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Abstract

Logic synthesis of speed independent circuits based on STG decomposition is a
promising approach to tackle complexity problems like state-space explosion. Unfor-
tunately, decomposition can result in components that in isolation have irreducible
CSC conflicts. Generalising earlier work, we show how to resolve such conflicts by
introducing internal communication between the components.

The new algorithms are successfully applied to some benchmarks, including very
complex STGs arising in the context of control resynthesis.

Keywords: STG, decomposition, speed independent, CSC, resynthesis

1 Introduction

Speed independent (SI) circuits are an important subclass of asynchronous circuits provi-
ding all their well-known advantages [vBJN99] in comparison to synchronous ones. They
work correctly, i.e. they are free of hazards for some specified behaviour, regardless of
their gate delays (wires are assumed to have negligible delays). Signal Transitions Graphs
(STGs) [Chu87,Wen77] are a formalism to specify the behaviour of SI circuits. They are
interpreted Petri nets in which transitions are labelled with rising and falling edges of the
circuit signals.

Petrify [CKK+02] and Punf&Mpsat [KKY04] are commonly used tools for logic
synthesis of SI circuits from STG specifications. For logic synthesis, Petrify must explore
the entire state space of the STG, and so suffers from the state-space explosion problem.
The unfolding based synthesis viaMpsat also has complexity problems when solving large
SAT problems. Although logic synthesis leads to very efficient circuit implementations
– compared e.g. to the synthesis based on syntax-directed translation [EB02] – it is only
applicable to rather small specifications.

To cope with the complexity problems of logic synthesis, we suggest to decompose
the STG specification into several smaller component STGs and to apply logic synthe-
sis for each component STG [VW02,SVWK06]. In contrast to our approach, other STG

∗This research was supported by the DFG-project ’STG-Dekomposition’ Wo814/1-3.
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decomposition techniques as the one implemented in Nutas [YM07] and the one in Moe-
bius [CCCGV06] need specifications fulfilling the so-called CSC property (which is nec-
essary for synthesising SI circuits). This is a serious restriction for ‘real’ specifications –
note that non of our benchmarks satisfies CSC (see Section 5). To overcome this drawback
Moebius can resolve CSC for large STGs by solving NP-complete ILP problems which
limits the specification size, again.

With our STG decomposition, we follow a more scalable approach which tries to avoid
expensive operations (such as resolving all encoding conflicts) on the original specification.
The resulting component STGs in isolation might have irreducible CSC conflicts though
(i.e. they are not resolvable), even if the original specification has none.

In [WWSV09], we proposed a solution to avoid these irreducible CSC conflicts in the
component STGs by introducing new internal communication between the components.
We got very promising results, but the approach only works for structural self-triggers (a
special type of irreducible CSC conflicts) in combination with a very restricted specifica-
tion structure. Here, we improve this approach by avoiding self-triggers for specifications
having a more general structure: we give a more general algorithm how to insert an inter-
nal communication signal. We show how to limit the growth of the components, and for
this we have to prove correct a generalised version of our decomposition algorithm. We
also discuss how to treat repeated signal insertion in order to synthesise efficient circuits,
and finally present some experimental results. Additionally, we suggest how self-trigger
avoidance can be used to deal with general irreducible CSC conflicts as well.

Our approach enables the synthesis of more benchmarks than before, in particu-
lar in the important field of control resynthesis: from a behaviour description, e.g. in
Balsa [EB02], a netlist is derived that describes how to connect certain handshake com-
ponents (with an optimised implementation), i.e. a certain graph. Instead of connecting
all these implementations to get a circuit, control resynthesis forms clusters consisting
of control handshake components (like sequencer and concur components) in the graph;
then for each control cluster, a complex STG modelling its interface behaviour can be
derived, cf. [FC08]. Such an STG is usually too complex to apply pure logic synthesis,
but decomposition-based synthesis with our tool DesiJ [SWW09] often succeeds – and
with the presented improved version in many more cases.

The paper is organised as follows: in the next section we introduce the basic concepts
of STGs and their decomposition, and present the generalisation of our decomposition
algorithm. In Section 3, we briefly recapitulate the idea how to avoid self-triggers in com-
ponent STGs by introducing internal communication between components; furthermore,
we suggest how to deal with general irreducible CSC conflicts. In the following section,
we present structural techniques for introducing internal communication by correctly in-
serting new internal signals into the original specification and decompose it anew. In
Section 5, we present some experimental results also for some STGs arising in the context
of control resynthesis. We draw conclusions in Section 6.

2 Basics

This section provides basic notions for Petri nets and STGs, for a more detailed explana-
tion the reader is referred to [CKK+02].
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Definition 2.1 (Multiset)
A multiset ms over a set A is a function ms : A → N0. Let ms and ms ′ be multisets over
A; then for a ∈ A:

• a ∈ ms ⇔ ms(a) > 0

• (ms +ms ′)(a) = ms(a) +ms ′(a)

• (ms −ms ′)(a) = max(0,ms(a)−ms ′(a))

A subset A′ of A is considered implicitly as multiset msA′ with msA′(a) = 1 if a ∈ A′ and
msA′(a) = 0 otherwise. �

2.1 Petri Nets

A (labelled) Petri net is a 6-tuple N = (P, T,W,MN ,Σ, l) where P and T are disjoint and
finite sets of places and transitions. W : P × T ∪ T × P → N0 is the weight function and
MN the initial marking, where a marking is a multiset of places, i.e. a function P → N0

which assigns a number of tokens to each place. The marking of a set of places is defined
as the sum of all individual markings. Σ is a set of actions, and l : T → Σ ∪ {λ} is the
labelling function where λ denotes the empty word. If necessary, we write PN , TN etc.
for the components of N , and P ′, Pi etc. for the nets N ′, Ni etc. Analogous conventions
apply later on.

A Petri net can be considered as a bipartite graph with weighted and directed edges
between places and transitions. In a graphical representation, places are drawn as circles
containing a number of tokens corresponding to their marking, transitions are drawn as
rectangles together with their labelling, and the weight function is drawn as directed
arcs xy whenever W (x, y) �= 0 (and labelled with W (x, y) if W (x, y) > 1). A place p is
called marked graph place or MG-place if

∑
t∈T W (t, p) = 1 =

∑
t∈T W (p, t). Unmarked

MG-places are not drawn; they are implicitly given by an arc between the respective
transitions; cf. Figure 1 below.

The preset of a place or transition x is denoted as •x and defined by •x = {y ∈
P ∪ T | W (y, x) > 0}, the postset of x is denoted as x• and defined by x• = {y ∈
P ∪ T | W (x, y) > 0}. These notions are extended to sets as usual. We say that there is
an arc from each y ∈ •x to x.

For a place or transition x, N−x denotes the net in which x and all incident arcs are
deleted; for a marking M , M |P ′ denotes its restriction to P ′ ⊆ P , and M |−p is shorthand
for M |P−{p}.

A nonempty sequence w = x1x2 . . . xn of places and transitions without duplicates is
a path (of N) if W (xi, xi+1) > 0 for 1 ≤ i < n. Obviously, places and transitions have
to alternate on a path. With an abuse of notation we often consider a path as the set
containing its elements, writing for example p ∈ w. A path w is a marked graph path or
MG-path if every place of w is an MG-place. For a marking M , the marking M(w) of
a path w is defined as M(w ∩ P ). A path w is called non-joining (non-forking resp.) if
for every transition t on w except the first (last resp.) one, |•t| ≤ 1 (|t•| ≤ 1 resp.). It is
called non-merging (non-branching) if for every place p on w, |•p| ≤ 1 (|p•| ≤ 1). When
connecting two paths w1 = x1 . . . xn and w2 = xn . . . xm we write w1 w2 for x1 . . . xn . . . xm.
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A transition t is enabled under a marking M if ∀p ∈ •t : M(p) ≥ W (p, t), which is
denoted by M [t〉. An enabled transition can fire or occur yielding a new marking M ′ –
written as M [t〉M ′ – if M [t〉 and M ′(p) = M(p)−W (p, t) +W (t, p), for all p ∈ P .

A transition sequence v = t1 . . . tn is enabled under a marking M (yielding M ′) if
M [t1〉 M1[t2〉 . . . Mn−1[tn〉Mn = M ′, and we write M [v〉, M [v〉M ′ resp.; v is called firing
sequence if MN [v〉. The empty transition sequence λ is enabled under every marking. M
is called reachable if a transition sequence v with MN [v〉M exists, and [MN〉 is the set of
all reachable markings.

N is called bounded if, for some constant k ∈ N0, M(p) ≤ k for every reachable
marking M and every place p ; if k = 1, N is called safe. N is bounded if and only if
the set [MN〉 of reachable markings is finite. In this paper, we are only concerned with
bounded nets.

We lift the notion of enabledness to transition labels: we write M [l(t)〉〉M ′ if M [t〉M ′.
This is extended to sequences as usual – deleting λ-labels automatically since λ is the
empty word; i.e. M [a〉〉M ′ means that a sequence of transitions fires, where one of them
is labelled with a while the others (if any) are λ-labelled.

A net has a dynamic conflict if there are different transitions t1 and t2 such that for
some reachable marking M : M [t1〉 and M [t2〉, but ∃p ∈ P : M(p) < W (p, t1) +W (p, t2).
A dynamic conflict implies a structural conflict, i.e. •t1 ∩ •t2 �= ∅. The conflict is called
auto-conflict if l(t1) = l(t2) �= λ.

The reachability graph RGN of a Petri net N is an edge-labelled directed graph on the
reachable markings with MN as root; there is an edge fromM toM ′ labelled l(t) whenever
M [t〉M ′. RGN can be seen as a finite automaton (where all states are accepting).1 N is
deterministic if its reachability graph is a deterministic automaton, i.e. if it contains no
λ-labelled transitions and if for each reachable marking M and label a ∈ Σ there is at
most one M ′ with M [a〉〉M ′.

2.2 Signal Transition Graphs and SI Implementability

A Signal Transition Graph (STG) is a tuple N = (P, T,W,MN , In, Out, Int, l), where
(P, T,W, MN , Sig

±, l) is a Petri net, In, Out and Int are disjoint sets of input, output
and internal signals, and Sig = In∪Out∪ Int is the set of all signals; signature refers to
this partition of the signal set. Sig± = Sig × {+,−} is the set of signal edges or signal
transitions ; its elements are denoted as s+, s− resp. instead of (s,+), (s,−) resp. A plus
sign denotes that a signal value changes from logical low (written as 0) to logical high
(written as 1), and a minus sign denotes the opposite direction. We write s± if it is not
important or unknown which direction takes place; if such a term appears more than once
in the same context, it always denotes the same direction. We define the set of locally
controlled or just local signals Loc = Out ∪ Int which are produced by the STG and the
set of all external signals Ext = In ∪Out which are observable in the environment.

To keep the notation short, input/output/internal signal edges are just called in-
put/output/internal edges and each output/internal edge is also called non-input edge;
transitions labelled with these are called input/output/internal transitions or non-input
transitions resp. If transitions are labelled with λ they do not correspond to any signal
change, i.e. they are not internal transitions; they are also called dummy-transitions. An

1Recall that we only consider bounded Petri nets here, which have only finitely many reachable
markings.
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Figure 1: An STG modelling a simplified VME bus controller (top) and its state graph
with a CSC conflict between the shaded states (bottom).

example of an STG is shown in Fig. 1 (cf. [CKK+02]); input transitions are drawn with
a thick border.

STGs are used for specifying the behaviour of speed-independent (SI) circuits. The
idea is as follows: a reachable marking of the STG roughly corresponds to a state of the
intended circuit (viz. the values of its signals). If some marking activates an output (or
internal) edge, the circuit must produce the same edge if it is in a corresponding state
and the environment of the circuit must be ready to receive it; if some marking activates
an input edge, the environment is allowed to produce it and the circuit must be ready to
receive it.

For the first step from markings to circuit states, one defines the notion of state
assignment : for an STG N , a state vector is a function sv : Sig → {0, 1}, which assigns
a Boolean value to each signal. A state assignment assigns a state vector svM to each
marking M of [MN〉; it must satisfy for every signal x ∈ Sig and every pair of markings
M,M ′ ∈ [MN〉:

M [x+〉〉M ′ implies svM(x) = 0, svM ′(x) = 1

M [x−〉〉M ′ implies svM(x) = 1, svM ′(x) = 0

M [y±〉〉M ′ for y �= x (M [λ〉〉M ′ resp.) implies svM(x) = svM ′(x)

If such an assignment exists, it is uniquely defined by these properties2, and the

2At least for every signal s ∈ Sig which actually occurs, i.e. M [s±〉〉 for some reachable marking M .

9



reachability graph and the underlying STG are consistent. From an inconsistent STG,
one cannot synthesise a circuit, and in this paper we assume that all STGs are consistent.
The state graph of an STG is its reachability graph where each marking is annotated with
its state vector; cf. Fig. 1(bottom) where only the state vectors are shown.

We now explain the important concept of Complete State Coding (CSC). If there is a
state assignment, N has CSC if any two reachable markings M1 and M2 with the same
state vector (i.e. svM1 = svM2) enable the same output and internal signals. Otherwise,
N has a CSC conflict, cf. e.g. Fig. 1(bottom), and no circuit can be synthesised directly.
If CSC is violated, one tries to achieve it by inserting internal signals such that the state
vectors of M1 and M2 differ and the external behaviour of the STG is unchanged; thus the
internal signal insertion must be input proper [SV07], i.e. no input edge must be delayed
by any internal edge. If CSC cannot be achieved by an input proper signal insertion, the
conflict is called irreducible. (Dynamic) self-triggers are a special type of irreducible CSC
conflicts characterised by a transition sequence M1[t1t2〉M2, where t1, t2 are labelled with
the same input signal, but complementary edges, and M2 does not activate the same local
signal edges as M1. We define a structural self-trigger as two transitions t and t′ which are
labelled with complementary edges of the same input signal satisfying t ∈ •(•t′), and call
t the entry and t′ the exit transition; a structural self-trigger is necessary for a dynamic
one.

Output persistency guarantees the robustness (hazard-freedom) of the desired SI cir-
cuit, i.e. when a signal disables another one, then both signals must be inputs; thus, each
activated non-input edge will eventually happen. A circuit is called speed-independent (SI)
if it is output persistent in all behaviours under a given environment. So, the intended
circuit will work correctly under arbitrary delays of gates (while the signal propagation
is considered instantaneous). We can lift the notion of output persistency to the level of
state graphs and STGs as well, see [CKK+02].

From the state graph of a bounded, consistent and output persitent STG satisfying
CSC one can derive an SI circuit, i.e. a boolean function for each output or internal signal.
This function has to be mapped to Boolean gates. Since this synthesis process needs a
representation of the state graph, it suffers from the state-space-explosion problem; there
are synthesis tools e.g. Petrify.

2.3 STG Operations

Now, we present a number of operations that are important for decomposition. A decom-
position of an STG N is correct if the parallel composition of its components matches the
behaviour of N . To define this formally, we have to introduce parallel composition, and
for this we have to consider the distinction between input and output signals.

The notion of parallel composition is that the composed systems run in parallel and
synchronise on common signals – corresponding to circuits that are connected on the wires
corresponding to these signals. Since a system controls its outputs, we cannot allow a
signal to be an output of more than one component; input signals, on the other hand, can
be shared. An output signal of a component may be an input of other components, and
in any case it is an output of the composition. Internal signals of one component must
not be used by the others; this is no serious restriction and can always be achieved by a
suitable renaming of the respective signals.3

3A composition can also be ill-defined due to what e.g. Ebergen [Ebe92] calls computation interference;
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Figure 2: Parallel composition example. The two net fragments on the left share signal a, as an
output in the left one and as input (twice) in the right one. Hence, in their parallel composition
(right) a is an output.

The parallel composition of STGs N1 and N2 is defined if Out1∩Out2 = Int1∩Sig2 =
Int2 ∩ Sig1 = ∅. The place set of the composition is the disjoint union of the place
sets of the components; thus, we can consider markings of the composition (regarded as
multisets) as the disjoint union of markings of the components. To define the transitions,
let A = Sig1 ∩ Sig2 be the set of common signals. If e.g. s is an output of N1 and an
input of N2, then an occurrence of an edge s± in N1 is ‘seen’ by N2, i.e. it must be
accompanied by an occurrence of s± in N2. Since we do not know a priori which s±-
labelled transition of N2 will occur together with some s±-labelled transition of N1, we
have to allow for each possible pairing. Thus, the parallel composition N = N1 ‖ N2 is
obtained from the disjoint union of N1 and N2 by combining each s±-labelled transition
t1 of N1 with each s±-labelled transition t2 from N2 if s ∈ A. Such transitions are pairs
and the firing (M1 +M2)[(t1, t2)〉(M ′

1 +M ′
2) of N corresponds to the firings Mi[ti〉M ′

i in
Ni, i = 1, 2; for an example of a parallel composition, see Fig. 2. More generally, we have
(M1+M2)[w〉〉(M ′

1+M ′
2) iff Mi[w|Ni

〉〉M ′
i for i ∈ {1, 2}, where w|Ni

denotes the projection
of the trace w onto the signals of the STG Ni.

It is easy to see that N is deterministic if N1 and N2 are. However, as illustrated in
Fig. 2, N might have structural auto-conflicts even if none of the Ni has them. Obviously,
we can define the parallel composition of a finite family (or collection) (Ci)i∈I of STGs as
‖i∈I Ci, provided that no signal is an output signal of more than one of the Ci.

Next, we introduce the concept of lambdarising a signal. It simply means to change
the labelling function such that all transitions corresponding to this signal are labelled
with λ and to remove this signal from the signature; delambdarising a signal means to
restore the former labelling and signature. By contrast, hiding a signal set H ⊆ Out from
an STG N results in the STG N/H = (P, T,W,MN , In, Out \ H, Int ∪ H, l), i.e. some
output signals are now considered to be internal signals.

The most important operation for decomposition is transition contraction (see e.g.
[And83] for an early reference); we essentially repeat from [VK06], where further discus-
sions can be found.

this is a semantic problem, and we will not consider it here.
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Definition 2.2 (Transition Contraction)
Let N be a Petri net and t ∈ T with l(t) = λ, •t ∩ t• = ∅ and W (p, t),W (t, p) ≤ 1 for all
p ∈ P . We define the t-contraction N ′ of N by

P ′ = {(p, �) | p ∈ P \ (•t ∪ t•)}
∪ {(p, p′) | p ∈ •t, p′ ∈ t•}

T ′ = T \ {t}
W ′((p, p′), t1) = W (p, t1) +W (p′, t1)
W ′(t1, (p, p′)) = W (t1, p) +W (t1, p

′)
l′ = l T ′

MN ′((p, p′)) = MN(p) +MN(p
′)

In′ = In Out′ = Out Int′ = Int

In this definition, � �∈ P ∪ T is a pseudo element; we assume W (�, t1) = W (t1, �) =
MN(�) = 0.

We say that the markings M of N and M ′ of N ′ satisfy the marking equality if for all
(p, p′) ∈ P ′

M ′((p, p′)) = M(p) +M(p′).

For two different transitions t1, t2 with t1 �= t �= t2, we call the unordered pair {t1, t2} a new
conflict pair whenever •t∩ •t1 �= ∅ and t•∩ •t2 �= ∅ in N (or vice versa); if l(t1) = l(t2) �= λ,
we speak of a new structural auto-conflict.
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Figure 3: Example of a transition contraction in an STG.

A transition contraction is called secure if either (•t)• ⊆ {t} (type-1 secure) or •(t•) =
{t} and MN(p) = 0 for some p ∈ t• (type-2 secure). �

Note that, in general, N ′ might fail to be consistent, even if N is; but secure contrac-
tions preserve consistency (see [VK06]).

Fig. 3 shows a part of a net and the result of contracting the λ-transition, where the
b−- and the x−-labelled transition form a new conflict pair; note that this is also true for
b− and c+, although they are already in structural conflict in N .

We now define redundant transitions and implicit places; the deletion of such a tran-
sition, place resp., (including the incident arcs) is another operation that can be used in

12



our decomposition algorithm. A transition t is redundant if either it is a λ-transition with
W (p, t) = W (t, p) for each place p (i.e. t is a loop-only transition), or there is another
transition t′ with the same label such that W (p, t) = W (p, t′) and W (t, p) = W (t′, p) for
each place p (i.e. t is a duplicate transition).

A place p is implicit if it can be removed from the net without changing the set
of firing sequences. However, detecting implicit places is PSpace-complete and during
decomposition only redundant places are deleted.

Definition 2.3 (Redundant Places)
The place q is (structurally) redundant [Ber87] if there is a set of places Q – called reference
set – with q �∈ Q, a valuation V : Q∪{q} → N and some d ∈ N0 which satisfy the following
properties for all transitions t:

(1) V (q)MN(q)−
∑

p∈Q V (p)MN(p) = d

(2) V (q)(W (t, q)−W (q, t))−∑
p∈Q V (p)(W (t, p)−W (p, t)) ≥ 0

(3) V (q)W (q, t)−∑
p∈Q V (p)W (p, t) ≤ d

If V is not explicitly mentioned, it is implicitly given by V (q) = 1, V (p) = 1 if p ∈ Q
and V (q) = 0 otherwise. �

Redundant places are implicit (but in general not vice versa). Since the techniques
for the detection of implicit and redundant places resp. are still not efficient enough, only
the subset of shortcut places is deleted. An MG-place p is a shortcut place if there is an
MG-path w between t ∈ •p and t′ ∈ p• with MN(p) ≥ MN(w). It is easy to see that
shortcut places are indeed redundant.

We conclude this section by introducing some operations to deal with signal insertion.
In particular, gyroscope insertion inserts essentially what is known as toggle-transition.

Definition 2.4 (Place-refinement, subnet-contraction, gyroscope insertion [WWSV09])
Let N be an STG.
(1) For a place p ∈ P , consider a net N ′ (cf. Figure 4) with:

• P ′ = P \ {p} ∪ {pin, pout, p1, p2}
• T ′ = T ∪ {g1, g2}
• W ′(x, y) = W (x, y) if x, y ∈ P \ {p} ∪ T
W ′(t, pin) = W (t, p) for t ∈ T
W ′(pout, t) = W (p, t) for t ∈ T
W ′(pi, gi) = W ′(gi, p3−i) = W ′(pin, gi) = W ′(gi, pout) = 1, i = 1, 2

• MN ′(p′) = MN(p
′) for p′ ∈ P \ {p}

MN ′(p1) = 1, MN ′(p2) = 0
(MN ′(pin),MN ′(pout)) = (in, out) with in+ out = MN(p)

In N ′, the labels of the new transitions and their signature can be chosen arbitrarily.
Starting fromN , N ′ is called a place-refinement of p with initial marking (in, out); starting
from N ′, N is called a subnet-contraction if g1 and g2 are λ-transitions.
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Figure 4: Gyroscope insertion with initial marking (2, 1) via place insertion (here: a shortcut
place due to w) and place refinement.

(2) A gyroscope insertion with initial marking (in, out) inserts a new implicit place p �∈ P
with in + out tokens into N (giving the intermediate N ′′) and applies place refinement
with initial marking (in, out) to it (giving N ′).

A gyroscope insertion is called an input/output/internal gyroscope insertion if g1 and
g2 are labelled in N ′ with s+, s− resp. and s is a fresh input, output or internal signal
resp.; it is called a dummy gyroscope insertion if g1 and g2 are labelled with λ. �

Subnet-contraction is not really intended as reduction operation. But in principle, one
could try to apply it if only backtracking is the alternative, though the odds for this to
succeed seem to be low.

2.4 STG Decomposition

For the STG decomposition algorithm, from [VW02, VK06] a partition of the output
signals of the given specification STG N is chosen, and the algorithm decomposes N into
component STGs, one for each set in this partition. For synthesis, from each component
equations for the corresponding outputs are derived from the respective state graph,
instead of deriving the equations from the state graph of N .

Very often, the cumulated states of all component state graphs give a number much
smaller than the state count of N , in which case the decomposition can be seen as suc-
cessful. Actually, it might already be beneficial if each state graph is smaller than the one
of N , in particular for reducing peak memory usage.

Of course, the behaviour of the specification should be preserved in some sense; this
is captured by a variant of bisimulation, tailored to the specific needs of asynchronous
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circuits:

Definition 2.5 (Correct Decomposition [SV07])
A collection of deterministic components (Ci)i∈I is a correct decomposition of (or simply
correct w.r.t.) a deterministic STG N – also called specification – when hiding H, if
C = (||i∈ICi)/H is defined, InC ⊆ InN , OutC ⊆ OutN and there is an STG-bisimulation
B between the markings of N and those of C with the following properties:

(MN ,MC) ∈ B and for all (M,M ′) ∈ B, we have:

(N1) If a ∈ InN and M [a±〉〉M1, then either a ∈ InC , M
′[a±〉〉M ′

1 and (M1,M
′
1) ∈ B for

some M ′
1 or a �∈ InC and (M1,M

′) ∈ B.
(N2) If x ∈ OutN and M [x±〉〉M1, then M ′[vx±〉〉M ′

1 and (M1,M
′
1) ∈ B for some M ′

1

with v ∈ (Int±C)
∗ .

(N3) If u ∈ IntN and M [u±〉〉M1, then M ′[v〉〉M ′
1 and (M1,M

′
1) ∈ B for some M ′

1 and
v ∈ (Int±C)

∗.
(C1) If x ∈ OutC and M ′[x±〉〉M ′

1, then M [vx±〉〉M1 and (M1,M
′
1) ∈ B for some M1 with

v ∈ (Int±N)
∗.

(C2) If x ∈ Outi for some i ∈ I and M ′
Pi
[x±〉〉, then M ′[x±〉〉. (no computation inter-

ference)

(C3) If u ∈ IntC and M ′[u±〉〉M ′
1, then M [v〉〉M1 and (M1,M

′
1) ∈ B for some M1 and

v ∈ (Int±N)
∗.

Here, and whenever we have a collection (Ci)i∈I , Pi stands for PCi
, Outi for OutCi

etc.
If H = ∅, we simply say that (Ci)i∈I is correct w.r.t. to N . �

In a simple case, (Ci)i∈I consists of just one component C1 (immediately implying
(C2)). For instance, this C1 could be the result of solving a CSC conflict in N ; if C1 is
correct w.r.t. N , then it has indeed the same behaviour as N .

(C2) ensures that no computation interference occurs, i.e. if a component produces an
output (which is under the control of this component), then the other components expect
this signal if it belongs to their inputs, and no malfunction of these other components
must be feared. (C2) is actually also satisfied for x ∈ Inti, since internal signals of one
component are by definition unknown to the other components.

A speed-independent circuit operates in input/output mode with its related environ-
ment, i.e. output changes are generated by the circuit as a consequence of certain input
changes which in turn are reactions on certain output changes again. Hence, an STG
specifying an SI circuit has to be input proper, i.e. an input might not be activated by an
internal edge, otherwise the environment might produce the input before the internal sig-
nal is produced by the circuit. Alternatively, one could make timing assumptions for the
environment, such that an internal signal change is always faster than an input change.
In this case, the enabling of an input by an internal signal should not be interpreted as a
causal but a temporal relation.4

In [SV07] it was shown that the above correctness notion implies that the STG C in
Definition 2.5 is in a sense input proper; in particular, if the solution of a CSC-conflict
inserts an internal signal in front of an input, it is not correct in the sense of Definition 2.5.
Also, correctness is essentially transitive.

We now discuss our decomposition algorithm in more detail. In the following, we

4This can be modelled by a so-called tcb-concurrency [WB00].
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assume that we are given a deterministic, consistent specification N without internal
signals5, and for this paper, we assume all arcs of N to have weight 1.

First, one chooses a feasible partition, i.e. a family (Ini, Outi)i∈I for some set I such
that the sets Outi are a partition of Out, Ini ⊆ Sig \Outi for each i and furthermore:

• If two output signals x1, x2 are in structural conflict in N , then they have to be in
the same Outi.

• If there are t, t′ ∈ T with t′ ∈ (t•)• (t is called syntactical trigger of t′), then
l(t′) ∈ Outi implies l(t) ∈ Ini ∪Outi.

Observe: if we have a feasible partition, we can build another feasible one by adding
additional input signals to one of the members.

For each member (Ini, Outi) of the partition, an initial component is generated from
N : in a copy of the original STG N , every signal not in Ini ∪ Outi is lambdarised and
the signals in Ini are considered as inputs of this component – even if they are outputs
of N . Then the following three reduction operations are applied to an initial component
until no more λ-labelled transitions remain:

• secure contraction of a λ-labelled transition

• deletion of an implicit place

• deletion of a redundant transition

Unfortunately, it is not always possible to contract all λ-transitions. Besides the
technical cases where the contraction is not defined or not secure (possibly leading to an
incorrect decomposition), the contraction might also generate a new auto-conflict. The
latter reveals non-determinism which is present in the respective initial component, but
not in the specification. This indicates that the component has not enough information
to properly produce its outputs. Such a contraction is disallowed and consequently a new
signal is added as follows.

If λ-transitions remain, backtracking is applied, i.e. a new input is added to the com-
ponent. Technically, this input is added to the initial partition and the new corresponding
initial component is derived and reduced from the beginning. The new input signal is
taken from the former label of a non-contractible λ-transition. As discussed above, the
new partition is feasible again. This cycle of reduction and backtracking is repeated until
all λ-transitions of the initial component can be contracted.

In principle, every so-called totally admissible operation [VK06] can be used for re-
duction. It is proven in [VK06] that the decomposition algorithm using arbitrary totally
admissible operations always returns a correct decomposition. The precise definition of
totally admissible is not important here; it is enough to know that the three operations
from above as well as subnet-contraction [WWSV09] from Definition 2.4 are totally ad-
missible. Furthermore, it will be relevant below that such operations have to preserve
some invariants; in particular, they have to turn an STG satisfying (a) into one that
satisfies (a) again, where

5For the decomposition algorithm, internal signals can be considered as outputs; see [SV07] for more
details.
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(a) There is no structural λ/output conflict, i.e. between a λ-transition and one labelled
with an output.

Now we present a new generalisation of the decomposition algorithm; the point is
that we can relax the definition of a feasible partition, i.e. that we can apply essentially
the same algorithm with additional starting points. We still consider the same kind of
specification N as above.

Definition 2.6 (Quasi-Feasible Partition)
A quasi-feasible partition is a family (Ini, Outi)i∈I for some set I such that the sets Outi
are a partition of Out, Ini ⊆ Sig \Outi for each i and furthermore:

• If two output signals x1, x2 are in dynamic conflict in N , then they have to be in
the same Outi.

• If there are t, t′ ∈ T with t′ ∈ (t•)• (t is called syntactical trigger of t′), then
l(t′) ∈ Outi implies l(t) ∈ Ini ∪Outi. �

In the definition of a totally admissible operation, condition (a) from above has to be
changed to: there is no dynamic λ/output conflict. This modified (a) is also used as an
invariant for the proof of our new correctness theorem for decomposition.

Theorem 2.7
Also when starting from a quasi-feasible partition, decomposition of a deterministic N
(using totally admissible operations defined with the modified (a)) result in deterministic
components that form a correct implementation of N . If only the operations listed in this
paper are used and N is consistent (free of dynamic io-conflicts resp.), then so are the
components.

Proof. The proof follows the lines of the proof of Theorem 4.1 in [VK06]. Carefully
checking the all in all eight (sub-)proofs, one sees that no essential changes are needed
when working with the modified (a) and also considering only the really essential (for
SI-synthesis) dynamic conflicts between an input and an output transition instead of the
structural ones. There are two exceptions though: for proving that secure transition
contraction is totally admissible, one has to fill two proof gaps for Lemma 4.3 and 4.4.

We sketch how this can be done and start with Lemma 4.4. In the proof, all markings
considered in angelic bisimulations are now assumed to be reachable – this is no problem.
In case (c) for i = j, contraction is applied to a transition t of a component, let us call
it C, and the result is C ′; C satisfies (the now modified) (a). A reachable marking of C,
call it M , is related by the marking equality to a reachable marking M ′ of C ′; an output
transition t1 is enabled under M ′, and one has to show that it is also enabled under M .

For a contraction of type 1, the proof in [VK06] is still valid, and we still can assume
that •t1∩ t• is empty. Assume that t1 is not enabled under M ; this must be due to places
in the common preset of t and t1 (so we clearly have a type-2 contraction). Let k be the
maximal number of tokens on some of these places missing for enabling t1.

Since M ′[t1〉, there must be at least k tokens on each place in t• under M (so that each
new place containing the ‘critical’ place from •t1 allows t1 to fire in C ′). These tokens have
been put there by t (we consider a type-2 contraction, and in particular some place in t•

was empty initially); hence t has fired at least k times in the firing sequence w reaching
M . The tokens were not needed by any transition for reaching M ; thus, we can delete
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the last k occurences of t in w, getting a firing sequence reaching some marking M ′′. M ′′

has k more tokens on each place in •t compared to M , so it enables t1. By choice of k,
firing t under M ′′ disables t1, while firing t1 empties some place in •t, i.e. it disables t.
This is a contradiction to (a), and we are done.

We continue with the proof gap for Lemma 4.3, which concerns Part (1). Here, we
have to consider a component C satisfying the modified condition (a) – and for the claim
about input/output conflicts in the theorem, we also have to consider the assumption
that there are no dynamic input/output conflicts. Further, there is a transition t to be
contracted in C, an output transition t2 with

•t2∩ •t �= ∅ (i.e. the contraction is of type 2)
and a dummy transition t1 with

•t1∩t• �= ∅; for the claim about input/output conflicts, we
also have to consider the case that t1 is an input transition. Assume that in C ′ (i.e. after
the contraction) there is a dynamic conflict between t2 and t1 under reachable marking
M ′; we will derive a contradiction using (a) (freeness from input/output conflicts, resp.)
and the fact that there is no dynamic conflict between t2 and t in C (no dynamic conflict
between t2 and input transition t1 resp.).

By Thm 3.3 (1) of [VK06], there is a reachable marking M of C related to M ′ by the
marking equality (restrict the simulation in 3.3 (1) to reachable markings). By what we
have shown above, we know that M enables t2.

Let k be the maximal number of tokens that is missing on some p ∈ •t∩ •t1 to enable
t1 under M . (In particular, if there is no place in the intersection, k is 0.) If k is positive,
there must be k surplus tokens on all places in t•, and we can ‘unfire’ t k times as above;
in this case, we now have a modified M , still satisfying the marking equality with M ′ and
enabling t2, such that for some p ∈ •t ∩ •t1, there are just enough tokens on p to enable
t1 under M .

If k = 0, it might be that all places in •t have more tokens than needed to enable t1
(this is true for some p �∈ •t1 if it has at least one token). Then we fire t until some p ∈ •t
has just enough tokens to enable t1 under M (possibly, p �∈ •t1 is empty). Again, the
modified M still satisfies the marking equality with M ′ and enables t2.

Let p1 ∈ •t1 ∩ t•; since (p, p1) has enough tokens to enable t1 under M ′, this means
that p1 has enough additional tokens that guarantee that t1 is enabled under M as far as
p1 is concerned. Since this works for arbitrary p1 ∈ •t1 ∩ t•, t1 is enabled under M .

By (a) (freeness from input/output conflicts, resp.), any place not adjacent to t has
enough tokens under M (or M ′) to enable t1 and t2 together. For any new place (p′, p1),
p′ also has enough tokens under M and the same holds for p1 since M enables t1 and
p1 �∈ •t2. Thus, (p′, p1) inherits enough tokens to satisfy independently the needs of t2 and
the combined needs of t1, resulting from arcs from p′ and p1 to t1. This is a contradiction
to the assumption that there is a dynamic conflict between t2 and t1 under M ′.

3 Internal Communication for SI Synthesis

The pure application of STG decomposition can lead to irreducible CSC conflicts. Ignoring
the cloud symbols in Figure 5, component Cr (including place pst) has a self-trigger
corresponding to ten and tex (see the shaded states in (b)) although the initial specification
N has none. Component STGs having such irreducible CSC conflicts are called critical,
since they are not SI implementable.

However in the context of STG decomposition irreducible conflicts can be avoided
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Figure 5: Self-trigger avoidance by internal communication.

1. by inserting an internal gyroscope labelled with a new signal ic ‘between’ the entry
transition ten and a so-called delay transition td (having a local signal) at the cloud’s
position in Figure 5a, and

2. by applying a second decomposition pass for Cr and the component STG Cd pro-
ducing the signal of td (called the delay component), where ic is considered as an
additional output of Cr and a necessary input of Cd; finally, the old versions of Cd

and Cr have to be replaced with their recalculated versions.

This can avoid the conflict or make it at least reducible and so the former critical com-
ponent is now SI implementable [WWSV09].

overall Circuit OC (specified by N)

(overall) Environment

CC (specified by Cr)

DC (specified by Cd)

y

x

a

ic

Figure 6: Circuit architecture of the resulting circuit.

From the circuit’s perspective this introduces an internal communication via signal ic
from the critical component to the delay component, as shown in Figure 6.

The key to apply this approach is to identify a delay transition in N . Consider a
self-trigger of Cr between the markings M1 and M2, i.e. there is a transition sequence
M1[tentex〉M2 and (ten, tex) is the entry/exit transition pair of the self-trigger. Recall that
the transitions are labelled with the same input signal of Cr, but complementary edges;
we call the signal edge which is the label of tex critical edge, since its fast occurrence can
lead to malfunction of the circuit; our aim is to delay the occurrence of the critical edge.
A place pst with ten ∈ •pst and tex ∈ pst

• is called self-trigger place, see also Figure 5b.
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Definition 3.1 (Delay Transition)
A transition td of N is called delay transition w.r.t. a transition pair (ten, tex) if td is
labelled with a local (i.e. non-input) signal edge and td occurs in all transition sequences
ten ... tex enabled under a reachable marking of N . �

Intuitively, if tex fires after ten then td must fire in between. Observe that delaying td
also delays the firing of tex, i.e. the critical edge – and this avoids the self-trigger.

In the next sections, we only consider self-trigger avoidance, since self-triggers appear
very often in our benchmark examples, cf. Section 5. Furthermore, a self-trigger is the
most severe type of irreducible CSC conflict – w.r.t. to our approach – since only one
transition pair (ten, tex) can be identified for which a delay transition has to be found. In
the remainder of this section we propose how to deal with general irreducible CSC conflicts
by identifying several transition pairs that yield several opportunities to determine a delay
transition.

M2

M3 = M1

M2M1

M3

a+ t3

b+ t4

a- t5

b- t6

x+ t1

y+ t2

p1

a+ t2

b+ t3

b+ t4

a+ t5

p2

x+ t1

p1

v
2

v
2v 1

(b)(a)

 v1=

Figure 7: Components having irreducible CSC conflicts between M1 and M2: (a) a type
I conflict in terms of [KMY06] and (b) a conflict of type II.

Consider the two critical components in Figure 7 having an irreducible CSC conflict
between M1 and M2 each. Such conflicts can be characterised by a third marking M3 and
two traces M3[w1〉〉M1 and M3[w2〉〉M2, where w1 and w2 consist of input events only. In
principle Mpsat and Petrify are able to report these traces, and they can be mapped
to corresponding firing sequences v1 and v2; observe that v1 could even be empty, as in
Figure 7b. Following [KMY06] it is enough to consider conflict types as in Figure 7, since
other CSC conflicts can be reduced to these types of conflicts; Figure 7a refers to a typical
type II conflict (according to [KMY06]) and 7b to a type I conflict.

Figure 7 also demonstrates that, for general irreducible CSC conflicts, there are usually
several pairs (ta, tb) – like an entry/exit transition pair – where one can look for a delay
transition that fires between both transitions. For example in Figure 7a we can identify the
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pairs (t2, t3), (t4, t5) and in Figure 7b (t3, t4), (t5, t6), (t3, t5) etc. Irreducible CSC conflicts
can be avoided if our approach succeeds for just one of those transition pairs. Hence,
the focus on self-triggers (which exhibit only one possibility for identifying an entry/exit
transition pair) is not a real restriction.

4 Self-Trigger Avoidance for Unweighted STGs

In [WWSV09], it was shown how to avoid a self-trigger even without recalculation of
the critical and the delay component, but only under strong restrictions: for a critical
component with a self-trigger as in Figure 5b, the corresponding specification N must
have a structure as in Figure 8a: there must be a restricted MG-path w from a transition
t1 labelled with a local signal edge of the delay component to the exit transition tex via
the entry (ten) and the delay transition (td); namely, all transitions of w between t1 and
ten (excluding t1) must have only one incoming arc and all transitions between td and
tex (excluding tex) must have only one outgoing arc. The sub-STG between ten and td
must be a path where all transitions and all places have one incoming and one outgoing
arc, only. In other words, the path from t1 to td is non-joining, the one from ten to tex is
non-forking. These strong restrictions make it relatively easy to find a suitable path, but
only in those cases where such a path exists.

pst

M
G
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at

h
w

a+ ten

x+ td
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a- tex

q

a+ ten

a- tex
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w

(a)

a+ ten

a- tex

x+ td

q p2

r+ t2

(b)
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(c)

implicit place 
insertion

p1

y+ t2 y+ t3 y+ t3

Path

q Implicit place; subject to gyroscope refinementNew ApproachSo far

Figure 8: Specifications N yielding at least one delay candidate td for a potential self-
trigger, given by ten and tex; pst sketches a self-trigger place of Cr as a result of reducing
all elements in w, cf. also Figure 5b.

Here, we will show how to deal with much more general cases, e.g. like the one in
Figure 8b, accepting a second reduction pass for the critical and the delay component.
In Section 4.1, we propose a structural method to identify a delay transition for a given
self-trigger, and we present a structural technique to insert an implicit place into a Petri
net as a necessary step for the internal gyroscope insertion into N in Section 4.2. Finally,
we propose in Section 4.3 how to avoid uncontrollable growth of the delay component
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(i.e. preventing the delay component from generating unnecessary output signals) by
introducing internal communication between the critical component and several auxiliary
components.

4.1 How to Identify a Delay Transition

A delay transition is defined based on traces of the specification N (s. Definition 3.1), but
due to the complexity of N we need a structural condition to identify such a transition.
Since it is difficult to find a necessary condition that is not too restrictive or a really
sufficient condition (that is only satisfied for delay transitions), we propose an indication
for a delay transition – and just speak of a delay candidate:

Definition 4.1 (Delay Candidate)
For a specification N and an entry/exit transition pair (ten, tex), a delay candidate td is
a local transition on a path w = w1w2 starting from ten leading to tex, where w1 is a
path from ten to td (ten �= td), while w2 is a path from td to tex without merge places,
i.e. ∀p ∈ w2 |•p| = 1. No transition on w \ {ten, tex} has its signal in Sigr. �

Observe that the path w2 could even be empty; in this case there are no restrictions
on the specification’s structure. The non-merging path w2 indicates that td has to fire
before tex, except that the initial marking of w2 might initially allow to fire tex without
firing td. The last condition reflects the idea that w is contracted to pst in Cr (cf. Figure
8b), i.e. none of its transitions except ten and tex is r-relevant ; the signals of Cr are called
r-relevant, in particular when considered in the context of the full STG N .

Although a delay candidate is not necessarily a delay transition according to Defini-
tion 3.1, our criterion is sufficient for many benchmark examples – see our examples in
Section 5.

4.1.1 Algorithmic Solution

Instead of simply searching for all paths w (from ten to tex) containing local signal tran-
sitions (as possible delay candidates), we suggest to apply a more efficient technique:

First, we can ignore all transitions labelled with an r-relevant signal edge except ten
and tex; we delete them as well as all arcs to ten

6 in N resulting in N ′.
Second, we apply an ordinary depth-first search (DFS) [CLRS01] starting at ten in

order to determine all transitions in N ′ that are reachable from ten; the others are removed
as well. One could also perform a breadth-first search and store the distances from ten;
this would help to find a delay candidate close to ten, see below.

Third, in N ′ a backward search starting at tex will be applied to find all paths w2 from
a delay candidate td to tex; the search can be restricted, because only non-merging places
p should be visited (i.e. |•p| = 1). To find all such paths, we modify the backward-directed
DFS [CLRS01]: when going backward, vertices are marked as visited as usual (this avoids
repeated vertices on a path), but when returning from the recursion, the mark is erased
(and the vertex can be used in other paths). One can also consider just one or a few
paths, hoping that the respective candidates will help to avoid the self-trigger.

After a potential path w2 is found, we apply a backward-directed breadth-first search
(BFS) to find a shortest path w1 from ten. For this, all the vertices of w2 must be marked

6The arcs from tex do not matter for Subsection 4.1.1.
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as visited, initially. Only if ten is reachable, td is a delay candidate. The idea is that the
algorithm in Section 4.2 starts at ten and tries to reach some td quickly; hence, td should
be chosen such that w1 is short.

Usually, there are several possible paths w2 and so several possible delay candidates.
It is subject to future work to investigate how the delay candidate selection influences the
synthesis time and the resulting circuit area and performance.

4.2 Inserting Implicit Places into a Petri Net

For a given entry transition ten and a delay candidate td (with a path w1 from ten) the
algorithm in Figure 9 inserts a redundant place q (w.r.t. some set Q) into an unweighted
STG N such that ten ∈ •q and td ∈ q•.

The insertion of q will be initiated by calling the function insertImplicitPlace. In line 8,
a forward traversal in N from ten towards td will be started by calling the place function
with the unique place p as argument such that p ∈ w1 and p ∈ ten

•. Every time the
function place is processed as well as in lines 27 or 31, a redundant place q could be
inserted via the operations specified in lines 9 and 10. The redundancy of q is assured,
since for every call of place and every new place p of Q, •p as well as p• will be added
to the potential preset (preq) and postset of q (postq) – except for loop transitions – see
lines 25 and 26 (for a formal proof, see below). Consequently, for every incoming token to
p a token is added to q, for every token removed from p a token is removed from q, too.
If the redundant place q were unsafe, then we would get a CSC conflict due to firing two
edges of the new internal signal ic; thus p is not added if it would lead to two tokens on
q initially, see line 23.

To make q useful, the preset and postset of q must fulfil some application specific
requirements which are tested by calling transitionF for each transition in p• (line 28)
and transitionB for each transition in •p (line 29) – F and B resp. indicate a forward or
backward traversal. The functions checkTransition{F/B} in line 14 are used to terminate
the traversal at certain transitions, see Figure 10. They are tuned to make q• consist of
local transitions only – including td – such that the later gyroscope refinement of q with a
new internal signal ic is input proper according to [SV07], which means that no input will
be delayed by ic. Furthermore, •q should consist of ten and other transitions labelled with
r-relevant edges only, such that the recalculated critical component C ′

r gets no additional
relevant signals, except for ic as an additional output; this avoids uncontrollable growth
of C ′

r.
If checkTransition{F/B} does not return to stop the search, then transition{F/B} calls

the place function again to find a suitable place in the postset or preset resp. of t. With
such a call, the post- and preset of q are extended until these fulfil the requirements
specified in checkTransitionF and checkTransitionB resp. Note that the algorithm is correct
for arbitrary functions checkTransition{F/B}, see Proposition 4.2 below.

To ensure that td ∈ q•, the algorithm applies a forward traversal straight to td as long
as the delayFound flag is not set, see lines 16 – 18. Similarly, in the implementation of
place, the next transition t′ on w1 is chosen first in line 28 (not shown). Eventually, the
flag will be set by checkTransitionF, and then all the other possible paths starting from
the places in w1 will be traversed in forward and backward direction.

The algorithm works on a net N and constructs a copy N ′ extended with q in lines 9
and 10.
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// Global variables

1 multiset of transitions preq, postq // potential pre- and postset of q

2 set of places Q

3 set of places w1 // shortest path from ten to td
4 boolean delayFound

// Main function

5 bool insertImplicitPlace()

6 preq ← ∅ ; postq ← ∅ ; Q ← ∅ ; delayFound ← false

7 p ← w1 ∩ ten
•

8 if (place(p, ten))

9 P ′ ← P ∪ {q} ; MN ′(q) ← MN(Q)

10 for all t ∈ T do W ′(t, q) ← preq(t) ; W ′(q, t) ← postq(t)

11 return true

12 else return false

13 bool transitionF(transition t) bool transitionB(transition t)

14 (stop, value) ← checkTransitionF(t) (stop, value) ← checkTransitionB(t)

15 if (stop) return value . . .

16 if (delayFound = false)

17 p ← w1 ∩ t•

18 return place(p, t)

19 for all p ∈ t• \Q do for all p ∈ •t \Q do

20 if (place(p, t)) return true . . .

21 return false . . .

22 bool place(place p, transition t) // p, t adjacent

23 if MN(Q) +MN(p) > 1 return false

24 Q ← Q ∪ {p}
25 preq ← preq + •p ; postq ← postq + p•

26 (preq, postq) ← (preq − postq, postq − preq) // removes loops

27 res ← true

28 for all t′ ∈ p• − {t} ∧ postq(t′) > preq(t′) do res ← res ∧ transitionF(t′)
29 for all t′ ∈ •p− {t} ∧ postq(t′) < preq(t′) do res ← res ∧ transitionB(t′)
30 if (¬res) restore old values of in, out and Q // before the present call of place

31 return res

Figure 9: Algorithm InsertImplicit for inserting an implicit place q. It is assumed that
ten, tex and td are known to the algorithm as global constants. ’. . .’ means line repetition
from transitionF.
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1 (bool,bool) checkTransitionF(transition t)

2 if (t = ten) return (true,false)

3 if (delayFound = false)

4 if (t = td) delayFound ← true ; return (true, true) // termination successful

5 if (t ∈ w1) return (false,false)

6 if (l(t) ∈ Loc±N) return (true,true) // termination successful

7 if (t = tex) return (true,false)

8 return (false,false)

9 (bool,bool) checkTransitionB(transition t)

10 if (t = tex) return (true,false)

11 if (l(t) ∈ Sig±r ) return (true,true) // termination successful

12 return (false,false)

Figure 10: Strategy CheckTransition. The functions know all global variables of
InsertImplicit and check validity of transitions for the preset (checkTransitionB) and
the postset (checkTransitionF) of q – with result (stop, value). If stop = false, the traversal
should be continued and t is not valid (value = false). Otherwise, value says whether t
is valid (successful termination) or not; in the latter case, place has to backtrack and to
remove its current p from Q.

ten

F td

t1

p1

p2

t2

B t3

t4

F t5

ten

F t2

t1

B t3

F td

t4

t5

p1p2

p3

F; F t1

p1

(a) (b) (c)

Figure 11: Examples for InsertImplicit: the loops in lines 28 and 29 process the resp. nodes
from left to right; at transitions labelled with F the forward search terminates successfully, and
analogously for B.
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We try to clarify how InsertImplicit works with the help of some examples shown in
Figure 11. For the example in (a), w1 is tenp1t1p2td; thus, the algorithm calls place(p1, ten)
(e.g. t1 is added to postq), transitionF(t1), place(p2, t1) (e.g. t1 is removed from postq)
and transitionF(td). Now flag delayFound is set and the last call returns successfully.
Next, transitionF(t4) does not directly terminate since t4 is an input transition, but the
next call of transitionF returns successfully as well. Going back to the call place(p1, ten),
transitionB(t2) and then transitionB(t3) are performed. In the end, a redundant place q
with •q = {ten, t3} and q• = {td, t5} is inserted.

Next consider Figure 11b, first without transition t5. The forward traversal reaches
td, and then transitionF(t1) and place(p3, t1) are called. Here, t4 is added to preq and postq
in line 25, and removed again in line 26. Thus, for t4 neither transitionF nor transitionB
are called in lines 28 or 29. Eventually, the algorithm inserts a redundant place q, where
•q = {ten, t3} and q• = {td, t2}.

Now consider transition t5; when reaching p3, we get calls transitionF(t5), place(p1, t5)
and transitionF(t1). Here, the check requires to continue (t1 is an input transition), but
the algorithm fails in line 19, since there is no place left in t1

• \Q. Note that the repeated
traversal of places in Q – like p3 – would prevent the termination of the algorithm.

Figure 11c indicates a situation, where t1 has already been visited by forward traversals
– and declared as suitable for q• via line 6 of checkTransitionF – for two times. Now place
p1 is reached via a call place(p1, t), and t1 is added to preq in line 25; this would make t1 a
(generalised) loop transition for q. But after line 26, preq(t1) = 0 and postq(t1) = 1, and
due to the condition in line 29, transitionB will not be called for t1; the search terminates
by returning true.

Proposition 4.2
For any terminating checkTransition{F/B} operation without side-effects on N , Q, preq
or postq, the algorithm InsertImplicit terminates such that the place q is implicit in
N ′. If false is returned, no place q will be inserted.

Proof. First observe the following properties: (∗) for every call of place(p, t), we have
p �∈ Q; this follows immediately from lines 7 and 8, 19 and 20 resp., where these are the
only places from which place(p, t) is called.

(∗∗) The number of calls of place on the call-stack is bounded by |P |; directly from
(∗).
Termination: Obviously, insertImplicitPlace() is only called at the beginning, and tran-
sition{F/B}() and place() are calling each other alternately in the sense that they alternate
on the call-stack. Together with (∗∗), this implies that the call-stack has bounded depth.
Since only for loops are used, only finitely many functions are called in each function call
f(), and eventually a function is called or f() returns. This implies the claim.

Correctness: Now, we prove by induction that the properties of Definition 2.3 are
fulfilled every time a function is called or returned from. More precisely, we show that q
would be redundant for the valuation V ≡ 1 if N would be modified as in lines 9 and 10.
Hence, we only have to consider the values of preq, postq and Q.

Clearly, q is redundant for V ≡ 1 after the initialisation of the global variables in line
6: q is an unconnected place then, and d = 0. Furthermore, we only have to consider
the lines 24–26, since only here preq, postq and Q will change significantly. If they are
restored (to the values before line 24) in line 30, q is redundant by induction assumption.
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We will denote the new values (i.e. after execution of line 26) with preq′, postq′, W ′ etc.
Observe that MN ′(p) = MN(p) for every place p �= q and W ′(x, y) = W (x, y) if x �= q �= y.

(1)

d′

= MN ′(q)−
∑
s∈Q′

MN ′(s)

(definition of MN ′(q)) = MN ′(Q′)−
∑
s∈Q′

MN ′(s) = 0 = d

(2)

0

≤ W ′(t, q)−W ′(q, t)−
∑
s∈Q′

(W ′(t, s)−W ′(s, t))

(definition of preq and postq) = preq′(t)− postq′(t)−
∑
s∈Q′

(W (t, s)−W (s, t))

(lines 24–26 and (∗)) = ((preq + •p)− (postq + p•))(t)

−((postq + p•)− (preq + •p))(t)

−(W (t, p)−W (p, t))−
∑
s∈Q

(W (t, s)−W (s, t))

(Definition 2.1) = max(0, preq(t) + •p(t)− postq(t)− p•(t)︸ ︷︷ ︸
a

)

−max(0, postq(t) + p•(t)− preq(t)− •p(t)︸ ︷︷ ︸
−a

)

−W (t, p) +W (p, t)−
∑
s∈Q

(W (t, s)−W (s, t))

( max(0, a)−max(0,−a) = a ) = preq(t) + •p(t)− postq(t)− p•(t)

−W (t, p) +W (p, t)−
∑
s∈Q

(W (t, s)−W (s, t))

(definition of preq and postq, = W (t, q)−W (q, t) +W (t, p)−W (p, t)

e.g. •p(t) = W (t, p) ≤ 1) −W (t, p) +W (p, t)−
∑
s∈Q

(W (t, s)−W (s, t))

= W (t, q)−W (q, t)−
∑
s∈Q

(W (t, s)−W (s, t))

(induction) ≥ 0
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(3)

d′

≥ W ′(q, t)−
∑
s∈Q′

W ′(s, t)

(definition of postq) = postq′(t)−
∑
s∈Q′

W (s, t)

(lines 24–26 and (∗)) = ((postq + p•)− (preq + •p))(t)

−W (p, t)−
∑
s∈Q

W (s, t)

(Definition 2.1) = max(0, postq(t) + p•(t)− preq(t)− •p(t)︸ ︷︷ ︸
a

)

−W (p, t)−
∑
s∈Q

W (s, t)

1. Case: a ≤ 0

. . . = 0−W (p, t)−
∑
s∈Q

W (s, t)

≤ W (q, t)−
∑
s∈Q

W (s, t)

(induction and (1)) ≤ d = d′

2. Case: a > 0

. . . = postq(t) + p•(t)− preq(t)− •p(t)

−W (p, t)−
∑
s∈Q

W (s, t)

(definition of postq, = W (q, t) +W (p, t)− preq(t)− •p(t)

p•(t) = W (p, t) ≤ 1) −W (p, t)−
∑
s∈Q

W (s, t)

= W (q, t)− preq(t)− •p(t)−
∑
s∈Q

W (s, t)

≤ W (q, t)−
∑
s∈Q

W (s, t)

(induction and (1)) ≤ d = d′

4.3 Gyroscope Insertion

Let us now take a closer look at the internal gyroscope refinement via the implicit place
q in N , which introduces internal communication to avoid the self-trigger in Cr.

If we apply the implicit place insertion of q in N as proposed in Section 4.2, then
also after the gyroscope refinement of q, there are structural conflicts between all (local)
transitions of q•. These structural conflicts imply that we have to change the feasible
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partition for the second reduction pass. Since the delay component produces the signal
of td, it now has to produce all the signals of the transitions in q•, also those that were
produced by other so-called auxiliary components in the first pass. Thus, the modified
delay component STG could be very complex such that a circuit can perhaps not be
synthesised anymore. This phenomenon will be visualised with the help of Figures 8c and
12:

overall Circuit OC (specified by N)

(overall) Environment

Critical Component

Auxiliary
Comp.

y

s

a

ic
Delay 
Comp. x

other 
Comp. r

Figure 12: Circuit architecture of the resulting decomposed circuit specified by Figure 8b.

Assume the unmodified delay component only produces output signal x, another com-
ponent produces signal s, and we have identified delay transition td for the self-trigger
between ten and tex. An internal gyroscope with a new signal ic is inserted via the im-
plicit place q. Observe that q• does not only contain td, but also t1; thus td and t1 are
in structural conflict because of q – and after q’s refinement the conflict is caused by the
gyroscope place pout (see also Figure 4). Using feasible partitions only, the component for
x now has to produce s as well; we get a new component combining the delay component
Cd and the component generating signal s. This can lead to large delay component STGs
from which no circuit can be synthesised (because of their complexity).

Thus, for the second reduction pass, we make use of a quasi-feasible partition as
studied in Subsection 2.4. After an output gyroscope insertion introducing ic via implict
place q, we keep the original feasible partition, only adding ic as an output for Cr and
as an input for all components producing a signal of a transition in the post-set of q;
these components include Cd, the others are called auxiliary components; cf. algorithm
Avoid in Figure 13 that generalises Avoid-0 from [WWSV09] since it deals with several
auxiliary components, in addition to the delay component.

This algorithm does no necessarily produce a correct decomposition, but a failure can
be recognised:

Proposition 4.3
The algorithm Avoid is correct in the following sense: if (Ci)i∈I was obtained from N by
decomposition (and hence correct w.r.t. N), then either the partition used by Avoid is
quasi-feasible and ((Ci)i∈I′ , C ′

r, C
′
d, (C

′
j)i∈J) with I ′ = I \ ({r, d} ∪ J) is correct w.r.t. N ′,

which in turn is correct w.r.t. N when hiding {ic}, or there is some dynamic self-trigger
with the two transitions of ic in C ′

d.

Proof. When decomposing N , a feasible partition was used (or at least a quasi-feasible
one, if already some internal signal has been introduced). If the partition used in Avoid
is not quasi-feasible, then there are two output transitions t1 and t2 in N ′ that are in
conflict under some reachable marking and have signals produced by different components.
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Input
specification N — critical component Cr with an irr. CSC conflict ten, tex —
delay component Cd with td ‘between’ ten and tex in N , l(td) ∈ Out±d —
other components (Ci)i∈I\{r,d}

Output
modified specification N ′ — modified critical component C ′

r — modified delay
component C ′

d — modified auxiliary components (C ′
j)j∈J , J ⊂ I

1 in N , if insertImplicitPlace() returns true, then perform an output gyroscope
insertion for a fresh output signal ic via the implicit place q and intermediate
N ′′; in N ′′, l(•q) ⊆ Sig±r and l(q•) ⊆ Out±d ∪⋃

j∈J Out±j where J ⊂ I and Cj is
called auxiliary component; this gives N ′

2 C ′
r is obtained from reduction of N ′ with partition member (Inr, Outr ∪ {ic})

3 C ′
d is obtained from reduction of N ′ with partition member (Ind ∪ {ic}, Outd)

4 for all j ∈ J do C ′
j is obtained from reduction of N ′ with partition member

(Inj ∪ {ic}, Outj)

Figure 13: Algorithm Avoid for inserting internal communication to avoid an irreducible
CSC conflict – insertImplicitPlace() is specified in InsertImplicit in Figure 9.

Since this conflict is obviously new, t1 and t2 must have been in the postset of q in the
intermediate N ′′. If they are in conflict under some reachable marking M there, this
conflict must concern q, i.e. without q they would be concurrently enabled. With the
implicit q, they can still fire one after the other in any order. Since q has no loops, this
means that they are concurrently enabled under M , so in fact there is no conflict in N ′′.

If q is safe, there can be no conflict in N ′ as well: t1 and t2 are only enabled when pout
is marked, and then it is marked with one token as q was. Furthermore, the transitions
for the new signal ic are not in conflict with any other transition.

If q is not safe, some reachable marking of N ′ puts at least two tokens on pin resulting
in a dynamic self-trigger for the latter transitions. This self-triger is still present in C ′

d.
The correctness now follows from Theorem 2.7 as in the proof of Theorem 4.1 in

[WWSV09]. In addition to one delay component Cd, we have several auxiliary components
Ca1 , ..., Can . The partition in Avoid is quasi-feasible, since

• the output transitions g1 and g2 are only in structural conflict with each other and
they are labelled with the same signal anyway.

• g1 and g2 are only triggered by transitions with labels in Sigr = Sig′r \ {ic} or
by each other; they only trigger transitions with labels in Outd +

⋃
j∈J Outaj =

Out′d +
⋃

j∈J Out′aj and each other; ic ∈ In′
d, ic ∈ In′

aj
.

Consider a component Ck with k ∈ I ′ and the corresponding initial component N ′
k

derived from N ′. In N ′
k, ic is lambdarised, since ic only triggers outputs of Cd and

Ca1 , ..., Can . As a first step, we can apply subnet contraction to the gyroscope yielding
STG N ′′

k . The resulting place is implicit by Definition 2.4 and can be deleted yielding the
original initial component Nk. Hence, Nk can be reduced to the final component Ck with
the same sequence of reduction operations originally applied.
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In general, the components have many self-triggers or irreducible CSC conflicts resp.,
so Avoid has to be applied a number of times.

Often, k components (k > 1) yield the same self-trigger, i.e. characterised by the
same entry/exit transition pair in N . For each component, a separate internal signal is
needed, since it has to be produced by the respective component. Still, it is not necessary
to apply the algorithm for finding an appropriate delay transition (cf. Section 4.1) and
InsertImplicit k times. After the first run of these algorithms, an implicit place q with
its sets •q and q• is known, and we can insert k concurrent gyroscopes via k copies q1, ..., qk
of q, i.e. with •qi = •q and qi

• = q•, ∀i ∈ {1...k}, see Figure 14a.

w

a+ ten

x+ td

q1 qk w

a+ ten

x+ td

q

(a) (b)

k

Figure 14: The same conflict occurs in k different components: (a) concurrent gyroscope
insertion, (b) sequential gyroscope insertion.

Observe that this approach massively increases the concurrency degree of the new
delay component (and also of the auxiliary components, not shown here), since after qi’s
refinement – with a new gyroscope labelled with ici – each transition labelled with ici
is a trigger of td; so each ici will be a relevant signal for the new delay component, i.e.
ici ∈ Ind, ∀i ∈ {1...k}. This can be avoided by introducing only one place q and refine
it via a sequence of k gyroscopes, as shown in Figure 14b. This is correct w.r.t. the
concurrent insertion in Figure 14a, since each of the k internal gyroscopes must fire to
activate td, but the order of firing does not matter, because each signal ici is internal (i.e
its edge occurrence has no direct influence on an input occurrence from the environment).
Hence, we can arbitrarily model a sequence of gyroscopes, as in Figure 14b; consequently,
the new delay component gets only one new relevant signal instead of k signals. Of
course, the chosen sequence of the k gyroscopes might have effects on the final circuit’s
performance, area and/or its synthesis time; this will be investigated in future work.

5 Results

We have integrated the algorithms InsertImplicit, CheckTransition and Avoid in
our decomposition tool DesiJ [SWW09]. For identifying a delay candidate as well as
the paths w1 and w2, so far a simple solution is implemented. We are currently working
on integrating the ideas of Section 4.1.1. Right now, we can only avoid self-triggers, but
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ideas to avoid more general conflicts are proposed in Section 3 (Figure 7). We applied
decomposition-based logic synthesis via DesiJ and Petrify as synthesis backend to the
benchmark examples in Table 1. Observe that the method presented in [WWSV09] cannot
synthesise an SI circuit for any of the benchmark examples except for SPT-6 and SPT-7.
We will now compare these results with the ones from Moebius, Mpsat and the pure
application of Petrify. Note that Moebius implements an entire decomposition-based
logic synthesis approach by

1. encoding of specifications that do not satisfy CSC by solving complex ILP problems,

2. decomposing them (i.e. computing the projection7 of the encoded specification for
each output signal, again by applying ILP), and

3. synthesising each component STG by applying state-based logic synthesis.

Initially, none of the benchmark examples satisfies CSC, so we cannot compare our results
to a decomposition-based synthesis with Nutas.

Benchmark
Size DesiJ Moebius

Mpsat Petrify|P |/|T |–|In|/|Out| Dec+Int+Syn Enc+Proj+Syn

2pp wk.03 23/14–0/7 0 0 0 0
2pp wk.06 47/26–0/13 0+0+1 1 0 2
2pp wk.09 71/38–0/19 0+0+1 1+1+0 2 13
2pp wk.12 95/50–0/25 0+0+1 1+2+1 7 149

tsend-csm 34/29–5/4 0+0+8 0+0+1 1 2
Shifter 67/51–12/13 0+0+9 4+1+0 dummy 1480
ArbTree 83/72–18/18 0+1+4 75+7+1 34 1117
SPT-6 403/260–65/65 7+14+788 2160+360+240 m.o. m.o.
SPT-7 659/516–129/129 11+50+822 9.5h+2280+0 m.o. m.o.

Table 1: Comparison of different logic synthesis approaches w.r.t. synthesis time (in seconds).

The benchmark computations, except for the Moebius results, were performed on
a VMware R© Linux guest system with 1 GB of RAM. The host machine was an Intel R©

Core
TM

2 Duo E8400 CPU with 3 GHz and 4 GB of RAM running a Windows XP R© 32-Bit
version. The Moebius results were performed by Josep Carmona on an Intel R© Xeon R©

CPU X3363 with 2.83 GHz and 24 GB of RAM running a Linux OS.
The first two columns of Table 1 report the benchmark names and their corresponding

sizes in terms of place count (|P |), transition count (|T |), number of input signals (|In|)
and output signals (|Out|). The remaining columns report the synthesis times for each
benchmark in seconds. Note that in the DesiJ-column this time is split into decompo-
sition time (Dec), the time for inserting internal communication signals as described in
this paper (Int) and the cumulated time for Petrify synthesis of the component STGs
(Syn). In the Moebius-column the times are also split into the encoding time to solve
CSC for the specification N (Enc), the time to compute the projection of N for each
output signal (Proj ), and the Petrify-like logic synthesis for the projected components

7an alternative but restricted method of STG decomposition
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(Syn). Observe that the encoding time for SPT-7 is 9.5 hours, all the other times are
reported in seconds.

All benchmarks in the lower half of Table 1 arise when resynthesising handshake
circuits consisting of control components [FC08], while the 2pp wk.?? specifications are
not related to resynthesis. All benchmarks up to 100 places or transitions can be handled
within a few seconds by DesiJ. For instance, every other tool needs at least 34 seconds to
synthesise the ArbTree circuit. Observe that Mpsat cannot deal with dummy transitions
in the specification; in some cases, we have removed all such transitions via contraction.
For the Shifter specification, this was not possible (though decomposition with DesiJ
succeeded); after 37 seconds and five signal insertions, Mpsat cancelled the computation
issuing the warning ‘dummy cut-offs’ (the 37 seconds could be taken as a lower bound
for a potential circuit synthesis with Mpsat). Petrify and Mpsat cannot synthesise a
circuit for SPT-6 and SPT-7 due to memory overflow (m.o.); for Moebius, the synthesis
time is an order of magnitude higher than the DesiJ-based logic synthesis.

Note that DesiJ-based synthesis is not always the best approach to exploit the advan-
tages of logic synthesis. In particular, for a small specification like tsend-csm an Mpsat
or Petrify synthesis is better suited. DesiJ often introduces more internal signals than
a pure logic synthesis would do. E.g. for the 2pp wk.?? benchmarks, each of Petrify,
Mpsat or Moebius only inserts one internal signal to solve CSC. With total decomposi-
tion (i.e. constructing one component for each output), DesiJ must avoid two self-triggers
by introducing two internal signals, and during logic synthesis of the components Pet-
rify introduces 5 CSC signals – hence, the DesiJ-based synthesis needs 7 internal signals
to solve CSC for each 2pp wk.?? benchmark.

As a consequence, we propose to apply DesiJ only for very large specifications where
logic synthesis with other tools is impossible or takes unacceptably long time. Further-
more, total decomposition is not always the best approach, since it leads to many compo-
nent STGs which potentially require many internal signal insertions to avoid irreducible
CSC conflicts. In future work, we will try to find output partitions that result in few
irreducible CSC conflicts, but still give component STGs that can be synthesised with
Petrify, Mpsat or Moebius. This should maximally exploit the opportunities of logic
synthesis, and lead to the most efficient circuit implementations that can be achieved.

6 Conclusion and Outlook

We improved the ideas presented in [WWSV09] such that we are now able to apply
decomposition-based SI logic synthesis to many more specifications than before. This
can enable SI logic synthesis for very complex STGs, in particular resulting from control
resynthesis of handshake circuits.

Instead of solving the CSC encoding problem for a complex specification, we downscale
the encoding problem to smaller component STGs. This makes it necessary to avoid
irreducible CSC conflicts that can result from decomposition, and for this we introduce
internal communication between the components.

In future work, we would like to optimise the presented approach by investigating how
the choice of the delay candidate according to Section 4.1 can influence the synthesis time
and the resulting circuit area and performance. Further research is needed to investigate
how the order of the gyroscopes in a sequential gyroscope insertion as in Section 4.3
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influences the resulting circuit performance and maybe its synthesis time.
As already mentioned, the application of total decomposition leads to many compo-

nents, and many of them could have irreducible CSC conflicts; hence, many new internal
signals have to be inserted in order to avoid these conflicts. In future work, we would also
like to investigate how we can avoid the appearance of irreducible conflicts by controlling
the decomposition process via suitable output partitions; i.e. we try to find output parti-
tions that lead to a limited number of – not very complex – component STGs having few
irreducible conflicts only. This could substantially reduce the number of internal signals
to be inserted.
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