2.1 Infrastructure Support
	2.2 Process Model Data
	2.3 Process Data Contact Person

	3 Findings
	4 Next Steps
	References

	Aktuelle Technische Berichte des Hasso-Plattner-Instituts

