

Java Language
Conversion
Assistant
An Analysis

Stefan Richter
Stefan Henze
Eiko Büttner
Steffen Bach
Andreas Polze
(eds.)

Technische Berichte
des Hasso-Plattner-Instituts
für Softwaresystemtechnik an der Universität Potsdam

HASSO - PLATTNER - INSTITUT
für Softwaresystemtechnik an der Universität Potsdam

Technische Berichte des Hasso-Plattner-Instituts für Softwaresystemtechnik

an der Universität Potsdam

4

Stefan Richter, Stefan Henze, Eiko Büttner, Steffen Bach, Andreas Polze (eds.)

April 21, 2004

Java Language
Conversion

Assistant
An Analysis

Bibliografische Information Der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über
http://dnb.ddb.de abrufbar.

Die Reihe Technische Berichte des Hasso-Plattner-Instituts für Softwaresystemtechnik an der
Universität Potsdam erscheint aperiodisch.

Herausgeber:

Redaktion
EMail

Vertrieb:

Druck

Professoren des Hasso-Plattner-Instituts für Softwaresystemtechnik
an der Universität Potsdam

Stefan Richter, Stefan Henze, Eiko Büttner, Steffen Bach, Andreas Polze
{stefan.richter, stefan.henze, eiko.buettner, steffen.bach,
andreas.polze}@hpi.uni-potsdam.de

Universitätsverlag Potsdam
Postfach 60 15 53
14415 Potsdam
Fon +49 (0) 331 977 4517
Fax +49 (0) 331 977 4625
e-mail: ubpub@rz.uni-potsdam.de
http://info.ub.uni-potsdam.de/verlag.htm

allprintmedia gmbH
Blomberger Weg 6a
13437 Berlin
email: info@allprint-media.de

© Hasso-Plattner-Institut für Softwaresystemtechnik an der Universität Potsdam, 2004

Dieses Manuskript ist urheberrechtlich geschützt. Es darf ohne
vorherige Genehmigung der Herausgeber nicht vervielfältigt werden.

Heft 4 (2004)
ISBN 3-937786-10-4
ISSN 1613-5652

Contents

1 Introduction 1

I Language Analysis 3

2 Overview 5
2.1 Java Programming Language . 5
2.2 Java Execution Environment . 10

3 Entity Declarations and Modifiers 15
3.1 Code Structuring . 15

3.1.1 Java . 15
3.1.2 C# . 16

3.2 Data Structuring . 17
3.2.1 Memory Allocation and Deallocation 17
3.2.2 Primitive Types . 18
3.2.3 Reference Types . 18

3.3 Object Model . 20
3.3.1 Inheritance . 20
3.3.2 Abstract Classes and Interfaces 21
3.3.3 Inner Classes . 21

3.4 Accessibility . 21
3.4.1 Content of Packages/ Assemblies 22
3.4.2 Content of Classes . 22

4 Expressions and Statements 23
4.1 Expressions . 23

4.1.1 operators . 23
4.2 Statements . 24

4.2.1 The switch Statement . 24
4.2.2 The break and continue Statements 25
4.2.3 The synchronized Statement and Modifier 25

5 Execution Environment 27

5.1 Exception Handling . 27
5.2 Basic Mappings . 28

II Java Language Conversion Assistant 29

6 Introduction 31
6.1 Conversion Example . 32

7 Diff-Patch Tool 35
7.1 Motivation for the Diff-Patch Tool . 35
7.2 The Tool Suite . 35
7.3 Diff-Patch Tool Example . 36

8 Extensibility Kit 39
8.1 Extensibility Kit Basics . 39
8.2 Basic Mapping Definitions . 40
8.3 Overriding Built-In Conversion Rules 42
8.4 Declaration Mappings . 44
8.5 Custom Error Messages . 47
8.6 The Extensibility Kit and The Diff-Patch Tool 50

8.6.1 The Java Library . 50
8.6.2 The Java Program . 53
8.6.3 The Custom Conversion Rules 54
8.6.4 The C# Library . 56
8.6.5 The Converted Program . 59

9 Conversion Tests with JLCA 65
9.1 Sample Report . 65
9.2 Hello World . 68
9.3 Anonymous Classes . 70
9.4 Inner Classes . 75
9.5 Identifier Scope . 80
9.6 Assert Keyword . 83
9.7 Exception Hierarchy . 85
9.8 java.lang.reflect.Modifier . 89
9.9 java.lang.reflect.Proxy . 92
9.10 java.lang.ref.WeakReference . 100
9.11 java.lang.Runtime.addShutdownHook 107
9.12 Swing: Hello World . 111
9.13 Swing: Simple menu example . 117
9.14 Swing: Menu with Submenu . 121
9.15 Swing: Menu with Checkbox and Radiobuttons 127
9.16 Swing: FileChooser . 135

ii

0

10 Related Work 145
10.1 Borland Janeva . 145

10.1.1 Janeva compilers . 145
10.1.2 Janeva runtime . 146
10.1.3 Conclusion . 146

10.2 Ja.NET . 146
10.2.1 Example . 147
10.2.2 Conclusion . 147

10.3 IIOP.NET . 147
10.3.1 Components . 148
10.3.2 Conclusion . 148

10.4 Automatic Language Conversion Case Study 148

III Project 151

11 Selected Project 153
11.1 Description of JHotDraw . 153
11.2 Package Organization . 155
11.3 Structure of JHotDraw . 155

12 Main Issues 157
12.1 Exceptions . 157
12.2 Reference Paremeters . 159
12.3 Double Names . 161
12.4 Interfaces . 163

12.4.1 Image Observer . 163
12.4.2 Event Listener . 164

12.5 AWTEventMulticaster . 165

13 Summary 167

iii

Introduction 1 ch
ap

te
r

This document is an analysis of the Java Language Conversion Assistant . It will also
cover a language analysis of the Java Programming Language as well as a survey of
related work concerning Java and C# interoperability on the one hand and language
conversion in general on the other.

Part I deals with language analysis.

Part II covers the JLCA tool and tests used to analyse the tool. Additionally, it
gives an overview of the above mentioned related work.

Part III presents a complete project that has been translated using the JLCA.

Within the sector of language conversion and interoperability, a broad spectrum of
tools and techniques have been developed. Different representations of programs
and methods of interoperability build up a tree that is shown in figure 1.1.

C# / Java
component

system

one language:
conversion

two languages:
interoperability

source level intermediate
language level

target:
C#

target:
Java

target:
MSIL

target:
Bytecode

generate stubs generate IDL webservices

target:
C#

target:
Java

source:
C#

source:
Java

Figure 1.1: Tree of Representation and Interoperability

Now, it would be desirable to convert from one representation to another or to
connect interoperability endpoints in different occurences. Some tools can convert
or compile whole programs whereas others integrate Java and C# programs by

translating their respective communication mechanisms or via Corba. Figure 1.2
shows a matrix that displays if and with which tool the different representations
may be converted or how they may interoperate.

C
#

Ja
va

M
S

IL

Ja
va

C

st
ub

s

Ja
va

 s
tu

bs

O
M

G
 ID

L

S
O

A
P

Ja
va

.N
E

T

C# n/a csc n/a n/a IIOP.NET MS

Java JLCA n/a GCC javac n/a n/a

MSIL n/a n/a n/a

Java n/a n/a n/a

C# stubs n/a n/a n/a n/a n/a

Java stubs n/a n/a n/a n/a JLCA / Janeva n/a

OMG IDL IIOP.NET CORBA n/a n/a IIOP.NET / Janeva n/a

SOAP MS J2EE n/a n/a n/a

Java Java Ja.NET

.NET Ja.NET .NET
RPC

RPC

Bytecode

CORBA

 Target

 Source

CORBABytecodeSourcecode

Sourcecode

Figure 1.2: Conversion and Interoperability

2

I pa
rt

Language
Analysis

Overview 2 ch
ap

te
r

Before being able to evaluate a language conversion tool satisfyingly, one must gain
a good knowledge of both, source and target language. Simply said, it is necessary
to know how each construct of the source language can be expressed in the target
language.

As Java is not only a programming language but also an execution environment it
is sensible to have a comparative look at the Java programming language and the
C# programming language as well as to compare the Java execution environment
to the .NET execution environment including the most basic libraries.

2.1 Java Programming Language

The Java programming language and the C# programming language are syntacti-
cally similar as their syntaxes are both derived from the C/C++ family. Still, there
are some differences concerning all kinds of language constructs.

These constructs may be divided into:

• Entity declarations and modifications

• Statements

• Expressions

Each Java program consists of a set of entities that define the environment1 in which
the program’s code will run. These entities are packages, types, type members,
methods, local variables, method parameters and return values. All these entities
are related to each other in some way or the other. Entities and their relationships
are subject to chapter 3 on page 15.

One kind of them, namely methods, contains the program’s code which is a se-
quence of statements intermingled with expressions. Chapter 4 on page 23 focuses
on statements and expressions.

1This environment should not be confused with the Execution Environment.

I Language Analysis

The following list shows Java language constructs according to The Java Language
Specification and marks if they are treated by this report. If so, the column C&E2

shows how large the conversion effort is when using the JLCA.

Issue C&E2

Lexical Structure todo

Character sets ok

Identifiers ok
Keywords 3

Literals ok

Comments ok

Operators todo

Type System todo

strongly typed ok

primitive types ok

integral types (range, operators, casting) ok

float types (format) ok

boolean ok

reference types todo

class types ok

interface types todo

array types todo

null as special type ok
String 2

Object todo

Variables todo

variable types (local, field) ok

modifiers (final) todo

lifetime todo

default values ok

Conversions todo
Names –

Scope of declarations –
Solving ambiguous names –

Packages –
Members –
Compilation units –
Importing –

Classes todo
Declaration 1

Modifiers ok

2Footnote here

6

2 Overview

Issue C&E2

Inner Classes and Enclosing Instances 1

Superclasses, Subclasses, Superinterfaces ok

Class Body and Member Declarations ok

Class Members todo
Inheritance with public, protected, private, default 1

Accessing Members of Inaccessible Classes todo

Field Declarations ok

Field Modifiers ok

Initialization of Fields ok
Method Declarations no

Formal Parameters ok

Method Signature ok

Method Modifiers ok
Method Throws no

Method Body ok

Inheritance, Overriding, and Hiding ok

Overloading ok

Member Type Declarations ok

Instance Initializers ok

Static Initializers ok
Constructor Declarations no

Formal Parameters ok

Constructor Signature ok

Constructor Modifiers ok
Constructor Throws no

Constructor Body ok

Explicit Constructor Invocations ok

Constructor Overloading ok

Default Constructor todo

Preventing Instantiation of a Class todo
Interfaces –

Interface Declarations –
Interface Modifiers –
Superinterfaces and Subinterfaces –
Interface Body and Member Declarations –
Access to Interface Member Names –

Interface Members –
Field (Constant) Declarations –

Initialization of Fields in Interfaces –
Abstract Method Declarations –

Inheritance and Overriding –

7

I Language Analysis

Issue C&E2

Overloading –
Member Type Declarations –

Arrays –
Array Types –
Array Variables –
Array Creation –
Array Access –
Array Initializers –
Array Members –
Class Objects for Arrays –
An Array of Characters is Not a String –
Array Store Exception –

Exceptions todo

Causes of Exceptions todo

Compile-Time Checking of Exceptions todo

Handling of an Exception todo

Exception Hierarchy todo
Blocks and Statements –

Blocks ok
Local Class Declarations –
Local Variable Declaration Statements –

Statements todo

The Empty Statement ok
Labeled Statements no

Expression Statements ok

The if Statement ok

The if-then Statement ok

The if-then-else Statement ok

The switch Statement ok

The while Statement ok

The do Statement ok

The for Statement ok

The break Statement ok

The continue Statement ok

The return Statement ok

The throw Statement ok

The synchronized Statement todo

The try statement ok

Unreachable Statements todo

Expressions todo

Evaluation, Denotation, and Result todo

8

2 Overview

Issue C&E2

Variables as Values todo

Type of an Expression todo
FP-strict Expressions no

Expressions and Run-Time Checks todo

Normal and Abrupt Completion of Evaluation todo

Evaluation Order todo

Primary Expressions todo

Lexical Literals todo

Class Literals todo

this todo

Qualified this todo

Parenthesized Expressions todo

Class Instance Creation Expressions todo

Array Creation Expressions todo

Run-time Evaluation of Array Creation Expressions todo

Field Access Expressions todo

Method Invocation Expressions todo

Compile-Time Step 1: Determine Class or Interface to Search todo

Compile-Time Step 2: Determine Method Signature todo

Compile-Time Step 3: Is the Chosen Method Appropriate? todo

Runtime Evaluation of Method Invocation todo

Array Access Expressions todo

Postfix Expressions ok

Postfix Increment Operator ++ ok

Postfix Decrement Operator – ok

Unary Operators ok

Prefix Increment Operator ++ ok

Prefix Decrement Operator – ok

Unary Plus Operator + ok

Unary Minus Operator - ok

Bitwise Complement Operator ok

Logical Complement Operator ! ok

Cast Expressions todo

Multiplicative Operators ok

Multiplication Operator * ok

Division Operator / ok

Remainder Operator % ok

Additive Operators ok

String Concatenation Operator + ok

Additive Operators (+ and -) for Numeric Types ok

9

I Language Analysis

Issue C&E2

Shift Operators ok

Relational Operators ok

Numerical Comparison Operators <, <=, >, and >= ok

Type Comparison Operator instanceof ok
Equality Operators 3

Numerical Equality Operators == and != ok

Boolean Equality Operators == and != ok
Reference Equality Operators == and != 3

Bitwise and Logical Operators ok

Integer Bitwise Operators &, ^, and | ok

Boolean Logical Operators &, ^, and | ok

Conditional Operators & ok

Conditional-And Operator && ok

Conditional-Or Operator || ok

Conditional Operator ? : ok

Assignment Operators todo

Simple Assignment Operator = ok

Compound Assignment Operators todo

Expression todo

Constant Expression todo

Definite Assignment todo

Short summary as C# and Java should not differ that much and
the matter is not really easy

todo

2.2 Java Execution Environment

Because of the huge amount of standard libraries that are shipped with the Java
Execution Environment and that greatly support software development, it is not
possible to examine them comprehensively in this report.

It is rather a good idea to pick out some mechanisms that seem worth an inspection
in detail. This might be justified by either technical or commercial interest. Thus,
technical interest would be the main reason for the examination of the Java Server
Pages while reflections on Graphical User Interfaces would get their legitimation from
the software industry’s need to convert their Java Swing front-end client applications
into Microsoft .NET Windows applications.

The libraries that would be most interesting for an inspection in detail are shown in
the list.

10

2 Overview

Issue C&E2

Core todo

java.lang todo

java.lang.ref todo

java.lang.reflection (just a comment that mapping re-
flection is a hard task)

todo

java.applet todo

java.text todo

java.math todo
Utilities –

java.io –
java.net –
java.nio –
java.nio.channels –
java.nio.channels.spi –
java.nio.charset –
java.nio.charset.spi –
java.util –
java.util.jar –
java.util.logging –
java.util.prefs –
java.util.regex –
java.util.zip –
javax.net –
javax.net.ssl –

GUI –
java.awt –
java.awt.color –
java.awt.datatransfer –
java.awt.dnd –
java.awt.event –
java.awt.font –
java.awt.geom –
java.awt.im –
java.awt.im.spi –
java.awt.image –
java.awt.image.renderable –
java.awt.print –
java.beans –
java.beans.beancontext –
javax.accessibility –
javax.swing –
javax.swing.border –

11

I Language Analysis

Issue C&E2

javax.swing.colorchooser –
javax.swing.event –
javax.swing.filechooser –
javax.swing.plaf –
javax.swing.plaf.basic –
javax.swing.plaf.metal –
javax.swing.plaf.multi –
javax.swing.table –
javax.swing.text –
javax.swing.text.html –
javax.swing.text.html.parser –
javax.swing.text.rtf –
javax.swing.tree –
javax.swing.undo –
org.eclipse.swt.* –

Media Utilities –
javax.imageio –
javax.imageio.event –
javax.imageio.metadata –
javax.imageio.plugins.jpeg –
javax.imageio.spi –
javax.imageio.stream –
javax.print –
javax.print.attribute –
javax.print.attribute.standard –
javax.print.event –
javax.sound.midi –
javax.sound.midi.spi –
javax.sound.sampled –
javax.sound.sampled.spi –

Security –
java.security –
java.security.acl –
java.security.cert –
java.security.interfaces –
java.security.spec –
javax.crypto –
javax.crypto.interfaces –
javax.crypto.spec –
javax.security.auth –
javax.security.auth.callback –
javax.security.auth.kerberos –
javax.security.auth.login –

12

2 Overview

Issue C&E2

javax.security.auth.spi –
javax.security.auth.x500 –
org.ietf.jgss –

XML –
javax.xml.parsers –
javax.xml.transform –
javax.xml.transform.dom –
javax.xml.transform.sax –
javax.xml.transform.stream –
org.w3c.dom –
org.xml.sax –
org.xml.sax.ext –
org.xml.sax.helpers –

CORBA and RMI –
java.rmi –
java.rmi.activation –
java.rmi.dgc –
java.rmi.registry –
java.rmi.server –
javax.naming –
javax.naming.directory –
javax.naming.event –
javax.naming.ldap –
javax.naming.spi –
javax.rmi –
javax.rmi.CORBA –
javax.transaction –
javax.transaction.xa –
org.omg.CORBA –
org.omg.CORBA.DynAnyPackage –
org.omg.CORBA.ORBPackage –
org.omg.CORBA.portable –
org.omg.CORBA.TypeCodePackage –
org.omg.CORBA_2_3 –
org.omg.CORBA_2_3.portable –
org.omg.CosNaming –
org.omg.CosNaming.NamingContextExtPackage –
org.omg.CosNaming.NamingContextPackage –
org.omg.Dynamic –
org.omg.DynamicAny –
org.omg.DynamicAny.DynAnyFactoryPackage –
org.omg.DynamicAny.DynAnyPackage –
org.omg.IOP –

13

I Language Analysis

Issue C&E2

org.omg.IOP.CodecFactoryPackage –
org.omg.IOP.CodecPackage –
org.omg.Messaging –
org.omg.PortableInterceptor –
org.omg.PortableInterceptor.

ORBInitInfoPackage

–

org.omg.PortableServer –
org.omg.PortableServer.CurrentPackage –
org.omg.PortableServer.POAManagerPackage –
org.omg.PortableServer.POAPackage –
org.omg.PortableServer.portable –
org.omg.PortableServer.ServantLocatorPackage –
org.omg.SendingContext –
org.omg.stub.java.rmi –

Database Access –
java.sql –
javax.sql –

14

Entity Declarations and
Modifiers 3 ch

ap
te

r

Writing programs is defining a sequence of instructions that operate on memory
locations. Many high-level programming languages coerce the programmer to define
these locations’ structure and to modularize the sequence of instructions. Thus,
high-level programming is mainly structuring of code and data by declaring1 and
defining2 entities. This chapter compares the principal approaches of Java and C#
concerning this structuring.

3.1 Code Structuring

3.1.1 Java

In the Java programming language on the most basic level, code is modularized
into methods and constructors3, i.e. each instruction must be within a method or
constructor, or more precisely: each instruction has a unique position in the (one
and only) code block that is associated with a method. Each method is associated
with exactly one class while a class may contain an arbitrary number of methods.

A class must be contained in a package or another class. This package or class is
the container of the class. Beside its class name, a class also has a full name, which
is the name of the container followed by . and the class name. References to other
classes can always be expressed with the full name but classes in the same package
can be referred to by ommitting the package name. Using the keyword import
followed by a package name allows to omit that package’s name, too. Additionally,
access to a class depends on the containers of the accessing and the accessed class
and the latter one’s modifiers.

Note, that each class that is directly contained in a package must be completely
declared and defined in one file that has the same name as the class plus the file

1saying that an entity must exist
2saying how the entity works and/or looks like
3Most of the time, the term method includes constructors, too. However, in certain contexts it

should come out clearly that method only refers to methods.

I Language Analysis

ending java for source files or class for binaries respectively. Additionally, the
file system path of the file must correspond to the package. Thus, the binaries
have the same file system structure as the source files, except for inner classes (i.e.
classes that are contained in another class). These classes are declared and defined
in the same file as their parent class but their binaries are separate files in the same
directory, prefixed with the parent class’s name plus $.

Packages are the only entities that are not contained in other entities. Even if it
might seem that for example the package java.lang.reflection is part of the
package java.lang it is not. This confusion exists because in the file system, each
part of a package is a subdirectory of the former part.4 If a class does not specify
explicitly its package, its package is the (implicitly defined) default package that has
no name and is located in the program’s root directory.

Finally, each program must have an entrypoint. In Java, a program can share parts
of its code with other programs by using the same classes. Therefore, the entrypoint
of a program is defined as a method with the signature public static void

main(String[] args). As each class may have at most one method with the
same name and parameter signature, each class may have at most one entrypoint.

3.1.2 C#

The basic code structuring in C# is similar to the one in Java: code is modularized
into methods and classes. However, the idea about what a program is differs in both
languages (and the execution environments).

First, the declaration and definition of a code is nearly completely independent of
the file system structure. Still, all of a class’s declarations and definitions must be
contained in one file. But that file can contain other classes and thus may have an
arbitrary name and location.

Furthermore, binaries and source files do not share a common file system structure.
Instead, binaries are organized in assemblies which may consist of one or more files.5

These files do not have to be located at certain places in the file system.6 From the
programming language’s point of view, an assembly is the output of one compiler
session.

A program or application is an assembly which has an entrypoint. This entrypoint
must be a static method named Main that can have a single parameter of type
String[] (or not) and whose return type must be either int or void. Each
application must have exactly one entry point. For that reason, Java applications

4The package this.is.a.package has the (local) path /this/is/a/package
or \this\is\a\package.

5However, tools like Microsoft Visual Studio do not support multifile assemblies, yet.
6Advanced concepts like the Global Assembly Cache are out of scope of this report.

16

3 Entity Declarations and Modifiers

that have more than one entrypoint must be converted into several assemblies. Un-
fortunately, this can lead to further problems because of code dependencies and
code access restrictions between the applications. In the worst case, the entrypoint
structure of such applications must be redesigned.

Concerning accessibility, assemblies play a similar role as packages do in Java. How-
ever, this is not true for full names of classes. This aspect of Java packages is realized
by namespaces. Similar to packages, namespaces do not contain each other7 but only
classes and each class is in a namespace or in another class (which is its container).
Thus, the full name of a class in C# is the class name preceded by the container’s
name. Namespaces have no special relation to assemblies, i.e. namespaces can span
several assemblies while assemblies can contain more than one namespace.

3.2 Data Structuring

3.2.1 Memory Allocation and Deallocation

All the memory that can be used by a Java or C# program is allocated either in
the form of an object or as the set of local variables and arguments for a method
call. Each time a method is called, the necessary amount of memory for all local
variables and arguments must be allocated. That local variables memory will be
released after the method call has returned. In general, local variables memory is
allocated on the stack.

In contrast, the memory for an object is allocated if and only if the new instruction
is executed.8 That piece of memory is released after the execution environment
is sure that the object will never be used again in the program. I.e. there is no
possibility to release the memory occupied by an object. The object memory is not
allocated on the stack but has its own, method independent space.

There are no other ways to tell the compiler to allocate memory. However, the
compiler can collect all necessary information about the needed memory when look-
ing at the definitions of methods and classes. The memory needed by a method
call is the sum of the memory needed by each local variable and argument. The
memory occupied by an object is the sum of all its member fields and methods (for
inheritance).

Local variables, arguments and fields have in common that they are typed. This

7And similar to packages one might think that they contain each other due to the syn-
tax: namespace two { namespace name_spaces {}} defines two namespaces
two and two.name_spaces.

8In fact, the boxing mechanism in C# could be seen as another possibility to allocate memory.
But as boxing is nothing more than allocating an appropriate object and assigning that value to
it, it will not be considered separately as all the more Java cannot box.

17

I Language Analysis

type specifies which kind of data may only be written into that piece of memory and
how the data is interpreted when reading it. A type may either be a primitive type
or a reference type.

3.2.2 Primitive Types

Java knows the primitive types listed below (with the respective value set):

boolean true, false
byte 8 bit signed integer
short 16 bit signed integer
int 32 bit signed integer
long 64 bit signed integer
char 16 bit Unicode (or 16 bit unsigned)
float 32 bit floating point
double 64 bit floating point

In contrast, C# can cope with:

bool true, false
byte 8 bit unsigned integer
sbyte 8 bit signed integer
ushort 16 bit unsigned integer
short 16 bit signed integer
uint 32 bit unsigned integer
int 32 bit signed integer
ulong 64 bit signed integer
long 64 bit signed integer
char 16 bit Unicode (or 16 bit unsigned)
float 32 bit floating point
double 64 bit floating point
decimal precise decimal with 28 significant digits

Despite minor differences, it is clear that C# comprises Java’s set of primitive types.

3.2.3 Reference Types

All other data types in Java are reference types. This means, that a variable of
such a type always holds a reference to an object of that type or the special value
represented by the literal null. On the other hand, each object of that type can
only be referenced to by a variable of that type or an ancestor type. Reference types
can be divided into classes and interfaces. In addition to those reference types, C#
knows value types which are called structs and which are a conceptual mix of classes
and primitive types.

18

3 Entity Declarations and Modifiers

Classes

A class is not only a container for methods and other classes but also a template for
the creation of objects. Therefore, classes can contain typed fields.

In Java, each object consists of the sufficient amount of memory for each member
field and a slot for a reference to each member method. This slot is necessary for
object oriented concepts like polymorphism. Moreover, classes can contain fields,
that do not belong to a certain object and therefore exist only once for all objects of
this class. These fields are called static. Similar, static methods are methods, that
have no slot in each object but that belong to the class. C# adds methods, that
are not static but do not need a slot for each method. All this will be explained in
section 3.3.

Interfaces

Interfaces are some kind of tags that are associated with types. They express that
objects of such a type have methods.

Java interfaces can consist of a set of member methods and a set of constant static
fields. Each type that implements such an interface must provide for methods with
the same signature. Contrary, the static fields only exist in the interface.

Unfortunately, C# splits this up: interfaces must not contain fields. Therefore, a
Java interface with fields and methods must be represented by two entities in C#:
A class that contains the static fields and an interface that contains the member
methods. Alternatively, C# provides for enumerations, that are essentially classes
that only contain constant static fields.

Structs

Structs are structured value types whose main difference towards classes is that they
are not reference types but some kind of user defined primitive types.9 Therefore,
instances of structs are created as local variables. If a struct consists of two ints, a
declaration of a local variable of that struct would reserve the memory for two ints
in the local variables memory. In contrast, the declaraion of a local variable whose
type is a class with two ints would reserve the memory for two ints in the object
memory and a reference to that memory in the local variables memory.

Furthermore, an argument that is of a struct type will be copied in its whole each
time the method is called. Analogously, the same is true for return values that are

9Although Java does not know such types it is necessary to have some facts about them in
mind because great parts of the .NET framework use them in signatures. Thus, unless you want
to rewrite that functionality, the C# mapping of your Java code must use structs.

19

I Language Analysis

structs.

Since structs cannot be referenced, they can never have the value null.

3.3 Object Model

Basically, the object models of Java and C# are very similar. First, objects are
created using a constructor and the new operator. Then, the program will call
methods on the objects, and finally objects will be destroyed automatically, once
the execution environment has found out, that they cannot be used any more.

3.3.1 Inheritance

A class C can be derived from at most one class P by writing class C extends
P in Java or class C : P in C#. Objects of type C will then have at least the

same slots(member fields and references to member methods), i.e. each object of
type C can be used as an object of type P.

Moreover, class C can declare additional fields and methods as well as override
methods defined in P. Overriding means first, that C provides a definition for a
method M of P that has the same signature, and second, that objects of type C
hold a reference to C.M instead of P.M. Thus, a method call on a variable of type P
could result in a method call to P.M or C.M depending on the object that is referred
to by the variable. In Java, methods are overridden by defining M in C the same
way as if it would not exist in P. There is no way to prevent this overriding by the
derived class (e.g. if the programmer of C does not have a good knowledge of P
and does not want to override any methods by accident). That’s why in C#, each
method in C that has the same signature as a method in P must be declared as
either override or new.

To forbid the overriding of a method, the method can be declared as final in Java
or sealed in C#. If these modifiers appear in the declaration of a class, no classes
can be derived from that class.

Another effect of overriding is the hiding of the name of the overridden method.
As long as a method is not overridden, each occurence of its name refers to it,
even in derived types. But when a method is overridden, its name refers to the
method defined by the overriding type when used in that overriding type and all of
its subtypes. However, sometimes it is necessary to refer to the original method. In
Java, this can be done using the keyword super, in C# it is base.

If a class is not derived explicitly from another class, it is derived implicitly from
java.lang.Object (Java) or System.Object (C#). These classes form the
root of the class inheritance tree in their respective environment.

20

3 Entity Declarations and Modifiers

3.3.2 Abstract Classes and Interfaces

If a class declares a method without providing a definition, this method must be
declared as abstract in both languages. A class that contains abstract methods
must be itself declared as abstract. This is also true, if the class inherits abstract
methods, that are not implemented. Non-abstract classes that inherit from abstract
classes must implement all abstract methods, overriding them.

Interfaces contain method declarations, but never method definitions. Thus, class
C can implement an arbitrary number of interfaces. This must be declared in the
class’s signature: class C implements A, B, C in Java and class C :

A, B, C in C#. If C inherits from P, P must be the first identifier immediately
after : in C#. Implemented methods do not have to be declared as override.

3.3.3 Inner Classes

Inner classes are classes that are contained in another class. Java knows two types
of inner classes: static and non-static inner classes. Except for not being contained
in a package, static inner classes do not differ from other classes but they must be
declared with the keyword static.

Instances of non-static inner classes can only be created and referred to in non-
static contexts (i.e. member methods and constructors) of objects of the outer class
because they hold an implicit reference to their encapsulating object.

In C#, there are only static inner classes. Unfortunately, they are not marked as
static. Non-static classes’ behaviour must be emulated by explicitly defining a
member field of the outer type that contains a reference to the encapsulating object.
This reference must be an argument of all constructors.

There is also a possibility of defining anonymous inner classes in Java which is not
possible in C#. But this can easily be fixed by naming the C# counterparts of
Java’s anonymous classes.

3.4 Accessibility

As a means of structuring data and code and avoiding programming errors, Java
allows to restrict code to access certain entities. In this section, we will concentrate
on the most basic concepts which can be expressed by using language means. The
more sophisticated accessibility and security concepts are subject to examinig the
appropriate code libraries.

Access to classes and their members can be restricted. Therefore, there is a set of
modifiers that express these restrictions. If a certain method or field can be accessed

21

I Language Analysis

depends its class’s modifier and its own modifier as well as the relative location of
the method that wants to access it and the class inheritance hierarchy.

3.4.1 Content of Packages/ Assemblies

In Java, classes and interfaces that are contained in a package can be declared as
public. They can then be referred to from other packages; otherwise, they can
only be used by code inside the same package.

In C#, types that are not part of another class can be declared as public

or internal (if none of those is given, internal is assumed). If a type is
internal, it can only be accessed by methods that are defined inside the same
assembly; otherwise, also methods defined in other assemblies can access the type.

3.4.2 Content of Classes

If a class is accessible by a method, not all of its members10 have to be necessarily
accessible. But conversely, it is not possible that a member is accessible while
its containing class is not. Instead, each member can be modified by private,
protected, public in Java and additionally internal in C#. Except for the
combination protected internal, only one access modifier can be specified.

A member that is declared as public can be accessed by everyone else; private
members are only accessible by methods of the containing class (and classes that
are inside that class). protected members are like private members but can
be accessed also by methods of derived classes. In C#, internal members are
accessible by methods that are defined in the same assembly; a method can access a
protected internal member if it could access the member if the member was
protected or internal.

10The statements in this section apply to everything inside a class: static methods, inner types,
...

22

Expressions and
Statements 4 ch

ap
te

r

4.1 Expressions

An expression represents a value that must be calculated if necessary. A value is
everything that can be stored in a variable. The name of a variable is therefore one
of the most simple expressions indicating the value stored in that variable.

Other simple expressions are literals. A literal is a value that is constant in the
whole program and known at compile time as for example "This is a string

literal.", 9879 or ’a’. Literals are null, true and false, too.

More complex expressions can be constructed out of simple expressions, opera-
tors and method calls, for example 123 + 987 or 54 + calculate(). Since
method calls are some kind of statement, too, they will be covered in section 4.2.

4.1.1 operators

In Java, operators are predefined while in C#, it is possible to redefine (also known
as overload) operators. However, this possibility is out of scope of this report. In
general, the operators work the same way in both languages. The main differences
can be found when looking at the == operator concerning strings.

While in Java, the == operator always compares references when used with reference
types, the same operator in C# compares the values of the strings. Normally, this
difference does not come out clearly in Java programs because of a mechanism called
string interning. This allows to call the method intern() on a string. The runtime
then tries to find a string that has the same value in its internal string table. If it
does not find one the reference to that string will be stored in the table and returned
by intern(). Otherwise the reference to the string in the table will be returned.
String literals are automatically interned as well as many Java libraries intern strings
automatically. Thus, reference comparison is often sufficient. However, the correct
translation to C# must cast the Strings to Objects and compare these because
objects are compared by reference. This effect is due to operator overloading in C#.

I Language Analysis

Additionally, the instanceof operator of Java has been replaced by the is op-
erator in C#.

Most interestingly, there is a suffix .class which is used in Java to form the literal
that denotes the type at runtime (i.e. whose value is a reference to the object of
type Class that represents the class). This literal mechanism finds its counterpart
in the C# operator typeof().

4.2 Statements

A statement is an instruction that has no value and rather controls the flow of
execution. However, as mentioned above, method calls can have an expression like
character as they return a value. But if the return value of a method is neglected, the
method call cannot be an expression. As with expressions, most of the statements
in Java and C# are identical. These are the if, then, else, for, while, do,
and return statements.

The statements that deal with excpetion handling (throw, try, catch, finally

) will be covered in the appropriate section 5.1

Note that there are three ways to terminate a statement. First, the statement can
be processed completely, which is called to complete normally. Second, a return,
break or continue statement (additionally the goto statements in C#) can
transfer the flow of execution out of the statement without completing normally.
Third, an exception (or more precisely an object of type Throwable in Java or
of type Exception in C#) might occur. These both ways are called to complete
abruptly.

4.2.1 The switch Statement

In Java, switch statements can be used for multiple decisions. The same statement
exists for the same purpose in C# but the case substatements work a little bit
different.

While in Java, the flow of execution falls through the labels denoted with case
unless it completes abruptly, C# requires that no case section has a reachable
endpoint. Therefore, each section must complete abruptly.1 However, to allow
fall-through behaviour, the goto case statement followed by a label or the goto

default statement can be used.

1Several labels can form one case section if their declarations follow immediately: case
label1: case label2: method_call(); break;.

24

4 Expressions and Statements

4.2.2 The break and continue Statements

The unlabeled version of these statements has the same effect in both languages:
they transfer the control out of a for, while, or do loop (unless break is used
as part of the switch statement). break completes abruptly the loop, while
continue completes abruptly the iteration and therefore makes the loop check if
another iteration must be made.

Statements can be prefixed with labels. If a loop is prefixed by a label L, a break
statement followed by L will complete normally that loop in Java. This can be used
to break out of nested loops, as it would else not be possible to break an outer loop
from an inner loop without using state variables. Similar, the labeled continue
statement completes the respective loop iteration.

In C#, there are no labeled versions of break and continue. Instead, the goto
statement can be used to transfer control out of loops but not to transfer control
into loops. The label immediately after goto can be declared at any legal position
inside the same method or constructor.

However, this is not an equivalent translation. To transform break statements, the
label in the C# program must be declared immediately after the loop that bears
the label in the Java program. In contrast, goto can be used in the C# program
like the labeled continue in Java. In the C# program, one could as well set the
label followed by an empty statement (label:;) at last position inside the loop
that bears the label in Java.

4.2.3 The synchronized Statement and Modifier

The synchronized statement opens a block of code that is intended for use
with concurrent programming and is equivalent to the lock statement in C#.
Both statements require an object to lock on and guarantee the correct locking and
unlocking, no matter if the code block completes abruptly or normally.

However, and little bit off topic of this section, there is a synchronized modifier
for methods in Java, too. This modifier expresses that all methods in the class, that
have this modifier, share the same locking object and synchronize their whole code.
This modifier does not exist in C# but can be easily emulated. Therefore, each class,
that has synchronized methods must have one lock for all static methods and
one lock for each instance for all instance methods in C#. Note that this second lock
should be accessible in a protected field as all instance methods in derived types must
use the same lock. Furthermore, the whole code of each synchronized method
must be contained in one single lock statement in C# that locks on the respective
lock object.

25

Execution Environment 5 ch
ap

te
r

This chapter is a very short overview of the execution environment. It contains a
section about exception handling and a section about some basic mappings between
types.

5.1 Exception Handling

The concepts of exceptions are very similar in both languages, although there are
two major differences: First, methods must declare which exceptions they throw
using the keyword throws or catch every exception that methods which are called
by them have declared to throw unless these exception belong to the category of
runtime exceptions. Moreover and more important, the exception type hierarchies
differ.

As it would be rather complicated to enforce the programmer to make her methods
declare the possibly thrown exceptions1 and as it does not affect the program’s
behaviour, this topic can be neglected when talking about conversion of complete
programs.

Unfortunately, the differences in the exception type hierarchies can lead to worse
and subtile problems. In Java, every object of type Throwable can be thrown by
the statement throw. There are two predefined subclasses of this class: Error and
Exception. Errors are supposed not to be caught by a reasonable application
except for very rare cases.

In C#, the exception type hierarchy starts with Exception, i.e. an object can be
thrown by the throw statement iff it is of type Exception. Therefore, it seems
reasonable to map Java’s Exception on C#’s Exception. But what would then
be the mapping of Throwable, Error and application defined exceptions that are
derived from Throwable?

This question suggests, that it could possibly be impossible to map the sophisticated

1One way would be to define an attribute in C# whose parameters would be the exceptions.
But still without means of modifying the compiler, this does not enforce the programmer to do so.

I Language Analysis

exception handling structure of some Java application to an appropriate C# program
if the application uses standard libraries that throw exceptions and handles these
exceptions together with their own exceptions.

There are also some minor differences concerning the syntax. While the use of the
throw, try, and finally statements is the same, catch can be used slightly
different: In Java, catch must always be followed by a variable in brackets that
is of a type derived from Throwable. In C#, there are shortcuts. Thus, it is
sufficient to specify only the class without a variable if the variable is not needed in
the catch block. If even the class is omitted the catch block catches all exceptions
(like catch (System.Exception)).

5.2 Basic Mappings

Note that these mappings are just a rough orientation. Often, methods are not
mappable easily.

java.lang.Object System.Object
java.lang.Class System.Type
java.lang.Math System.Math
java.lang.String System.String
java.lang.Thread System.Threading.Thread
java.util.ArrayList System.Collections.ArrayList
java.util.Calendar System.Globalization.Calendar
java.util.Date System.DateTime
java.util.Hashtable System.Collections.Hashtable
java.ref.WeakReference System.WeakReference

28

II pa
rt

Java Language
Conversion

Assistant
Based on the language survey in Part I, this part examines the Java
Language Conversion Assistant (JCLA).
First of all, the JLCA is introduced in chapter 6. Afterwards, chap-
ters 7 and 8 deal with tools that are needed for the conversion of
large Java projects. Chapter 9 examines how the JLCA performs
when converting selected Java programs. Chapter 10 briefly intro-
duces a number of tools that have similar purposes as the JLCA.

Introduction 6 ch
ap

te
r

The Java Language Conversion Assistant (JLCA) is a tool that helps with the au-
tomatic conversion of Java source code to C# source code. The JLCA is able to
automatically convert most of Java’s syntactic constructs1 as well as the usage of
many classes of the Java class library.

The JLCA comes in two different flavors - as a command line tool and as a plug-in
for Visual Studio .NET 2003. Both versions seem to be built on top of the same
core and thus offer the same functionality.

The JLCA can handle normal console and GUI programs as well as web applications
that are usually deployed in a Java Application Server2.

For each set of Java source files the JLCA converts, a new Visual Studio project is
created. Additionally, the tool writes a conversion report that contains a list of all
problems encountered during the conversion.

Currently, it is not directly possible to convert an application step by step. Even
applications consisting of many loosely coupled modules must be converted in one
step. This is due to the fact that the JLCA does not know how to resolve references
to libraries that are not part of the Java class library. If an application was con-
verted in multiple steps several class libraries would normally be created all of which
would be used by a main module. The JLCA would be unable to automatically re-
solve references from the main module to the previously converted class libraries.
Chapter 8 deals with the Extensibility Kit. This kit, which allows the definition of
custom conversion rules, can be employed to solve the above-mentioned problem.

Furthermore, the JLCA can currently not be used to repeatedly convert Java projects
that are still under development. Usually, manual changes have to be applied to the
C# code that is created by the JLCA. These changes would have to be re-applied
again and again after each conversion as the JLCA always makes the same errors.
Chapter 7 deals with some shell scripts that provide a solution to this problem.

1In fact, the only construct that is not automatically converted is Java’s assert keyword.
Furthermore, Java and C# sometimes treat identifiers differently. In rare cases, this may lead to
problems as well.

2This document deals with console and GUI applications only.

II Java Language Conversion Assistant

6.1 Conversion Example

In the following, a small example will illustrate how the JLCA can be used to convert
Java source code to C# source code. Suppose we have a very simple Java source
file that contains nothing but an empty class declaration.

1 public class EmptyClass{
2 }

Listing 6.1: EmptyClass.java

When the JLCA converts this class it creates a C# source file that contains exactly
the same empty class definition.

1 using System;
2 public class EmptyClass
3 {
4 }

Listing 6.2: EmptyClass.cs

Furthermore, the JLCA creates a number of other files:

AssemblyInfo.cs This file contains information about the .NET assembly that is
created when the C# project is compiled.

EmptyClass.csproj This is the Visual Studio .NET 2003 project file.

EmptyClass.xml This file contains an XML representation of all problems the
JLCA encountered during the conversion process. It contains the same infor-
mation as the conversion report.

ConversionSummary.txt This file contains a short summary of what has been
converted, namely how many files have been converted and what sizes these
files have.

ConversionReport.htm This file contains an HTML representation of the con-
version report. It can be viewed with any modern web browser.

ConversionReport Files This directory contains some auxiliary files for the con-
version report.

For the above example the conversion report contains only one issue which states
that the “interaction between members of a class may differ because their execution
sequence is different.” This issue is automatically added to each conversion report.
It does not indicate any real problems and should be considered as a general warning
that the JLCA can never make sure that a converted program has the same behavior
as the original program. After all, the A in JLCA stands for “assistant”.

32

6 Introduction

Obviously, this small example does not show much of what the JLCA is able to do
or not to do. Chapters 7, 8 and 9 provide more insight into the capabilities of the
JLCA.

33

Diff-Patch Tool 7 ch
ap

te
r

This chapter deals with a tool suite that was developed in the course of the JLCA
evaluation. This suite helps to solve problems that arise when the JLCA is repeatedly
used to convert a software project that is still under development1.

7.1 Motivation for the Diff-Patch Tool

Imagine the following situation: The source code of a large Java application is to be
converted to C#. After the conversion, a lot of manual changes have to be applied
to the C# code in order to make it compilable and correct. However, as software
projects are never really completed the Java sources are changed afterwards and the
conversion has to be performed a second time. If the JLCA alone was used for this
purpose all changes would have to be made a second time. All the manual work
that was carried out during the first conversion would be lost.

The tool suite solves this issue by remembering the changes that are applied to the
C# code after each conversion. Each time the Java sources are converted anew,
the tool suite tries to apply these changes to the new version of the C# code. For
accomplishing these tasks, the tool suite uses the diff and patch tools that are well-
known from Unix platforms. Currently, the tool suite consists of some shell scripts
that run under the Cygwin environment on any Win32 platform. However, it should
be very easy to adapt the scripts so they run on the Interix platform for example.

7.2 The Tool Suite

The tool suite consists of the following shell scripts and related files:

jlca.bash This is the main script of the tool suite. It starts the JLCA and auto-
matically patches the C# code after a conversion.

1Please note that the current version of the tool suite is no more than a proof a concept. It is
not very flexible yet and does not feature a very convenient user interface.

II Java Language Conversion Assistant

When started, this script looks for a directory named “java” where it expects
to find the Java sources that are to be converted. During its execution, two
directories are created - “jlca orig” and “jlca corrected”. The files in “jlca orig”
should not be modified. They contain the unpatched C# sources which are
needed for the diff tool. The second directory contains the patched C# code.
All changes to the C# code have to be made in this directory.

jlca.bash will only start the JLCA if the Java sources have been modified since
the last conversion.

makediff.bash This script is used to start the diff tool. It creates the file “diff.txt”
which contains information about all changes that were applied to the C#
code. The file is located in a directory named “diff”. The input for the diff
tool are the directories “jlca orig” and “jlca corrected”.

applydiff.bash This script is used to patch the C# code after a conversion. It
uses the file “diff.txt” in the directory “diff”. During its execution, the script
copies the directory “jlca orig” to the directory “jlca corrected” which is the
directory the patch is applied on.

header.bash This shell script cannot be started directly. Instead, it is a configura-
tion script that is used by all other shell scripts. It contains variable definitions
related to the directories the other scripts use, command line settings for the
JLCA, and global procedures. The values of the variables in this script can be
modified to make the other scripts use different directories.

diffExcludedFiles.txt This file contains a list of all files that the diff tool must
ignore. For example, it makes no sense that the diff tool compares conversion
reports.

Figure 7.1 on the facing page shows the development workflow that is associated with
the tool suite. Steps one and two are handled by jlca.bash. Internally, jlca.bash uses
applydiff.bash for carrying out step two. Step four is performed by makediff.bash.

7.3 Diff-Patch Tool Example

The following example is going to illustrate the work with the Diff-Patch tool.

Listing 7.1 shows a small Java program that the JLCA cannot fully convert. Instead
of printing the message “Hello from Java.” the converted program should print the
message “Hello from C#.”

1 public class MainClass {
2 public static void main(String [] args) {
3 System.out.println("Hello from Java.");
4 }
5 }

36

7 Diff-Patch Tool

5.
Modify Java

sources

4.
 Remember

changes

3.
Make new
changes to

converted code

2.
Patch converted

code

1.
Start conversion

Figure 7.1: Development workflow with the Diff-Patch tool

Listing 7.1: java/MainClass.java

When jlca.bash is executed the JLCA is started and converts the Java program,
producing the C# code shown in listing 7.2. As this is the first conversion the
contents of the directories “jlca orig” and “jlca corrected” is identical.

1 using System;
2 public class MainClass
3 {
4 public static void Main(System.String [] args)
5 {
6 System.Console.Out.WriteLine("Hello from Java.");
7 }
8 }

Listing 7.2: jlca orig/MainClass.cs

At this point the file “jlca corrected/MainClass.cs” should be modified and the script
makediff.bash should be executed to store the modifications. Listing 7.3 shows the
new C# code.

37

II Java Language Conversion Assistant

1 using System;
2 public class MainClass
3 {
4 public static void Main(System.String [] args)
5 {
6 System.Console.Out.WriteLine("Hello from C#.");
7 }
8 }

Listing 7.3: jlca orig/MainClass.cs

Now, whenever the Java sources are converted anew the modifications to the file
“jlca corrected/MainClass.cs” will be carried out automatically.

However, there is also a problem coming with the usage of the diff and patch tools.
If the Java sources are changed in unfavorable places the patch tool is unable to
find the lines it has to modify. This is due to the fact that the patch tool uses
a combination of line numbers and line contents to find these lines. Even though
it employs some heuristics the patch tool fails if too much of this information is
corrupted or lost, e.g. because certain lines have been moved, deleted or modified.

Listings 7.4 and 7.5 give examples of how the patch tool works if the Java sources
are modified in certain ways. The modifications in listing 7.4 corrupt too much of
the information needed by the patch tool. The modifications in listing 7.5 on the
other hand cause no problems.

1 public class MainClass {
2 public static void main(String [] args) {
3 System.out.println("Hello from Java.");
4 System.out.println("Hello again.");
5 }
6 }

Listing 7.4: MainClass.java with unfavorable modifications

1 public class MainClass {
2 public static void main(String [] args) {
3 System.out.println("Hello from Java.");
4 }
5

6 public void test() {
7 }
8 }

Listing 7.5: MainClass.java with neutral modifications

38

Extensibility Kit 8 ch
ap

te
r

This chapter gives an overview of the Extensibility Kit (EK) that is shipped with
recent versions of the Java Language Conversion Assistant (JLCA)1. The Extensi-
bility Kit is an extension to the JLCA which lets users add new conversion rules
to the rule data base of the JLCA. This helps to solve the problem that the JLCA
is unable to automatically convert the usage of classes for which it knows no such
conversion rules. Additionally, the Extensibility Kit allows the redefinition of the
built-in conversion rules of the JLCA.

8.1 Extensibility Kit Basics

New conversion rules have to be defined in a special pattern-based mapping language
which allows the definition of rules for two distinct scenarios. On the one hand, rules
can be defined that specify how the usage of a class member is mapped from Java
to C#. This includes method invocations and read and write accesses to fields.
On the other hand, the language provides means for specifying how overrides of
class members have to be converted. Moreover, the mapping language allows the
definition of custom error messages that can be included into the converted source
code and into the conversion report. Further down in this chapter there are some
examples which help to get a better understanding of the capabilities of the mapping
language.

Fortunately, the EK ships with a convenient Visual Studio .NET 2003 integration.
This integration features Visual Studio mapping language projects, syntax highlight-
ing, keyword completion and the integration of the mapping language compiler.

Mapping language files are compiled into .NET assemblies. These assemblies, which
seem to contain conversion rules in a special JLCA format, must be placed into
the “Maps” subdirectory of the installation directory of the JLCA. This is done
automatically during the compilation of a mapping language project. The “Maps”
directory also contains the built-in conversion rules of the JLCA.

1Please note that at the writing of this document the release modalities for the EK were still
unclear.

II Java Language Conversion Assistant

When the Extensibility Kit is used for converting Java programs the JLCA needs
the compiled Java class files in addition to the source files. (Without the EK the
JLCA does not seem to need any class files.) For finding these files the JLCA uses
approximately the same rules as a typical Java virtual machine. It looks into the
current directory and into all directories that are enumerated in the CLASSPATH
environment variable. It also looks into all JAR files that are either specified directly
in the CLASSPATH environment variable or that are located in one of the directories
that are listed in this variable. Please note: The JLCA fails if it cannot find the
required class files. Neither does it apply the custom conversion rules nor does it
provide an error message with an indication of the problem.

8.2 Basic Mapping Definitions

The first example illustrates how custom conversion rules are defined with the map-
ping language of the Extensibility Kit. Listings 8.1, 8.2 and 8.3 on the facing page
contain the Java source code that is to be converted as well as the mapping language
code.

MainClass uses the custom Java class de.hpi.Test for which the JLCA does
not know any conversion rules. Test features a method test that is overloaded
several times, a setter and a getter method as well as a public field. The code in
MainClass makes use of all these members.

1 import de.hpi.Test;
2

3 public class MainClass {
4 public static void main(String [] args) {
5 Test t = new Test();
6 t.test();
7 t.test("s");
8 t.test (123);
9 t.test("s" ,123);

10 String s = t.getProp ();
11 t.setProp("s");
12 int i = t.i;
13 t.i = 1;
14 }
15 }

Listing 8.1: MainClass.java

1 package de.hpi;
2

3 public class Test {
4 public void test() {}

40

8 Extensibility Kit

5 public void test(String s) {}
6 public void test(int i) {}
7 public void test(String s, int i) {}
8

9 public String getProp () {
10 return "";
11 }
12

13 public void setProp(String s) {}
14

15 public int i;
16 }

Listing 8.2: Test.java

The mapping file “Test.emap” contains the conversion rules for the class de.hpi

.Test. These rules specify that the class de.hpi.Test is to be mapped onto
the .NET class CsTest. There are mappings for all test methods as well as for
the getter and the setter methods and the public field. Note how the getter and
the setter methods and the public field are mapped onto C# properties. Further
note how the order of the arguments for the method test(String s, int i)
is exchanged in line 13.

1 package de.hpi
2

3 class Test : CsTest
4

5 Test
6 b() -> new CsTest ();
7 endmap
8

9 test
10 a.b() -> a.Test();
11 a.b(p1:int) -> a.Test(p1);
12 a.b(p1:java.lang.String) -> a.Test(p1);
13 a.b(p1:java.lang.String , p2:int) -> a.Test(p2

,p1);
14 endmap
15

16 getProp
17 a.b() -> a.Prop;
18 endmap
19

20 setProp
21 a.b(p:java.lang.String) -> a.Prop = p;
22 endmap
23

41

II Java Language Conversion Assistant

24 i
25 a.b -> a.I;
26 a.b = c -> a.I = c;
27 endmap
28

29 endclass
30

31 endpackage

Listing 8.3: Test.emap

Listing 8.4 contains the C# code that the JLCA produces with the custom conversion
rules. Apparently, the Java class de.hpi.Test is successfully mapped onto the
.NET class CsTest.

1 using System;
2 using Test = de.hpi.Test;
3

4 public class MainClass
5 {
6 [STAThread]
7 public static void Main(System.String [] args)
8 {
9 CsTest t = new CsTest ();

10 t.Test();
11 t.Test("s");
12 t.Test (123);
13 t.Test (123, "s");
14 System.String s = t.Prop;
15 t.Prop = "s";
16 int i = t.I;
17 t.I = 1;
18 }
19 }

Listing 8.4: MainClass.cs

8.3 Overriding Built-In Conversion Rules

This example shows that the EK can be used to replace selected default conversion
rules.

The listings 8.5 on the facing page and 8.6 on the next page show the Java source code
and the mapping language code respectively. The custom conversion rules specify
that the class java.util.Date is to be mapped onto the C# class MyCsDate

. The parameterless constructor Date() is mapped onto MyCsDate() and the

42

8 Extensibility Kit

method toString() is mapped onto MyToString(). All other default conver-
sion rules remain intact.

1 import java.util.Date;
2

3 public class MainClass {
4 public static void main(String [] args) {
5 Date d = new Date();
6 System.out.println(d.toString ());
7 System.out.println(d.getTime ());
8 }
9 }

Listing 8.5: MainClass.java

1 package java.util
2

3 class Date : MyCsDate
4

5 Date
6 b() -> new MyCsDate ();
7 endmap
8

9 toString
10 a.b() -> a.MyToString ();
11 endmap
12

13 endclass
14

15 endpackage

Listing 8.6: Date.emap

Listing 8.7 shows the C# code that the JLCA produces with the custom conversion
rules. Obviously, the constructor and the method toString() are converted ac-
cording to the specifications of the mapping file. The method getTime() on the
other hand is converted with the default rules of the JLCA. It is mapped onto the
Ticks property of the .NET class System.DateTime.

1 using System;
2

3 public class MainClass
4 {
5 [STAThread]
6 public static void Main(System.String [] args)
7 {
8 MyCsDate d = new MyCsDate ();
9 System.Console.Out.WriteLine(d.MyToString ());

43

II Java Language Conversion Assistant

10 //UPGRADE TODO : Method ’ j a v a . u t i l . Date . getTime ’ was conve r t ed to ’

System . DateTime . Ticks ’ which has a d i f f e r e n t b eh a v i o r .

11 System.Console.Out.WriteLine(d.Ticks);
12 }
13 }

Listing 8.7: MainClass.cs

8.4 Declaration Mappings

This example shows the usage of so-called declaration mappings. This kind of map-
ping is used for the conversion of inheritance relations where overwritten Java meth-
ods and fields must be mapped onto adequate C# methods, fields and properties.

Listings 8.8, 8.9 and 8.10 on the next page show the Java source code for this exam-
ple. The class Test uses the classes de.hpi.BaseClass and DerivedClass

. The class DerivedClass inherits from the class de.hpi.BaseClass.
DerivedClass overwrites all methods and hides the original field s.

1 public class Test {
2 public static void main(String [] args) {
3 de.hpi.BaseClass bc = new de.hpi.BaseClass ();
4 bc.test();
5 bc.test2();
6 bc.test3();
7 System.out.println(bc.s);
8

9 DerivedClass dc = new DerivedClass ();
10 dc.test();
11 dc.test2();
12 dc.test3();
13 System.out.println(dc.s);
14 }
15 }

Listing 8.8: Test.java

1 public class DerivedClass extends de.hpi.BaseClass {
2 public void test() {
3 System.out.println("Hello from DerivedClass.");
4 }
5

6 public void test2() {
7 System.out.println("Hello again from DerivedClass

.");

44

8 Extensibility Kit

8 }
9

10 public void test3() {
11 System.out.println("Last hello from DerivedClass.

");
12 }
13

14 public String s = "DerivedClassString";
15 }

Listing 8.9: DerivedClass.java

1 package de.hpi;
2

3 public class BaseClass {
4

5 public void test() {
6 System.out.println("Hello from BaseClass.");
7 }
8

9 public void test2() {
10 System.out.println("Hello again from BaseClass.")

;
11 }
12

13 public void test3() {
14 System.out.println("Last hello from BaseClass.");
15 }
16

17 public String s = "BaseClassString";
18 }

Listing 8.10: BaseClass.java

Listing 8.11 contains the custom conversion rules for the class de.hpi.

BaseClass. The method test has only an invocation mapping. test2 has
an invocation mapping and explicitly no declaration mapping. test3 finally has
both mappings. Moreover, there is a mapping for reading accesses to the s field.

1 package de.hpi
2

3 class BaseClass : CisBaseClass
4

5 BaseClass
6 b() -> new CisBaseClass ();
7 endmap
8

45

II Java Language Conversion Assistant

9 test
10 a.b() -> a.Test();
11 endmap
12

13 test2
14 a.b() -> a.Test2 ();
15 decl() -> notmap;
16 endmap
17

18 test3
19 a.b() -> a.Test3 ();
20 decl() -> funcdecl public void Test3();
21 endmap
22

23 s
24 a.b -> a.S;
25 endmap
26

27 endclass
28

29 endpackage

Listing 8.11: BaseClass.emap

Listings 8.12 and 8.13 on the facing page show the results of the conversion with the
JLCA. In “Test.cs” all member usages are converted as could be expected. Note the
difference between the lines 11 and 17. CisBaseClass has a field S (upper case
letter) and DerivedClass has a field s (lower case letter). This is due to the fact
that no declaration mapping is specified for this field.

“DerivedClass.cs” shows the effects of the declaration mappings. Only the overwrit-
ten method test3 is correctly mapped to the corresponding method Test3. For
test there is no declaration mapping. For test2 there is an upgrade note that
corresponds to the notmap of the custom conversion rules.

1 using System;
2 public class Test
3 {
4 [STAThread]
5 public static void Main(System.String [] args)
6 {
7 CisBaseClass bc = new CisBaseClass ();
8 bc.Test();
9 bc.Test2();

10 bc.Test3();
11 System.Console.Out.WriteLine(bc.S);
12

13 DerivedClass dc = new DerivedClass ();

46

8 Extensibility Kit

14 dc.Test();
15 dc.Test2 ();
16 dc.Test3 ();
17 System.Console.Out.WriteLine(dc.s);
18 }
19 }

Listing 8.12: Test.cs

1 using System;
2 public class DerivedClass:CisBaseClass
3 {
4 public override void test()
5 {
6 System.Console.Out.WriteLine("Hello from

DerivedClass.");
7 }
8

9 //UPGRADE NOTE : The e q u i v a l e n t o f method ’ De r i v e dC l a s s . t e s t 2 ’ i s not an

o v e r r i d e method .

10 public void test2()
11 {
12 System.Console.Out.WriteLine("Hello again from

DerivedClass.");
13 }
14

15 public override void Test3()
16 {
17 System.Console.Out.WriteLine("Last hello from

DerivedClass.");
18 }
19

20 new public System.String s = "DerivedClassString";
21 }

Listing 8.13: DerivedClass.cs

8.5 Custom Error Messages

This example illustrates how custom error messages can be defined with the mapping
language. This is very useful if no custom conversion rules can be specified. In these
cases, error messages can point programmers to the places in the converted source
code where manual work is required after the conversion. In the mapping language
the abbreviation EWI is used for such messages. EWI stands for “errors, warnings
and issues”.

47

II Java Language Conversion Assistant

Listings 8.14 and 8.15 show the Java source code for this example. The class Test
both uses and extends the class de.hpi.EWI.

1 import de.hpi.EWI;
2

3 public class Test extends EWI {
4

5 public void methodWithoutMapping () {
6 }
7

8 public void methodWithoutInheritanceMapping () {
9 }

10

11 public static void main(String [] args) {
12 EWI e = new EWI();
13 e.methodWithoutMapping ();
14 e.methodWithoutInheritanceMapping ();
15

16 Test t = new Test();
17 t.methodWithoutMapping ();
18 t.methodWithoutInheritanceMapping ();
19 }
20 }

Listing 8.14: Test.java

1 package de.hpi;
2

3 public class EWI {
4 public void methodWithoutMapping () {
5 }
6

7 public void methodWithoutInheritanceMapping () {
8 }
9 }

Listing 8.15: EWI.java

Listing 8.16 shows the custom conversion rules for this example. The
Java class EWI is mapped onto the .NET class CisEWI. The method
methodWithoutMapping explicitly has no invocation mapping. The method
methodWithoutInheritanceMapping has an invocation but no declaration
mapping.

Furthermore, the mapping file includes a definition file. This file, which is shown in
listing 8.17 on the facing page, contains the custom EWI.

1 using "Declarations.def";

48

8 Extensibility Kit

2

3 package de.hpi
4

5 class EWI : CisEWI
6

7 EWI
8 b() -> new CisEWI ();
9 endmap

10

11 methodWithoutMapping
12 a.b() -> notmap;
13 endmap
14

15 methodWithoutInheritanceMapping
16 a.b() -> a.MethodWithoutInheritanceMapping ();
17 decl() -> notmap(noDeclarationMapping);
18 endmap
19

20 endclass
21

22 endpackage

Listing 8.16: EWI.emap

1 ewi noDeclarationMapping : "There is no declaration

mapping for this method", "http :// myUrl";

Listing 8.17: Declarations.def

Listing 8.18 shows the resulting C# code. The custom EWI ap-
pears in line 11 to warn users that the declaration of the method
methodWithoutInheritanceMapping could not be converted. In lines 20
and 25 there are default messages that correspond to the notmap in “EWI.emap”
in line 12.

1 using System;
2 using EWI = de.hpi.EWI;
3

4 public class Test:CisEWI
5 {
6

7 public override void methodWithoutMapping ()
8 {
9 }

10

11 //There i s no d e c l a r a t i o n mapping f o r t h i s method ’ h t tp : // myUrl ’

12 public void methodWithoutInheritanceMapping ()

49

II Java Language Conversion Assistant

13 {
14 }
15

16 [STAThread]
17 public static void Main(System.String [] args)
18 {
19 CisEWI e = new CisEWI ();
20 //UPGRADE ISSUE : Method ’ de . hp i . EWI . methodWithoutMapping ’ was not

conve r t ed .

21 e.methodWithoutMapping ();
22 e.MethodWithoutInheritanceMapping ();
23

24 Test t = new Test();
25 //UPGRADE ISSUE : Method ’ Test . methodWithoutMapping ’ was not

conve r t ed .

26 t.methodWithoutMapping ();
27 t.MethodWithoutInheritanceMapping ();
28 }
29 }

Listing 8.18: Test.cs

8.6 The Extensibility Kit and The Diff-Patch Tool

The last example shows how the conversion of the usage of a small custom library
can be handled with the Extensibility Kit. As the JLCA and the EK are not able to
correctly convert the example the Diff-Patch tool is used to remember the changes
that have to be applied to the C# code after the conversion.

8.6.1 The Java Library

The following listings contain the source code of the Java library that is used in this
example. This library provides some functions for changing and querying properties
of Win32 console windows, such as the text attributes and the console title. This
library is based on a DLL that conforms to the JNI2 specification and that provides
the low-level functions for the communication with the Win32 platform.

Obviously, the usage of this library cannot be automatically converted. First of all,
it is a custom library for which the JLCA has no built-in conversion rules. Secondly,
it uses the JNI which is not available on the .NET platform.

1 package de.hpi.coloredConsole;

2Java Native Interface.

50

8 Extensibility Kit

2

3 public class Console {
4

5 private static short _consoleHandle;
6 private static short _textAttributes = (short)(Colors

.FOREGROUND_BLUE | Colors.FOREGROUND_GREEN |
Colors.FOREGROUND_RED);

7

8 static {
9 System.loadLibrary("console_jni");

10 _consoleHandle = _getStdHandle(Handles.
STD_OUTPUT_HANDLE);

11 try {
12 setTextAttributes(_textAttributes);
13 } catch (ConsoleException e) {
14 System.err.println("The console does not

support extended functions.");
15 }
16 }
17

18 private static native short _getStdHandle(short
handleType);

19

20 private static native boolean _setTextAttributes(
short handle , short attributes);

21

22 private static native boolean _setConsoleTitle(String
title);

23 private static native String _getConsoleTitle ();
24

25 public static int getStdHandle(short handleType) {
26 return _getStdHandle(handleType);
27 }
28

29 public static void setTextAttributes(short attributes
) throws ConsoleException {

30 boolean success = _setTextAttributes(
_consoleHandle , attributes);

31

32 if (! success)
33 throw new ConsoleException("Could not set

text attributes.");
34

35 _textAttributes = attributes;
36 }
37

38 public static short getTextAttributes () {

51

II Java Language Conversion Assistant

39 return _textAttributes;
40 }
41

42 public static void setConsoleTitle(String title)
throws ConsoleException {

43 boolean success = _setConsoleTitle(title);
44 if (! success)
45 throw new ConsoleException("Could not set

console title.");
46 }
47

48 public static String getConsoleTitle () {
49 return _getConsoleTitle ();
50 }
51 }

Listing 8.19: Console.java

1 package de.hpi.coloredConsole;
2

3 public interface Colors {
4 public static short FOREGROUND_BLUE = 0 x01;
5 public static short FOREGROUND_GREEN = 0 x02;
6 public static short FOREGROUND_RED = 0 x04;
7 public static short FOREGROUND_INTENSITY = 0 x08;
8 public static short BACKGROUND_BLUE = 0 x10;
9 public static short BACKGROUND_GREEN = 0 x20;

10 public static short BACKGROUND_RED = 0 x40;
11 public static short BACKGROUND_INTENSITY = 0 x80;
12 }

Listing 8.20: Colors.java

1 package de.hpi.coloredConsole;
2

3 public interface Handles {
4

5 // Copied from WinBase . h

6 public static short STD_INPUT_HANDLE = -10;
7 public static short STD_OUTPUT_HANDLE = -11;
8 public static short STD_ERROR_HANDLE = -12;
9

10 }

Listing 8.21: Handles.java

52

8 Extensibility Kit

8.6.2 The Java Program

Listing 8.22 contains the Java program that is to be converted. This program uses
the methods provided by the console library in order to query and set the console
title and to print some colored text.

1 import de.hpi.coloredConsole.Console;
2 import de.hpi.coloredConsole.Handles;
3 import de.hpi.coloredConsole.Colors;
4 import de.hpi.coloredConsole.ConsoleException;
5

6 public class ConsoleTest {
7

8 public static void main(String [] args) throws
Exception {

9 System.out.println("Current console title : " +
Console.getConsoleTitle () + ".");

10 Console.setConsoleTitle("Console Test");
11 System.out.println("New console title : " +

Console.getConsoleTitle () + ".");
12

13 Console.setTextAttributes(Colors.FOREGROUND_RED);
14 System.out.println("red");
15 Console.setTextAttributes(Colors.FOREGROUND_GREEN

);
16 System.out.println("green");
17 Console.setTextAttributes(Colors.FOREGROUND_BLUE)

;
18 System.out.println("blue");
19

20 Console.setTextAttributes ((short)(Colors.
FOREGROUND_RED | Colors.FOREGROUND_INTENSITY))
;

21 System.out.println("light red");
22 Console.setTextAttributes ((short)(Colors.

FOREGROUND_GREEN | Colors.FOREGROUND_INTENSITY
));

23 System.out.println("light green");
24 Console.setTextAttributes ((short)(Colors.

FOREGROUND_BLUE | Colors.FOREGROUND_INTENSITY)
);

25 System.out.println("light blue");
26

27 for (short i = 0; i < 256; i++) {
28 Console.setTextAttributes(i);
29 System.out.print("#");
30 }

53

II Java Language Conversion Assistant

31

32 Console.setTextAttributes ((short)(Colors.
FOREGROUND_RED | Colors.FOREGROUND_GREEN |
Colors.FOREGROUND_BLUE));

33 Thread.sleep (3000);
34 }
35 }

Listing 8.22: ConsoleTest.java

8.6.3 The Custom Conversion Rules

The following listings contain the custom conversion rules for the console library.
Please note that some methods are mapped onto C# properties. Further note
that the Java interfaces de.hpi.coloredConsole.Colors and de.hpi.

coloredConsole.Handles are converted to C# enums.

1 package de.hpi.coloredConsole
2

3 class Console : DE.HPI.ColoredConsole.Console
4

5 getStdHandle
6 a.b(handleType : short) -> a.GetStdHandle(

handleType);
7 endmap
8

9 setConsoleTitle
10 a.b(title : java.lang.String) -> a.

ConsoleTitle = title;
11 endmap
12

13 getConsoleTitle
14 a.b() -> a.ConsoleTitle;
15 endmap
16

17 setTextAttributes
18 a.b(attributes : short) -> a.TextAttributes

= attributes;
19 endmap
20

21 getTextAttributes
22 a.b() -> a.TextAttributes;
23 endmap
24

25 endclass

54

8 Extensibility Kit

26

27 endpackage

Listing 8.23: Console.emap

1 package de.hpi.coloredConsole
2

3 class Colors : DE.HPI.ColoredConsole.Color
4

5 FOREGROUND_RED
6 a.b -> a.FGRed;
7 a.b = c -> notmap;
8 endmap
9

10 FOREGROUND_GREEN
11 a.b -> a.FGGreen;
12 a.b = c -> notmap;
13 endmap
14

15 FOREGROUND_BLUE
16 a.b -> a.FGBlue;
17 a.b = c -> notmap;
18 endmap
19

20 FOREGROUND_INTENSITY
21 a.b -> a.FGIntensity;
22 a.b = c -> notmap;
23 endmap
24

25 BACKGROUND_RED
26 a.b -> a.BGRed;
27 a.b = c -> notmap;
28 endmap
29

30 BACKGROUND_GREEN
31 a.b -> a.BGGreen;
32 a.b = c -> notmap;
33 endmap
34

35 BACKGROUND_BLUE
36 a.b -> a.BGBlue;
37 a.b = c -> notmap;
38 endmap
39

40 BACKGROUND_INTENSITY
41 a.b -> a.BGIntensity;
42 a.b = c -> notmap;

55

II Java Language Conversion Assistant

43 endmap
44

45 endclass
46

47 endpackage

Listing 8.24: Colors.emap

1 package de.hpi.coloredConsole
2

3 class Handles : DE.HPI.ColoredConsole.Handles
4

5 STD_INPUT_HANDLE
6 a.b -> a.StandardInput;
7 a.b = c -> notmap;
8 endmap
9

10 STD_OUTPUT_HANDLE
11 a.b -> a.StandardOutput;
12 a.b = c -> notmap;
13 endmap
14

15 STD_ERROR_HANDLE
16 a.b -> a.StandardError;
17 a.b = c -> notmap;
18 endmap
19

20 endclass
21

22 endpackage

Listing 8.25: Handles.emap

8.6.4 The C# Library

The listings in this section show the C# library the converted code must use. Wher-
ever possible, this library replaces Java getters and setters with C# properties and
static Java interface members with C# enums.

Unlike the Java library, this library uses the .NET platform invoke mechanisms.

1 using System;
2 using System.Runtime.InteropServices;
3 using System.Text;
4

5 namespace DE.HPI.ColoredConsole

56

8 Extensibility Kit

6 {
7 public class Console
8 {
9 private static Color _textAttributes = Color.

FGRed | Color.FGGreen | Color.FGBlue;
10 private static IntPtr _handle;
11

12 static Console ()
13 {
14 _handle = GetStdHandle(Handles.StandardOutput

);
15 TextAttributes = _textAttributes;
16 }
17

18 [DllImport("kernel32.dll", EntryPoint = "

SetConsoleTitle" , SetLastError = true)]
19 private static extern bool _setConsoleTitle(

String title);
20

21 [DllImport("kernel32.dll", EntryPoint = "

GetConsoleTitle" , SetLastError = true)]
22 private static extern uint _getConsoleTitle(

StringBuilder buffer , uint size);
23

24 public static String ConsoleTitle
25 {
26 get
27 {
28 StringBuilder buffer = new StringBuilder

(256);
29 uint size = _getConsoleTitle(buffer , 256)

;
30 if (size > 0)
31 {
32 return buffer.ToString (0, (int)size);
33 }
34 else
35 throw new ConsoleException("Could not

get console title. Win32 error: "

+ Marshal.GetLastWin32Error () + "

.");
36 }
37 set
38 {
39 if (! _setConsoleTitle(value))
40 throw new ConsoleException("Could not

set console title. Win32 error: "

57

II Java Language Conversion Assistant

+ Marshal.GetLastWin32Error () + "

.");
41 }
42 }
43

44 [DllImport("kernel32.dll" , EntryPoint = "

GetStdHandle", SetLastError = true)]
45 private static extern IntPtr _getStdHandle(

Handles handleType);
46

47 public static IntPtr GetStdHandle(Handles
handleType)

48 {
49 return _getStdHandle(handleType);
50 }
51

52 [DllImport("kernel32.dll" , EntryPoint = "

SetConsoleTextAttribute", SetLastError = true)
]

53 private static extern bool
_setConsoleTextAttribute(IntPtr handle , Color
color);

54

55 public static Color TextAttributes
56 {
57 get
58 {
59 return _textAttributes;
60 }
61 set
62 {
63 if (! _setConsoleTextAttribute(_handle ,

value))
64 throw new ConsoleException("Could not

set text attribute . Win32 error:

" + Marshal.GetLastWin32Error () +
".");

65 _textAttributes = value;
66 }
67 }
68 }
69 }

Listing 8.26: Console.cs

1 using System;
2

58

8 Extensibility Kit

3 namespace DE.HPI.ColoredConsole
4 {
5 [Flags]
6 public enum Color : ushort
7 {
8 FGBlue = 0x01 ,
9 FGGreen = 0x02 ,

10 FGRed = 0x04 ,
11 FGIntensity = 0x08 ,
12 BGBlue = 0x10 ,
13 BGGreen = 0x20 ,
14 BGRed = 0x40 ,
15 BGIntensity = 0 x80
16 }
17 }

Listing 8.27: Color.cs

1 using System;
2

3 namespace DE.HPI.ColoredConsole
4 {
5 public enum Handles : int
6 {
7 StandardInput = -10,
8 StandardOutput = -11,
9 StandardError = -12,

10 }
11 }

Listing 8.28: Handles.cs

8.6.5 The Converted Program

Listing 8.29 on the next page shows the C# code the JLCA produces with the help of
the custom conversion rules. Even though rules have been specified for all elements
of the Java library this code still contains some errors.

First of all, the JLCA has converted the import statements in lines one to four
in “ConsoleTest.java” to useless using statements. The reason for this kind of
behavior is still unclear.

Moreover, the Java programming language does not know constructs like C# enums.
In the Java library, all constants have the short data type. This is why in “Con-
soleTest.java” type casts have to be performed in lines 20, 22 and 24. The counter

59

II Java Language Conversion Assistant

variable of the for loop does not have to be type-casted as it already has the right
data type.

As stated before, the C# library uses enums as a replacement for Java’s static
interface constants. This has some implications on the way type casts have to
be performed in the converted program. Unfortunately, the JLCA seems to be
unaware of this issue and produces uncompilable source code. The type casts that
are performed in lines 24, 26 and 28 in “jlca orig/ConsoleTest.cs” are wrong and thus
lead to compilation errors. Additionally, the converted C# code lacks a required type
cast in the for loop. The counter variable, which has the short data type, cannot be
assigned to the TextAttributes property as the latter has an enumerated type.

1 using System;
2 using Console = de.hpi.coloredConsole.Console;
3 using Handles = de.hpi.coloredConsole.Handles;
4 using Colors = de.hpi.coloredConsole.Colors;
5 using ConsoleException = de.hpi.coloredConsole.

ConsoleException;
6

7 public class ConsoleTest
8 {
9

10 [STAThread]
11 public static void Main(System.String [] args)
12 {
13 System.Console.Out.WriteLine("Current console

title: " + DE.HPI.ColoredConsole.Console.
ConsoleTitle + ".");

14 DE.HPI.ColoredConsole.Console.ConsoleTitle = "

Console Test";
15 System.Console.Out.WriteLine("New console title :

" + DE.HPI.ColoredConsole.Console.ConsoleTitle
+ ".");

16

17 DE.HPI.ColoredConsole.Console.TextAttributes = DE
.HPI.ColoredConsole.Color.FGRed;

18 System.Console.Out.WriteLine("red");
19 DE.HPI.ColoredConsole.Console.TextAttributes = DE

.HPI.ColoredConsole.Color.FGGreen;
20 System.Console.Out.WriteLine("green");
21 DE.HPI.ColoredConsole.Console.TextAttributes = DE

.HPI.ColoredConsole.Color.FGBlue;
22 System.Console.Out.WriteLine("blue");
23

24 DE.HPI.ColoredConsole.Console.TextAttributes = (
short) (DE.HPI.ColoredConsole.Color.FGRed | DE
.HPI.ColoredConsole.Color.FGIntensity);

60

8 Extensibility Kit

25 System.Console.Out.WriteLine("light red");
26 DE.HPI.ColoredConsole.Console.TextAttributes = (

short) (DE.HPI.ColoredConsole.Color.FGGreen |
DE.HPI.ColoredConsole.Color.FGIntensity);

27 System.Console.Out.WriteLine("light green");
28 DE.HPI.ColoredConsole.Console.TextAttributes = (

short) (DE.HPI.ColoredConsole.Color.FGBlue |
DE.HPI.ColoredConsole.Color.FGIntensity);

29 System.Console.Out.WriteLine("light blue");
30

31 for (short i = 0; i < 256; i++)
32 {
33 DE.HPI.ColoredConsole.Console.TextAttributes

= i;
34 System.Console.Out.Write("#");
35 }
36

37 DE.HPI.ColoredConsole.Console.TextAttributes = (
short) (DE.HPI.ColoredConsole.Color.FGRed | DE
.HPI.ColoredConsole.Color.FGGreen | DE.HPI.
ColoredConsole.Color.FGBlue);

38 //UPGRADE TODO : Method ’ j a v a . l ang . Thread . s l e e p ’ was conve r t ed to ’

System . Thread ing . Thread . S leep ’ which has a d i f f e r e n t b eh a v i o r .

39 System.Threading.Thread.Sleep(new System.TimeSpan
((System.Int64) 10000 * 3000));

40 }
41 }

Listing 8.29: jlca orig/ConsoleTest.cs

Listing 8.30 shows the corrected version of the C# program. The useless using
statement have been commented out and type casts have been removed and inserted
as required.

For remembering all these changes the Diff-Patch tool can be employed. In this
way, all changes are automatically applied to the converted source code should the
original Java program ever be converted again. This even works if the Java program
is slightly changed, e.g. because it is further developed.

1 using System;
2 // u s i n g Conso l e = de . hp i . c o l o r e dCon s o l e . Conso l e ;

3 // u s i n g Hand les = de . hp i . c o l o r e dCon s o l e . Hand les ;

4 // u s i n g Co l o r s = de . hp i . c o l o r e dCon s o l e . Co l o r s ;

5 // u s i n g Conso l eExcep t i on = de . hp i . c o l o r e dCon s o l e . Con so l eExcep t i on ;

6

7 public class ConsoleTest
8 {
9

61

II Java Language Conversion Assistant

10 [STAThread]
11 public static void Main(System.String [] args)
12 {
13 System.Console.Out.WriteLine("Current console

title : " + DE.HPI.ColoredConsole.Console.
ConsoleTitle + ".");

14 DE.HPI.ColoredConsole.Console.ConsoleTitle = "

Console Test";
15 System.Console.Out.WriteLine("New console title :

" + DE.HPI.ColoredConsole.Console.ConsoleTitle
+ ".");

16

17 DE.HPI.ColoredConsole.Console.TextAttributes = DE
.HPI.ColoredConsole.Color.FGRed;

18 System.Console.Out.WriteLine("red");
19 DE.HPI.ColoredConsole.Console.TextAttributes = DE

.HPI.ColoredConsole.Color.FGGreen;
20 System.Console.Out.WriteLine("green");
21 DE.HPI.ColoredConsole.Console.TextAttributes = DE

.HPI.ColoredConsole.Color.FGBlue;
22 System.Console.Out.WriteLine("blue");
23

24 DE.HPI.ColoredConsole.Console.TextAttributes = (
DE.HPI.ColoredConsole.Color.FGRed | DE.HPI.
ColoredConsole.Color.FGIntensity);

25 System.Console.Out.WriteLine("light red");
26 DE.HPI.ColoredConsole.Console.TextAttributes = (

DE.HPI.ColoredConsole.Color.FGGreen | DE.HPI.
ColoredConsole.Color.FGIntensity);

27 System.Console.Out.WriteLine("light green");
28 DE.HPI.ColoredConsole.Console.TextAttributes = (

DE.HPI.ColoredConsole.Color.FGBlue | DE.HPI.
ColoredConsole.Color.FGIntensity);

29 System.Console.Out.WriteLine("light blue");
30

31 for (short i = 0; i < 256; i++)
32 {
33 DE.HPI.ColoredConsole.Console.TextAttributes

= (DE.HPI.ColoredConsole.Color)i;
34 System.Console.Out.Write("#");
35 }
36

37 DE.HPI.ColoredConsole.Console.TextAttributes = (
DE.HPI.ColoredConsole.Color.FGRed | DE.HPI.
ColoredConsole.Color.FGGreen | DE.HPI.
ColoredConsole.Color.FGBlue);

38 //UPGRADE TODO : Method ’ j a v a . l ang . Thread . s l e e p ’ was conve r t ed to ’

62

8 Extensibility Kit

System . Thread ing . Thread . S leep ’ which has a d i f f e r e n t b eh a v i o r .

39 System.Threading.Thread.Sleep(new System.TimeSpan
((System.Int64) 10000 * 3000));

40 }
41 }

Listing 8.30: jlca corrected/ConsoleTest.cs

63

Conversion Tests with
JLCA 9 ch

ap
te

r

9.1 Sample Report

This section shows a sample test report as it is provided for each test the JLCA has
to manage.

Summary

At the beginning of each test a summary shows a brief overview of the tested aspect
and the result. It may look like the following one.

Test: Sample report summary

public class Sample {
public String test() {

return "This is a sample";
}

}

Results:
supported issues difficulty
no 4 5

This summary shows which characteristic or Java class is tested. In this case it is
the language element “assert”. Additionally a short example is given. This mostly
is just a code fragment while the code listed below will be more complete.

The second part of the summary concerns the results of the test. The color of
the results indicates the success: green means that the tested item was processed
without any problems. If the table is yellow, some modification to the code had to
be made. Finally, if it is red, no suitable conversion was possible. The table consists
of three columns:

supported indicates if the tested item is supported by the JLCA at all,

issues shows the number of problems that occurred during conversion. This number
may be smaller than the number of issues that really occurred for only issues

II Java Language Conversion Assistant

that depend on the tested characteristic are counted here;

difficulty shall give an idea of how much work has to be done to make the conversion
work. The given number may be from 1 to 5, where 1 means easy and 5 means
very difficult.

Introduction

After the summary a preface to the test is given. Aspects and specialities concerning
the test are mentioned as well as expected difficulties.

Java Source Code

The first code shown in each test is the Java source code that has been converted.

1 public class Sample {
2 public String test() {
3 return "This is a sample";
4 }
5 }

Conversion Results

This paragraph contains the results generated by the JLCA-Tool. A sample result
is shown below

Filename.java

Conversion Issues for
ClassName.methodSignature(...)

Type Severity Description
1 ToDo 2 Description for the issue.

Conversion Issues for
ClassName.methodSignature(...)

Type Severity Description
1 Compile 1 Description for the issue.
2 Compile 1 Description for the issue.

66

9 Conversion Tests with JLCA

Converted C# Code

The conversion results are followed by the generated C# code.

1 // This would be a conve r t ed f i l e

2 public class Sample
3 {
4 public string test()
5 {
6 return "This is a sample";
7 }
8

9 l i n e s t ha t were commented out from the o r i g i n a l c onve r t ed f i l e a r e shown

t h i s way

10 lines that are added to the original converted file
are displayed this way

11 }

When a line has to be removed (i.e. commented out) from the file the JLCA gener-
ated, they are composed as shown in line 9. On the other hand, lines that are added
to the code are shown as in line 10.

Analysis

The last but most important paragraph is the analysis of the problem, the conver-
sion results and the consequences that follow from these results. Workarounds to
upcoming problems are given or even suggestions for improvements of the conversion
tool. The JLCA extensibility kit will be kept in mind for this analysis.

Visualisation

If the test contains a visual representation (i.e. for GUI tests), screenshots are shown
here.

67

II Java Language Conversion Assistant

9.2 Hello World

Summary

Test: Hello World program

public class HelloWorld {
public static void main(String [] args) {

System.out.println("Hello World.");
}

}

Results:
supported issues difficulty
yes 0 0

Introduction

The first converted Java program is the classical Hello-World example. As one
could expect, the Java Language Conversion Assistant encounters no errors during
the conversion of this program. The converted C# program yields the same results
as the original.

Java Source Code

Listing 9.2 shows the “minimal” Hello-World Java program.

1 public class HelloWorld {
2 public static void main(String [] args) {
3 System.out.println("Hello World.");
4 }
5 }

Conversion Results

HelloWorld.java

There are no issues for this file.

Converted C# Code

68

9 Conversion Tests with JLCA

Listing 9.2 shows the converted Hello-World program.

1 using System;
2 public class HelloWorld
3 {
4 [STAThread]
5 public static void Main(System.String [] args)
6 {
7 System.Console.Out.WriteLine("Hello World.");
8 }
9 }

Except for the STAThread attribute, this program is identical to the original Java
program.

Analysis

Even though the Java Language Conversion Assistant does not have any real prob-
lems when converting the Hello-World class it still reports one global warning. This
warning is included in all conversion reports and does normally not indicate any
serious problems.

69

II Java Language Conversion Assistant

9.3 Anonymous Classes

Summary

Test: Anonymous Classes

public class MainClass {

private int member = 0;

public static void main(String [] args) {
new MainClass ().test();

}

private void test() {
ITest t1 = new ITest () {

private int member = 1;
public void test() {

System.out.println("Member of

anonymous class : " + member);
System.out.println("Member of

MainClass : " + MainClass.this.
member);

}
};
t1.test();

ITest t2 = new ITest () {
private int member = 3;
public void test() {

System.out.println("Member of

anonymous class : " + member);
System.out.println("Member of

MainClass : " + MainClass.this.
member);

}
};
t2.test();

}
}

Results:
supported issues difficulty
yes 0 0

Introduction

70

9 Conversion Tests with JLCA

This example shows how anonymous classes are translated. As anonymous classes
do not exist in C# they are converted to nested classes.

Java Source Code

1 public class MainClass {
2

3 private int member = 0;
4

5 public static void main(String [] args) {
6 new MainClass ().test();
7 }
8

9 private void test() {
10 ITest t1 = new ITest () {
11 private int member = 1;
12 public void test() {
13 System.out.println("Member of anonymous

class : " + member);
14 System.out.println("Member of MainClass :

" + MainClass.this.member);
15 }
16 };
17 t1.test();
18

19 ITest t2 = new ITest () {
20 private int member = 3;
21 public void test() {
22 System.out.println("Member of anonymous

class : " + member);
23 System.out.println("Member of MainClass :

" + MainClass.this.member);
24 }
25 };
26 t2.test();
27 }
28 }

In the main method, the program creates an object of type MainClass and exe-
cutes its test method. In this method, two objects are created which both are of
an anonymous class each. Then the method test is called on each object to put
out some text.

Conversion Results

71

II Java Language Conversion Assistant

ITest.java

There are no issues for this file.

MainClass.java

There are no issues for this file.

Converted C# Code

1 using System;
2 public class MainClass
3 {
4 //UPGRADE NOTE : F i e l d ’ E n c l o s i n g I n s t a n c e ’ was added to class ’

AnonymousClass ITest ’ to a c c e s s i t s e n c l o s i n g i n s t a n c e .

5 private class AnonymousClassITest : ITest
6 {
7 public AnonymousClassITest(MainClass

enclosingInstance)
8 {
9 InitBlock(enclosingInstance);

10 }
11 private void InitBlock(MainClass

enclosingInstance)
12 {
13 this.enclosingInstance = enclosingInstance;
14 }
15 private MainClass enclosingInstance;
16 public MainClass Enclosing_Instance
17 {
18 get
19 {
20 return enclosingInstance;
21 }
22

23 }
24 private int member = 1;
25 public virtual void test()
26 {
27 System.Console.Out.WriteLine("Member of

anonymous class : " + member);
28 System.Console.Out.WriteLine("Member of

MainClass : " + Enclosing_Instance.member);
29 }

72

9 Conversion Tests with JLCA

30 }
31 //UPGRADE NOTE : F i e l d ’ E n c l o s i n g I n s t a n c e ’ was added to class ’

AnonymousClass ITest1 ’ to a c c e s s i t s e n c l o s i n g i n s t a n c e .

32 private class AnonymousClassITest1 : ITest
33 {
34 public AnonymousClassITest1(MainClass

enclosingInstance)
35 {
36 InitBlock(enclosingInstance);
37 }
38 private void InitBlock(MainClass

enclosingInstance)
39 {
40 this.enclosingInstance = enclosingInstance;
41 }
42 private MainClass enclosingInstance;
43 public MainClass Enclosing_Instance
44 {
45 get
46 {
47 return enclosingInstance;
48 }
49

50 }
51 private int member = 3;
52 public virtual void test()
53 {
54 System.Console.Out.WriteLine("Member of

anonymous class : " + member);
55 System.Console.Out.WriteLine("Member of

MainClass : " + Enclosing_Instance.member);
56 }
57 }
58

59 private int member = 0;
60

61 [STAThread]
62 public static void Main(System.String [] args)
63 {
64 new MainClass ().test();
65 }
66

67 private void test()
68 {
69 ITest t1 = new AnonymousClassITest(this);
70 t1.test();
71

73

II Java Language Conversion Assistant

72 ITest t2 = new AnonymousClassITest1(this);
73 t2.test();
74 }
75 }

Because there are no anonymous classes in C# the code mainly consists of constructs
that emulate the Java behaviour of anonymous classes.

Analysis

The JLCA creates two inner classes AnonymousClassITest and
AnonymousClassITest1. Both classes are constructed similar to the in-
ner class example. This is necessary because anonymous classes are always
non-static and thus have a reference to their enclosing instance.

74

9 Conversion Tests with JLCA

9.4 Inner Classes

Summary

Test: Inner Classes

class MainClass {

private int member = 0;

void test() {
new InnerClass ().test();
new InnerClass2 ().test();

}

public static void main(String [] args) {
new MainClass ().test();

}

//The i n n e r c l a s s e s . . .

class InnerClass {
void test() {

System.out.println("Value of member : "

+ member);
}

}

class InnerClass2 {
private int member = 1;

void test() {
System.out.println("Value of local

member : " + member);
System.out.println("Value of parent

member : " + MainClass.this.member);
}

}
}

Results:
supported issues difficulty
yes 0 0

Introduction

75

II Java Language Conversion Assistant

Inner classes are different in Java and C#. While inner classes in Java can be static
(using the modifier static)or non-static (without the modifier static), there is
only one type of inner classes in C#. Confusingly, inner classes in C# behave as
static inner classes in Java but are declared without that modifier.

Static inner classes are simply classes that do not lie in a package but in a class.
They do not have any relation to objects of their enclosing class. Except for access-
ing private (static) members of the enclosing class, declaring static inner classes is
equivalent to declaring a class in a package (or similar structures in C#).

In contrast, instances of non-static inner classes are always associated with an object
of their enclosing class (called the enclosing instance). The execution environment
automatically provides this association that has no direct representation in Java
code.

This example shows how non-static inner classes are converted to C# by using static
inner classes.

Java Source Code

1 class MainClass {
2

3 private int member = 0;
4

5 void test() {
6 new InnerClass ().test();
7 new InnerClass2 ().test();
8 }
9

10 public static void main(String [] args) {
11 new MainClass ().test();
12 }
13

14 //The i n n e r c l a s s e s . . .

15

16 class InnerClass {
17 void test() {
18 System.out.println("Value of member : " +

member);
19 }
20 }
21

22 class InnerClass2 {
23 private int member = 1;
24

25 void test() {

76

9 Conversion Tests with JLCA

26 System.out.println("Value of local member : "

+ member);
27 System.out.println("Value of parent member : "

+ MainClass.this.member);
28 }
29 }
30 }

There are two non-static inner classes. The first one, InnerClass, contains only
one method test which simply puts out the value of the field member that is
declared in MainClass. The second inner class InnerClass2 also contains a
method test and additionally a field member. The method prints the value of
both fields, the member of MainClass and the member of InnerClass2.

Conversion Results

MainClass.java

There are no issues for this file.

Converted C# Code

1 using System;
2 class MainClass
3 {
4

5 private int member = 0;
6

7 internal virtual void test()
8 {
9 new InnerClass(this).test();

10 new InnerClass2(this).test();
11 }
12

13 [STAThread]
14 public static void Main(System.String [] args)
15 {
16 new MainClass ().test();
17 }
18

19 //UPGRADE NOTE : F i e l d ’ E n c l o s i n g I n s t a n c e ’ was added to class ’

I n n e rC l a s s ’ to a c c e s s i t s e n c l o s i n g i n s t a n c e .

20 //The i n n e r c l a s s e s . . .

77

II Java Language Conversion Assistant

21

22 internal class InnerClass
23 {
24 public InnerClass(MainClass enclosingInstance)
25 {
26 InitBlock(enclosingInstance);
27 }
28 private void InitBlock(MainClass

enclosingInstance)
29 {
30 this.enclosingInstance = enclosingInstance;
31 }
32 private MainClass enclosingInstance;
33 public MainClass Enclosing_Instance
34 {
35 get
36 {
37 return enclosingInstance;
38 }
39

40 }
41 internal virtual void test()
42 {
43 System.Console.Out.WriteLine("Value of member

: " + Enclosing_Instance.member);
44 }
45 }
46

47 //UPGRADE NOTE : F i e l d ’ E n c l o s i n g I n s t a n c e ’ was added to class ’

I n n e rC l a s s 2 ’ to a c c e s s i t s e n c l o s i n g i n s t a n c e .

48 internal class InnerClass2
49 {
50 public InnerClass2(MainClass enclosingInstance)
51 {
52 InitBlock(enclosingInstance);
53 }
54 private void InitBlock(MainClass

enclosingInstance)
55 {
56 this.enclosingInstance = enclosingInstance;
57 }
58 private MainClass enclosingInstance;
59 public MainClass Enclosing_Instance
60 {
61 get
62 {
63 return enclosingInstance;

78

9 Conversion Tests with JLCA

64 }
65

66 }
67 private int member = 1;
68

69 internal virtual void test()
70 {
71 System.Console.Out.WriteLine("Value of local

member : " + member);
72 System.Console.Out.WriteLine("Value of parent

member : " + Enclosing_Instance.member);
73 }
74 }
75 }

Most code in the converted source is due to the lack of non-static inner classes in
C#.

Analysis

Each non-static inner class is converted to a static inner class that con-
tains a private field enclosingInstance, a public read-only prop-
erty Enclosing_Instance and a constructor with a parameter
enclosingInstance of type MainClass. These entities are used to
emulate Java’s reference to the enclosing instance of a non-static inner class.

The different constructor declaration leads to a change in the code: whenever an ob-
ject of the inner class is created the enclosing instance must explicitly be provided.

79

II Java Language Conversion Assistant

9.5 Identifier Scope

Summary

Test: Identifier Scope

public void hello(String text) {
System.out.println("Hello " + text);

}

public void test() {
hello("world!");
String hello = "you!";
hello(hello);

}

Results:
supported issues difficulty
no 0 2

Introduction

Even though Java and C# are quite similar languages they differ in some points.
One such point is the slightly different treatment of identifiers and identifier scopes.
The purpose of this test is to find out whether the JLCA is prepared to cope with
Java programs that use identifiers in a fashion that is not permitted in C#.

Java Source Code

1 public class MainClass {
2 public void hello(String text) {
3 System.out.println("Hello " + text);
4 }
5

6 public void test() {
7 hello("world!");
8 String hello = "you!";
9 hello(hello);

10 }
11

12 public static void main(String [] args) {
13 new MainClass ().test();
14 }
15 }

80

9 Conversion Tests with JLCA

The Java source code for this test is very simple. MainClass has a method hello
which just prints a short message to the console. The method test uses this hello
method in order to print two messages to the console. Furthermore, a local variable
hello is declared in this method. Even though the identifier hello denotes two
different things the Java compiler is still able to compile this program by looking at
the contexts this identifier is used in.

Conversion Results

As the conversion report shows, the JLCA cannot find any problems. However, as
we are going to see later, the C# program it produces is not compilable.

MainClass.java

There are no issues for this file.

Converted C# Code

1 using System;
2 public class MainClass
3 {
4 public virtual void hello(System.String text)
5 {
6 System.Console.Out.WriteLine("Hello " + text);
7 }
8

9 public virtual void test()
10 {
11 hello("world!");
12 System.String hello = "you!";
13 hello(hello);
14 }
15

16 [STAThread]
17 public static void Main(System.String [] args)
18 {
19 new MainClass ().test();
20 }
21 }

The C# program is almost identical to the Java program. Nevertheless, it cannot
be compiled.

81

II Java Language Conversion Assistant

Analysis

The JLCA does not pay attention to the way the hello identifier is used in the Java
source code. Thus, the same identifier usage appears in the C# program. However,
the C# compiler does not allow this identifier overloading and issues the following
error messages during the compilation of the converted source code.

MainClass.cs(12 ,17): error CS0136 : A local variable named
’hello ’ cannot be

declared in this scope because it would give a
different meaning to

’hello ’, which is already used in a ’parent or
current ’ scope to denote

something else
MainClass.cs(12 ,17): error CS0654 : Method ’MainClass.

hello(string) ’ referenced
without parentheses

MainClass.cs(13,9): error CS0654 : Method ’MainClass.hello
(string) ’ referenced

without parentheses

The JLCA completely fails to notice this issue. Neither does it rename either the
hello method or the local variable nor does it warn the user about this problem
in the conversion report.

A possible reason for the inability of the C# compiler to find out what exactly
hello denotes is the C# syntax for delegates. In Java, method identifiers are
always followed by parentheses. In C# on the other hand, method identifiers may
appear without any parentheses when they are used in the constructors of delegates.

82

9 Conversion Tests with JLCA

9.6 Assert Keyword

Summary

This test shows the conversion of the assert-keyword. This keyword does not
exist in C#. It is not converted at all.

Test: assert Keyword

assert 1+1 == 2;

Results:
supported issues difficulty
no 1 4a

aAn implementation of the assert feature has to be used as it is not part of the
C# language.

Java Source Code

1 public class MainClass {
2 public static void main(String [] args) {
3 assert 1+1 == 2;
4 System.out.println("Asserted that 1+1 equals 2.")

;
5 }
6 }

Conversion Results

MainClass.java

Conversion Issues for Main-
Class.main(java.lang.String[])

Type Severity Description
1 Compile 1 The following fragment of code could

not be parsed and was not converted.

Converted C# Code

83

II Java Language Conversion Assistant

1 using System;
2 public class MainClass
3 {
4 [STAThread]
5 public static void Main(System.String [] args)
6 {
7 //UPGRADE ISSUE : The f o l l o w i n g f ragment o f code cou ld not be

pa r s ed and was not conve r t ed .

8 assert 1 + 1 == 2;
9 System.Console.Out.WriteLine("Asserted that 1+1

equals 2.");
10 }
11 }

Analysis

Assertions are possible and used in C# but are not directly supported by the lan-
guage. However there are solutions in C# using libraries. Hence it should be no
problem to support this keyword by using a support class.

84

9 Conversion Tests with JLCA

9.7 Exception Hierarchy

Summary

Test: Exception Hierarchy

try {
throw new MyException("Test1");

} catch (Exception e) { .. }

try {
throw new MyError("Test2");

} catch (Error e) { .. }

Results:
supported issues difficulty
no 2 5

Introduction

In Java there are two different types of faults: Errors and Exceptions. These are
treated differently and are on the same level. In C# there is only one exception
branch. Errors cannot be mapped naturally.

Java Source Code

In this class an exception is thrown and caught, then an error is thrown and caught
and finally an error is thrown but an exception is caught.

1 public class MainClass {
2 public static void main(String [] args) {
3 try {
4 throw new MyException("Test1");
5 } catch (Exception e) {
6 System.out.println("Caught Exception : " + e);
7 }
8

9 try {
10 throw new MyError("Test2");
11 } catch (Error e) {
12 System.out.println("Caught Error : " + e);
13 }
14

15 try {
16 throw new MyError("Test3");

85

II Java Language Conversion Assistant

17 } catch (Exception e) {
18 System.out.println("This code should not be

executed.");
19 }
20 }
21 }

1 public class MyException extends Exception {
2 public MyException(String message) {
3 super(message);
4 }
5 }

1 public class MyError extends Error {
2 public MyError(String message) {
3 super(message);
4 }
5 }

Conversion Results

The conversion results mention different behavior of the toString() method
which is not relevant here.

MainClass.java

Conversion Issues for
MainClass.main(java.lang.String[])

Type Severity Description
1 ToDo 2 The equivalent in .NET for method

’java.lang.Throwable.toString’ may
return a different value.

2 ToDo 2 The equivalent in .NET for method
’java.lang.Throwable.toString’ may
return a different value.

MyError.java

There are no issues for this file.

MyException.java

There are no issues for this file.

86

9 Conversion Tests with JLCA

Converted C# Code

This code shows that exceptions are derived from the exception class as in Java.

1 using System;
2 [Serializable]
3 public class MyException:System.Exception
4 {
5 public MyException(System.String message):base(

message)
6 {
7 }
8 }

But this code turns out that the mapping of errors is wrong because it is mapped
to ApplicationException which is a subclass of the Exception class.

1 using System;
2 [Serializable]
3 public class MyError:System.ApplicationException
4 {
5 public MyError(System.String message):base(message)
6 {
7 }
8 }

Because of the different exception hierarchy, the test starting in line 27 fails. An error
is thrown. But this error is derived from ApplicationException an therefore
is a subclass of Exception and hence caught in line 31. This is not the same
behavior as in Java.

1 using System;
2 public class MainClass
3 {
4 [STAThread]
5 public static void Main(System.String [] args)
6 {
7 try
8 {
9 throw new MyException("Test1");

10 }
11 catch (System.Exception e)
12 {

87

II Java Language Conversion Assistant

13 //UPGRADE TODO : The e q u i v a l e n t i n .NET for method ’ j a v a . l ang

. Throwable . t oS t r i n g ’ may return a d i f f e r e n t v a l u e .

14 System.Console.Out.WriteLine("Caught
Exception : " + e);

15 }
16

17 try
18 {
19 throw new MyError("Test2");
20 }
21 catch (System.ApplicationException e)
22 {
23 //UPGRADE TODO : The e q u i v a l e n t i n .NET for method ’ j a v a . l ang

. Throwable . t oS t r i n g ’ may return a d i f f e r e n t v a l u e .

24 System.Console.Out.WriteLine("Caught Error : "

+ e);
25 }
26

27 try
28 {
29 throw new MyError("Test3");
30 }
31 catch (System.Exception e)
32 {
33 System.Console.Out.WriteLine("This code

should not be executed.");
34 }
35 }
36 }

Analysis

The mapping of the exception hierarchy of Java in wrong. In the converted code,
errors may be caught by catching exceptions. A solution was the introduction of
JavaException and JavaError and the construction of a totally separate ex-
ception hierarchy. This may not be wanted for code maintenance.

The developer should keep in mind that the usage of errors will make problems in
the converted code. Unfortunately this is not mentioned in the conversion report
generated by the JLCA.

88

9 Conversion Tests with JLCA

9.8 java.lang.reflect.Modifier

Summary

Test: java.lang.reflect.Modifier

Class cls = mc.getClass ();

int modifiers = cls.getModifiers ();

Results:
supported issues difficulty
no 2 5

Introduction

This test shows how the java.lang.reflect.Modifier class is converted
by the JLCA. This class belongs to the Java reflection system. It contains static
methods and constants to decode class and member access modifiers. Converting
such kind of classes is very difficult for the JLCA as C# and Java have quite different
reflection systems.

Java Source Code

The Java source code for this test is very simple. In the first step, a Class object
is retrieved. In the second step, the modifiers of this class object are queried and
printed to the console.

1 import java.lang.reflect .*;
2

3 public class MainClass {
4

5 public static void main(String [] args) {
6 MainClass mc = new MainClass ();
7

8 Class cls = mc.getClass ();
9

10 int modifiers = cls.getModifiers ();
11 System.out.println(Modifier.toString(modifiers));
12 }
13 }

Conversion Results

89

II Java Language Conversion Assistant

As the conversion results indicate, neither the getModifiers() method nor the
Modifier.toString() method are converted.

MainClass.java

Conversion Issues for Main-
Class.main(java.lang.String[])

Type Severity Description
1 Compile 1 Method ’java.lang.Class.getModifiers’

was not converted.
2 Compile 1 Method ’java.lang.reflect.Modifier.

toString’ was not converted.

Converted C# Code

The JLCA mappes the first part of the Java code correctly. The second part,
however, is left completely untouched.

1 using System;
2

3 public class MainClass
4 {
5

6 [STAThread]
7 public static void Main(System.String [] args)
8 {
9 MainClass mc = new MainClass ();

10

11 System.Type cls = mc.GetType ();
12

13 //UPGRADE ISSUE : Method ’ j a v a . l ang . C l a s s . g e tMod i f i e r s ’ was not
conve r t ed .

14 // i n t mo d i f i e r s = c l s . g e tMod i f i e r s () ;

15 //UPGRADE ISSUE : Method ’ j a v a . l ang . r e f l e c t . Mod i f i e r . t oS t r i n g ’ was

not conve r t ed .

16 //System . Conso l e . Out . Wr i t eL i n e (Mod i f i e r . t o S t r i n g (mo d i f i e r s)) ;

17 Console.Out.WriteLine(cls.Attributes);
18 }
19 }

Analysis

90

9 Conversion Tests with JLCA

As expected the JLCA does not succeed in converting the Modifier class cor-
rectly. In fact, it does not convert any calls related to this class at all. This is
quite understandable, considering the different reflection systems the C# and Java
languages offer to programmers.

One possible way of converting the Modifier class in an adequate way would be
to use the Attributes property offered by the .NET System.Type class. The
following example illustrates this:

Console.Out.WriteLine(cls.Attributes);

91

II Java Language Conversion Assistant

9.9 java.lang.reflect.Proxy

Summary

Test: java.lang.reflect.Proxy

// Crea te a dynamic proxy f o r the Te s tE v e n t L i s t e n e r

i n t e r f a c e . . .

TestEventListener proxyListener = (
TestEventListener)Proxy.newProxyInstance(
TestEventListener.class.getClassLoader ()

,
new Class [] { TestEventListener.class },
myInvokationHandler

);

Results:
supported issues difficulty
no 8 5

Introduction

The main objective of this test is to find out whether the JLCA is capable of convert-
ing the usage of the java.lang.reflect.Proxy class. This class belongs to
the Java reflection system. As C# and Java have quite different reflection systems
the automatic conversion of this class is rather difficult.

Proxy provides static methods for creating dynamic proxy classes and instances,
and it is also the superclass of all dynamic proxy classes created by those methods.
A dynamic proxy class is a class that implements a list of interfaces specified at
runtime when the class is created.

Additionally, this test shows how a number of other Java API calls are treated by
the JLCA. For example, the getClassLoader() method and the java.lang.

reflect.InvocationHandler interface are tested as well as the java.util

.EventListener interface and the java.util.EventListenerList class.

Java Source Code

This test uses three different classes. MainClass contains the main logic of the
test. In its main method, a TestEventDispatcher is instantiated. Then, an
ordinary event listener implementing the TestEventListener interface and a
dynamic proxy instance are added to the listener list of the dispatcher. Finally,
with the invocation of the dispatchTestEvent() method, the dispatcher sends

92

9 Conversion Tests with JLCA

a message to all its listeners.

1 import java.lang.reflect.InvocationHandler;
2 import java.lang.reflect.Method;
3 import java.lang.reflect.Proxy;
4

5 public class MainClass {
6

7 public static void main(String [] args) {
8

9 TestEventDispatcher ted = new TestEventDispatcher
();

10

11 //Add an o r d i n a r y even t l i s t e n e r . . .

12 ted.addTestEventListener(new TestEventListener ()
{

13 public void somethingHappened(String
description) {

14 System.out.println("Something happened : "

+ description);
15 }
16 });
17

18 // Crea te an i n v o k a t i o n hand l e r f o r a dynamic proxy . . .

19 InvocationHandler myInvokationHandler = new
InvocationHandler () {

20 public Object invoke(Object proxy , Method
method , Object [] args) throws Throwable {

21 System.out.println("invoke called:");
22 System.out.println("\tMethod : " + method)

;
23 System.out.println("\tArgs:");
24 for (int i = 0; i < args.length ; i++) {
25 System.out.println("\t " + (i+1) + "

: " + args[i]);
26 }
27 return null;
28 }
29 };
30

31 // Crea te a dynamic proxy f o r the Te s tE v e n t L i s t e n e r i n t e r f a c e . . .

32 TestEventListener proxyListener = (
TestEventListener)Proxy.newProxyInstance(

33 TestEventListener.class.getClassLoader (),
34 new Class [] { TestEventListener.class },
35 myInvokationHandler
36);

93

II Java Language Conversion Assistant

37

38 //Add the dynamic proxy to the l i s t e r n e r s l i s t o f the t e s t even t

d i s p a t c h e r . . .

39 ted.addTestEventListener(proxyListener);
40

41 ted.dispatchTestEvent("but what ?!!");
42 }
43

44 }

1 import java.util.EventListener;
2 import javax.swing.event.EventListenerList;
3

4 public class TestEventDispatcher {
5

6 private EventListenerList _listenerList = new
EventListenerList ();

7

8 public void addTestEventListener(TestEventListener
listener) {

9 _listenerList.add(TestEventListener.class ,
listener);

10 }
11

12 public void removeTestEventListener(TestEventListener
listener) {

13 _listenerList.remove(TestEventListener.class ,
listener);

14 }
15

16 public void dispatchTestEvent(String description) {
17 EventListener [] listeners = _listenerList.

getListeners(TestEventListener.class);
18 for (int i = 0; i < listeners.length ; i++) {
19 ((TestEventListener)listeners[i]).

somethingHappened(description);
20 }
21 }
22 }

1 import java.util.EventListener;
2

3 public interface TestEventListener extends EventListener
{

4 public void somethingHappened(String description);
5 }

94

9 Conversion Tests with JLCA

Conversion Results

The conversion report shows that the JLCA has great difficulties with the conversion
of the test program. In fact, it is not able at all to create an adequate C# program.

MainClass.java

Conversion Issues for Main-
Class.invoke(java.lang.Object,java.lang.reflect.Method,java.lang.Object[])

Type Severity Description
1 ToDo 2 The equivalent in .NET for method

’java.lang.Object.toString’ may
return a different value.

Conversion Issues for Main-
Class.main(java.lang.String[])

Type Severity Description
1 Compile 1 Interface ’java.lang.reflect.

InvocationHandler’ was not
converted.

2 Compile 1 Interface ’java.lang.reflect.
InvocationHandler’ was not
converted.

3 Compile 1 Method ’java.lang.reflect.Proxy.
newProxyInstance’ was not
converted.

4 Compile 1 Method ’java.lang.Class.
getClassLoader’ was not converted.

TestEventDispatcher.java

Conversion Issues for
TestEventDis-
patcher.dispatchTestEvent(java.lang.String)

Type Severity Description
1 Compile 1 Interface ’java.util.EventListener’ was

not converted.
2 Compile 1 Method ’javax.swing.event.

EventListenerList.getListeners’ was
not converted.

95

II Java Language Conversion Assistant

TestEventListener.java

Conversion Issues for
TestEventListener.Declarations

Type Severity Description
1 Compile 1 Interface ’java.util.EventListener’ was

not converted.

Converted C# Code

1 using System;
2

3 public class MainClass
4 {
5 private class AnonymousClassTestEventListener :

TestEventListener
6 {
7 public virtual void somethingHappened(System.

String description)
8 {
9 System.Console.Out.WriteLine("Something

happened : " + description);
10 }
11 }
12 //UPGRADE ISSUE : I n t e r f a c e ’ j a v a . l ang . r e f l e c t . I n vo ca t i o nHand l e r ’ was

not conve r t ed .

13 private class AnonymousClassInvocationHandler :
InvocationHandler

14 {
15 public virtual System.Object invoke(System.Object

proxy , System.Reflection.MethodInfo method ,
System.Object [] args)

16 {
17 System.Console.Out.WriteLine("invoke called:"

);
18 System.Console.Out.WriteLine("\tMethod : " +

method);
19 System.Console.Out.WriteLine("\tArgs:");
20 for (int i = 0; i < args.Length ; i++)
21 {
22 //UPGRADE TODO : The e q u i v a l e n t i n .NET for method ’ j a v a

. l ang . Object . t oS t r i n g ’ may return a d i f f e r e n t

96

9 Conversion Tests with JLCA

v a l u e .

23 System.Console.Out.WriteLine("\t " + (i
+ 1) + ": " + args[i]);

24 }
25 return null;
26 }
27 }
28

29 [STAThread]
30 public static void Main(System.String [] args)
31 {
32

33 TestEventDispatcher ted = new TestEventDispatcher
();

34

35 //Add an o r d i n a r y even t l i s t e n e r . . .

36 ted.addTestEventListener(new
AnonymousClassTestEventListener ());

37

38 // Crea te an i n v o k a t i o n hand l e r f o r a dynamic proxy . . .

39 //UPGRADE ISSUE : I n t e r f a c e ’ j a v a . l ang . r e f l e c t . I n vo ca t i o nHand l e r ’

was not conve r t ed .

40 InvocationHandler myInvokationHandler = new
AnonymousClassInvocationHandler ();

41

42 // Crea te a dynamic proxy f o r the Te s tE v e n t L i s t e n e r i n t e r f a c e . . .

43 //UPGRADE ISSUE : Method ’ j a v a . l ang . r e f l e c t . Proxy . newProxy Ins tance ’

was not conve r t ed .

44 //UPGRADE ISSUE : Method ’ j a v a . l ang . C l a s s . g e tC l a s sLoade r ’ was not
conve r t ed .

45 TestEventListener proxyListener = (
TestEventListener) Proxy.newProxyInstance(
typeof(TestEventListener).getClassLoader () ,
new System.Type []{ typeof(TestEventListener)},
myInvokationHandler);

46

47 //Add the dynamic proxy to the l i s t e r n e r s l i s t o f the t e s t even t

d i s p a t c h e r . . .

48 ted.addTestEventListener(proxyListener);
49

50 ted.dispatchTestEvent("but what ?!!");
51 }
52 }

1 using System;
2

3 public class TestEventDispatcher

97

II Java Language Conversion Assistant

4 {
5

6 private System.Collections.Hashtable _listenerList =
new System.Collections.Hashtable ();

7

8 public virtual void addTestEventListener(
TestEventListener listener)

9 {
10 _listenerList.Add(listener , typeof(

TestEventListener));
11 }
12

13 public virtual void removeTestEventListener(
TestEventListener listener)

14 {
15 _listenerList.Remove(listener);
16 }
17

18 public virtual void dispatchTestEvent(System.String
description)

19 {
20 //UPGRADE ISSUE : I n t e r f a c e ’ j a v a . u t i l . E v en tL i s t e n e r ’ was not

conve r t ed .

21 //UPGRADE ISSUE : Method ’ j a v a x . swing . even t . E v e n t L i s t e n e r L i s t .

g e t L i s t e n e r s ’ was not conve r t ed .

22 EventListener [] listeners = _listenerList.
getListeners(typeof(TestEventListener));

23 for (int i = 0; i < listeners.Length ; i++)
24 {
25 ((TestEventListener) listeners[i]).

somethingHappened(description);
26 }
27 }
28 }

1 using System;
2

3 //UPGRADE ISSUE : I n t e r f a c e ’ j a v a . u t i l . E v en tL i s t e n e r ’ was not conve r t ed .

4 public interface TestEventListener:EventListener
5 {
6 void somethingHappened(System.String description);
7 }

Analysis

98

9 Conversion Tests with JLCA

As the conversion report and the C# code illustrate the JLCA is unable to con-
vert the most interesting parts of the test program. Neither does it convert
the usage of the java.lang.reflect.Proxy and java.lang.reflect

.InvocationHandler classes and the getClassLoader() method, nor
is it able to handle the java.util.EventListener and java.util.

EventListenerList classes.

JLCA’s incapability of converting the reflection related API calls of this test is
due to the fact that the .NET framework simply does not offer the creation of
dynamic proxies. JLCA’s help system proposes the use of the .NET System

.Runtime.Remoting.Proxies.RealProxy class for replacing the java.

lang.reflect.InvocationHandler interface. This, however, does not solve
the problem of creating dynamic proxy classes at runtime.

The problems JLCA reports for the conversion of the event handling related API
calls are unexpected. Especially the java.util.EventListenerList class
could be covered a lot better, for instance by using support classes. One of the
reasons for JLCA’s bad performance in this area might be the different approaches
Java and C# take on event handling. While Java uses listener classes that follow the
Adapter design pattern for implementing event handling C# uses delegates. More-
over, there is no direct equivalent for the java.util.EventListenerList in
C# as delegates handle listener lists automatically.

99

II Java Language Conversion Assistant

9.10 java.lang.ref.WeakReference

Summary

Test: java.lang.ref.WeakReference

MainClass mc = new MainClass ();
WeakReference wr = new WeakReference(mc ,

_weakReferenceQueue);

Results:
supported issues difficulty
no 12 5

Introduction

This test is to demonstrate how the JLCA handles the automatic conversion of
the java.lang.ref.WeakReference class. Additionally, the handling of the
java.lang.ref.ReferenceQueue class is tested.

Weak references are references that do not prevent their referents from being made
finalizable, finalized, and then reclaimed. Reference queues are special queues to
which the garbage collector appends registered objects as soon as it detects changes
in their reachability.

The automatic conversion of code using these and similar classes is rather difficult as
these classes depend on specific behavior of the Java virtual machine and its garbage
collector.

Java Source Code

1 import java.lang.ref .*;
2

3 public class MainClass {
4

5 private static ReferenceQueue _weakReferenceQueue =
new ReferenceQueue ();

6

7 public static void main(String [] args) {
8 System.out.println("WeakReference test.");
9

10 MainClass mc = new MainClass ();
11 WeakReference wr = new WeakReference(mc ,

_weakReferenceQueue);
12

100

9 Conversion Tests with JLCA

13 Thread referenceQueueReader = new Thread(new
Runnable () {

14 public void run() {
15 try {
16 Reference r = null;
17 r = _weakReferenceQueue.remove ();
18 System.out.println("Removed reference

from reference queue.");
19 Object o = r.get();
20 System.out.println("Referent of weak

reference : " + o);
21 } catch (InterruptedException e) {
22 System.err.println("Caught

InterruptedException:");
23 e.printStackTrace ();
24 }
25 }
26 });
27

28 referenceQueueReader.setDaemon(true);
29 referenceQueueReader.start();
30

31 System.out.println("Giving up reference to object

.");
32 mc = null;
33

34 System.out.println("Referent of weak reference : "

+ wr.get());
35 System.out.println("Starting GC.");
36 System.gc();
37 System.out.println("Referent of weak reference : "

+ wr.get());
38

39 try {
40 Thread.sleep (1000);
41 } catch (InterruptedException e) {
42 System.err.println("Caught

InterruptedException:");
43 e.printStackTrace ();
44 }
45 }
46

47 protected void finalize () throws Throwable {
48 super.finalize ();
49 System.out.println("Finalized MainClass object.")

;
50 }

101

II Java Language Conversion Assistant

51

52 }

The Java source code for this test consist of a single class. First, a new MainClass
object is created. For this object a new WeakReference is created. Moreover, the
object is registered with the static reference queue that belongs to the MainClass
class.

Afterwards, a thread is started. This thread continuously removes all references the
garbage collector places into the reference queue and checks whether they are still
reachable.

At the end, the reference to the MainClass object is given up and the garbage
collector is invoked directly in order to observe the behavior of the weak reference
and the reference queue.

The output of the program is as follows:

WeakReference test.
Giving up reference to object.
Referent of weak reference : MainClass@17182c1
Starting GC.
Finalized MainClass object.
Removed reference from reference queue.
Referent of weak reference : null
Referent of weak reference : null

This means that the MainClass object is still reachable after all strong references
have been given up. However, as soon as the garbage collector is started, this object
is immediately finalized and thus no longer reachable. Additionally, the garbage
collector places the weak reference into the reference queue where it is removed by
the reader thread that was previously started.

Conversion Results

As the conversion results show the JLCA does not succeed in converting
the usage of the java.lang.ref.WeakReference and java.lang.ref.

ReferenceQueue classes.

MainClass.java

Conversion Issues for
MainClass.run()

Type Severity Description
1 Compile 1 Class ’java.lang.ref.Reference’ was

not converted.

102

9 Conversion Tests with JLCA

2 Compile 1 Method ’java.lang.ref.
ReferenceQueue.remove’ was not
converted.

3 Compile 1 Method ’java.lang.ref.Reference.get’
was not converted.

4 ToDo 2 The equivalent in .NET for method
’java.lang.Object.toString’ may
return a different value.

Conversion Issues for Main-
Class.main(java.lang.String[])

Type Severity Description
2 Compile 1 Constructor ’java.lang.ref.

WeakReference.WeakReference’ was
not converted.

4 Compile 1 Method ’java.lang.ref.Reference.get’
was not converted.

6 Compile 1 Method ’java.lang.ref.Reference.get’
was not converted.

1 ToDo 2 Method ’java.lang.Thread.sleep’ was
converted to ’System.Threading.
Thread.Sleep’ which has a different
behavior.

3 ToDo 2 The equivalent in .NET for method
’java.lang.Object.toString’ may
return a different value.

5 ToDo 2 The equivalent in .NET for method
’java.lang.Object.toString’ may
return a different value.

Conversion Issues for
MainClass.Declarations

Type Severity Description
1 Compile 1 Class ’java.lang.ref.ReferenceQueue’

was not converted.
2 Compile 1 Constructor ’java.lang.ref.

ReferenceQueue.ReferenceQueue’ was
not converted.

103

II Java Language Conversion Assistant

Converted C# Code

An interesting aspect of the C# code is how the java.lang.Runnable interface
and the java.lang.Thread class are handled. The JLCA creates a support class
for Java’s Thread class in order to provide similar functionality in C#.

The rest of the code shows that the JLCA is unable to convert the java.lang.ref
classes.

1 using System;
2

3 public class MainClass
4 {
5 private class AnonymousClassRunnable :

IThreadRunnable
6 {
7 public virtual void Run()
8 {
9 try

10 {
11 //UPGRADE ISSUE : C l a s s ’ j a v a . l ang . r e f . Re fe r ence ’ was

not conve r t ed .

12 Reference r = null;
13 //UPGRADE ISSUE : Method ’ j a v a . l ang . r e f . Refe renceQueue .

remove ’ was not conve r t ed .

14 r = MainClass._weakReferenceQueue.remove
();

15 System.Console.Out.WriteLine("Removed
reference from reference queue.");

16 //UPGRADE ISSUE : Method ’ j a v a . l ang . r e f . Re f e r en c e . get ’

was not conve r t ed .

17 System.Object o = r.get_Renamed ();
18 //UPGRADE TODO : The e q u i v a l e n t i n .NET for method ’ j a v a

. l ang . Object . t oS t r i n g ’ may return a d i f f e r e n t

v a l u e .

19 System.Console.Out.WriteLine("Referent of

weak reference : " + o);
20 }
21 catch (System.Threading.

ThreadInterruptedException e)
22 {
23 System.Console.Error.WriteLine("Caught

InterruptedException:");
24 SupportClass.WriteStackTrace(e, Console.

Error);
25 }
26 }

104

9 Conversion Tests with JLCA

27 }
28

29 //UPGRADE ISSUE : C l a s s ’ j a v a . l ang . r e f . ReferenceQueue ’ was not conve r t ed

.

30 //UPGRADE ISSUE : Con s t r u c t o r ’ j a v a . l ang . r e f . Refe renceQueue .

ReferenceQueue ’ was not conve r t ed .

31 private static ReferenceQueue _weakReferenceQueue =
new ReferenceQueue ();

32

33 [STAThread]
34 public static void Main(System.String [] args)
35 {
36 System.Console.Out.WriteLine("WeakReference test.

");
37

38 MainClass mc = new MainClass ();
39 //UPGRADE ISSUE : Con s t r u c t o r ’ j a v a . l ang . r e f . WeakReference .

WeakReference ’ was not conve r t ed .

40 System.WeakReference wr = new WeakReference(mc ,
_weakReferenceQueue);

41

42 SupportClass.ThreadClass referenceQueueReader =
new SupportClass.ThreadClass(new System.
Threading.ThreadStart(new
AnonymousClassRunnable ().Run));

43

44 referenceQueueReader.IsBackground = true;
45 referenceQueueReader.Start();
46

47 System.Console.Out.WriteLine("Giving up reference

to object.");
48 mc = null;
49

50 //UPGRADE TODO : The e q u i v a l e n t i n .NET for method ’ j a v a . l ang .

Object . t oS t r i n g ’ may return a d i f f e r e n t v a l u e .

51 //UPGRADE ISSUE : Method ’ j a v a . l ang . r e f . Re f e r en c e . get ’ was not
conve r t ed .

52 System.Console.Out.WriteLine("Referent of weak

reference : " + wr.get_Renamed ());
53 System.Console.Out.WriteLine("Starting GC.");
54 System.GC.Collect ();
55 //UPGRADE TODO : The e q u i v a l e n t i n .NET for method ’ j a v a . l ang .

Object . t oS t r i n g ’ may return a d i f f e r e n t v a l u e .

56 //UPGRADE ISSUE : Method ’ j a v a . l ang . r e f . Re f e r en c e . get ’ was not
conve r t ed .

57 System.Console.Out.WriteLine("Referent of weak

reference : " + wr.get_Renamed ());

105

II Java Language Conversion Assistant

58

59 try
60 {
61 //UPGRADE TODO : Method ’ j a v a . l ang . Thread . s l e e p ’ was conve r t ed

to ’ System . Thread ing . Thread . S leep ’ which has a d i f f e r e n t

b eh a v i o r .

62 System.Threading.Thread.Sleep(new System.
TimeSpan ((System.Int64) 10000 * 1000));

63 }
64 catch (System.Threading.

ThreadInterruptedException e)
65 {
66 System.Console.Error.WriteLine("Caught

InterruptedException:");
67 SupportClass.WriteStackTrace(e, Console.Error

);
68 }
69 }
70

71 ~MainClass ()
72 {
73 //UPGRADE NOTE : C a l l to ’ s upe r . f i n a l i z e () ’ was removed .

74 System.Console.Out.WriteLine("Finalized MainClass

object.");
75 }
76 }

Analysis

As the .NET framework and the Java runtime system have different APIs for han-
dling weak references the JLCA does not succeed in performing automatic con-
versions when the java.lang.ref.WeakReference and java.lang.ref

.ReferenceQueue classes are used. Especially for the java.lang.ref.

ReferenceQueue class there seems to be no real equivalent in the .NET frame-
work.

However, the .NET framework features a System.WeakReference class that
offers some of the functionality required for automatic conversions. The JLCA
could perform better if it used this class. Furthermore, the employment of support
classes could facilitate the automatic conversion of usages of the java.lang.ref

.ReferenceQueue class.

Similar tests have been performed with the java.lang.ref.SoftReference
and the java.lang.ref.PhantomReference classes. These tests have pro-
duced results that are mostly equivalent to the results of this test.

106

9 Conversion Tests with JLCA

9.11 java.lang.Runtime.addShutdownHook

Summary

Test: java.lang.Runtime.addShutdownHook

Runtime.getRuntime ().addShutdownHook(new
Thread(
new Runnable () {

public void run() {
System.out.println("Running

shutdown hook.");
}

}
));

Results:
supported issues difficulty
no 1 3

Introduction

The purpose of this test is to show whether the JLCA supports the automatic conver-
sion of the java.lang.Runtime.addShutdownHook method. This method
lets applications register threads that are started when the Java virtual machine
shuts down. Thus, this method can be used to assure that special cleanup proce-
dures are always carried out.

Java Source Code

1 import java.lang.Thread .*;
2

3 class MainClass {
4

5 public static void main(String [] args) {
6 System.out.println("Adding shutdown hook.");
7

8 Runtime.getRuntime ().addShutdownHook(new Thread(
9 new Runnable () {

10 public void run() {
11 System.out.println("Running shutdown

hook.");
12 }
13 }
14));

107

II Java Language Conversion Assistant

15

16 System.out.println("Exiting ...");
17 }
18 }

The Java source code for this test is fairly simple. Only one shutdown hook thread
is registered. This thread, when run, just prints a short message to the standard
output stream and then exits.

The program produces the following console output:

Adding shutdown hook.
Exiting ...
Running shutdown hook.

Conversion Results

The conversion results show that the JLCA does not support the automatic conver-
sion of the java.lang.Runtime.addShutdownHook method.

MainClass.java

Conversion Issues for Main-
Class.main(java.lang.String[])

Type Severity Description
1 Compile 1 Method ’java.lang.Runtime.

addShutdownHook’ was not
converted.

Converted C# Code

1 using System;
2

3 class MainClass
4 {
5 private class AnonymousClassRunnable :

IThreadRunnable
6 {
7 public virtual void Run()
8 {
9 System.Console.Out.WriteLine("Running

shutdown hook.");

108

9 Conversion Tests with JLCA

10 }
11 }
12

13 [STAThread]
14 public static void Main(System.String [] args)
15 {
16 System.Console.Out.WriteLine("Adding shutdown

hook.");
17

18 //UPGRADE ISSUE : Method ’ j a v a . l ang . Runtime . addShutdownHook ’ was

not conve r t ed .

19 System.Diagnostics.Process.GetCurrentProcess ().
addShutdownHook(new SupportClass.ThreadClass(
new System.Threading.ThreadStart(new
AnonymousClassRunnable ().Run)));

20

21 System.Console.Out.WriteLine("Exiting ...");
22 }
23 }

Analysis

While the JLCA is able to convert the creation of the shutdown hook thread
it does not succeed in mapping the call to the java.lang.Runtime.

addShutdownHook method. Interestingly, the java.lang.Runtime class is
mapped to the System.Diagnostics.Process class. While this may actually
work for other methods associated with the Runtime class this mapping is not
correct for the addShutdownHook method.

A far better mapping for the addShutdownHook method is the ProcessExit
event of the System.AppDomain class. This event occurs on the default appli-
cation domain when the default application domain’s parent process exits. Thus,
handlers for this event can carry out cleanup procedures almost in the same way as
Java shutdown hook threads. The following C# listing shows a small program that
behaves in the same way as the original Java program.

1 using System;
2

3 namespace AppDomainEvents
4 {
5 public class MainClass
6 {
7

8 public static void Main()
9 {

109

II Java Language Conversion Assistant

10 Console.WriteLine("Registering for

ProcessExit event.");
11 AppDomain.CurrentDomain.ProcessExit += new

EventHandler(CurrentDomain_ProcessExit);
12 Console.WriteLine("Exiting.");
13 }
14

15 private static void CurrentDomain_ProcessExit(
object sender , EventArgs e)

16 {
17 Console.WriteLine("Running ProcessExit event

handler.");
18 }
19 }
20 }

However, there is still a difference between the semantics of the addShutdownHook
method and the ProcessExit event. In Java, all shutdown hook threads are
executed concurrently. The .NET runtime environment normally calls event handlers
sequentially. This means that all event handlers for the ProcessExit event are
executed one after the other.

For overcoming this difference a support class could be implemented. This sup-
port class could map the behavior of the addShutdownHook method, e.g. by
providing a means for registering threads. For starting all these threads when the
.NET runtime environment shuts down this support class could make use of the
ProcessExit event.

110

9 Conversion Tests with JLCA

9.12 Swing: Hello World

Summary

This example tests a simple Java program using the Java Swing technology. Detailed
tests to specific features of Swing will follow. It turns out that the conversion of
such a simple application works quite well and just one line of code has to be added
to the generated source.

Test: javax.swing in general

// Crea te a JFrame . . .

JFrame mainFrame = new JFrame("Test");
mainFrame.setDefaultCloseOperation(JFrame.

EXIT_ON_CLOSE);
mainFrame.setSize (128 ,128);
mainFrame.getContentPane ().setLayout(new

FlowLayout ());

//Add a l a b e l . . .

JLabel helloLabel = new JLabel("Hello World!

");
mainFrame.getContentPane ().add(helloLabel);

Results:
supported issues difficulty
yes 10 1

Introduction

This program just creates a label and a button that may be used to quit the applica-
tion. Additionally it uses the FlowLayout to arrange the elements. Layout managers
are not supported in C# and must have been solved with an own implementation
inside a support class.

Java Source Code

1 import java.awt .*;
2 import java.awt.event .*;
3 import javax.swing .*;
4

5 public class SwingHelloWorld {
6

7 public static void main(String [] args) {
8 // Crea te a JFrame . . .

111

II Java Language Conversion Assistant

9 JFrame mainFrame = new JFrame("Test");
10 mainFrame.setDefaultCloseOperation(JFrame.

EXIT_ON_CLOSE);
11 mainFrame.setSize (128 ,128);
12 mainFrame.getContentPane ().setLayout(new

FlowLayout ());
13

14 //Add a l a b e l . . .

15 JLabel helloLabel = new JLabel("Hello World!");
16 mainFrame.getContentPane ().add(helloLabel);
17

18 //Add a button . . .

19 JButton exitButton = new JButton("Exit");
20 exitButton.addMouseListener(new MouseAdapter () {
21 public void mouseClicked(MouseEvent e) {
22 System.exit (0);
23 }
24 });
25 mainFrame.getContentPane ().add(exitButton);
26

27 //Show the JFrame . . .

28 mainFrame.show();
29 }
30 }

Conversion Results

SwingHelloWorld.java

Conversion Issues for SwingHel-
loWorld.main(java.lang.String[])

Type Severity Description
1 ToDo 2 Method ’java.awt.Component.setSize’

was converted to ’System.Windows.
Forms.Control.Size’ which has a
different behavior.

2 ToDo 2 Method ’javax.swing.JFrame.
getContentPane’ was converted to
’System.Windows.Forms.Form’ which
has a different behavior.

3 ToDo 2 Constructor ’java.awt.FlowLayout.
FlowLayout’ was converted to ’System.
Object[]’ which has a different behavior.

112

9 Conversion Tests with JLCA

4 ToDo 2 Method ’java.awt.Container.add’ was
converted to ’System.Windows.Forms.
ContainerControl.Controls.Add’ which
has a different behavior.

5 ToDo 2 Method ’javax.swing.JFrame.
getContentPane’ was converted to
’System.Windows.Forms.Form’ which
has a different behavior.

6 ToDo 2 Method ’java.awt.Container.add’ was
converted to ’System.Windows.Forms.
ContainerControl.Controls.Add’ which
has a different behavior.

7 ToDo 2 Method ’javax.swing.JFrame.
getContentPane’ was converted to
’System.Windows.Forms.Form’ which
has a different behavior.

8 ToDo 2 ’System.Windows.Forms.Application.
Run’ must be called to start a main
form.

Converted C# Code

The anonymous class for event handling in Java is converted in a private class called
AnonymousClassMouseAdapter. Another event handler for the mouseDown
event is registered but just sets a class-wide static field state2 that is never used
again.

Line 51 had to be added to start the application while line 50 was commented out.

1 using System;
2

3 public class SwingHelloWorld
4 {
5 static private System.Int32 state2;
6 private class AnonymousClassMouseAdapter
7 {
8 public void mouseClicked(System.Object

event_sender , System.EventArgs e)
9 {

10 System.Environment.Exit (0);
11 }
12 }

113

II Java Language Conversion Assistant

13 private static void mouseDown(System.Object
event_sender , System.Windows.Forms.MouseEventArgs
e)

14 {
15 state2 = ((int) e.Button | (int) System.Windows.

Forms.Control.ModifierKeys);
16 }
17

18 [STAThread]
19 public static void Main(System.String [] args)
20 {
21 // Crea te a JFrame . . .

22 System.Windows.Forms.Form mainFrame =
SupportClass.FormSupport.CreateForm("Test");

23 mainFrame.Closing += new System.ComponentModel.
CancelEventHandler(SwingHelloWorld.
SwingHelloWorld_Closing_EXIT_ON_CLOSE);

24 //UPGRADE TODO : Method ’ j a v a . awt . Component . s e t S i z e ’ was conve r t ed

to ’ System . Windows . Forms . Con t r o l . S i ze ’ which has a d i f f e r e n t

b eh a v i o r .

25 mainFrame.Size = new System.Drawing.Size
(128 , 128);

26 //UPGRADE TODO : Method ’ j a v a x . swing . JFrame . getContentPane ’ was

conve r t ed to ’ System . Windows . Forms . Form ’ which has a d i f f e r e n t

b eh a v i o r .

27 //UPGRADE TODO : Con s t r u c t o r ’ j a v a . awt . FlowLayout . FlowLayout ’ was

conve r t ed to ’ System . Object [] ’ which has a d i f f e r e n t b eha v i o r .

28 ((System.Windows.Forms.ContainerControl)
mainFrame).Tag = new System.Object []{(int)
System.Drawing.ContentAlignment.TopCenter
, 5 , 5};

29 ((System.Windows.Forms.ContainerControl)
mainFrame).Layout += new System.Windows.Forms.
LayoutEventHandler(SupportClass.
FlowLayoutResize);

30

31 //Add a l a b e l . . .

32 System.Windows.Forms.Label temp_label;
33 temp_label = new System.Windows.Forms.Label ();
34 temp_label.Text = "Hello World!";
35 System.Windows.Forms.Label helloLabel =

temp_label;
36 //UPGRADE TODO : Method ’ j a v a x . swing . JFrame . getContentPane ’ was

conve r t ed to ’ System . Windows . Forms . Form ’ which has a d i f f e r e n t

b eh a v i o r .

37 //UPGRADE TODO : Method ’ j a v a . awt . Con ta i n e r . add ’ was conve r t ed to ’

System . Windows . Forms . Con t a i n e rCon t r o l . C on t r o l s . Add ’ which has a

114

9 Conversion Tests with JLCA

d i f f e r e n t b eha v i o r .

38 ((System.Windows.Forms.ContainerControl)
mainFrame).Controls.Add(helloLabel);

39

40 //Add a button . . .

41 System.Windows.Forms.Button exitButton =
SupportClass.ButtonSupport.
CreateStandardButton("Exit");

42 exitButton.MouseDown += new System.Windows.Forms.
MouseEventHandler(SwingHelloWorld.mouseDown);

43 exitButton.Click += new System.EventHandler(new
AnonymousClassMouseAdapter ().mouseClicked);

44 //UPGRADE TODO : Method ’ j a v a x . swing . JFrame . getContentPane ’ was

conve r t ed to ’ System . Windows . Forms . Form ’ which has a d i f f e r e n t

b eha v i o r .

45 //UPGRADE TODO : Method ’ j a v a . awt . Con ta i n e r . add ’ was conve r t ed to ’

System . Windows . Forms . Con t a i n e rCon t r o l . C on t r o l s . Add ’ which has a

d i f f e r e n t b eha v i o r .

46 ((System.Windows.Forms.ContainerControl)
mainFrame).Controls.Add(exitButton);

47

48 //Show the JFrame . . .

49 //UPGRADE TODO: ’ System . Windows . Forms . A p p l i c a t i o n . Run ’ must be

c a l l e d to s t a r t a main form .

50 //mainFrame . Show () ;

51 System.Windows.Forms.Application.Run(mainFrame);
52 }
53 private static void

SwingHelloWorld_Closing_EXIT_ON_CLOSE(System.
Object sender , System.ComponentModel.
CancelEventArgs e)

54 {
55 e.Cancel = true;
56 SupportClass.CloseOperation ((System.Windows.Forms

.Form) sender , 3);
57 }
58 }

Analysis

The standard swing components are converted fairly naturally.

The flow layout was managed using a quite complicated support class. An event
handler is registered to the layout event to rearrange the elements during layouting.
This works even better than the original Java version for it refreshes the layout

115

II Java Language Conversion Assistant

continuously while resizing the window while in Java the refreshing is performed
after releasing the button.

A somewhat strange effect is the generation of a obviously useless event handler.
This may be used to get the state of the button but this is not a deal of this
example.

To start the application the Application.Run method must be called. This is
not performed by the generator but a comment in line 49 points to this fact.

The visual conversion of swing to C# works quite well. The following images show
the initial windows and resized versions.

Visualisation

Java:

C#:

116

9 Conversion Tests with JLCA

9.13 Swing: Simple menu example

Summary

Test: javax.swing.JMenu, JMenuBar, JMenuItem (simple)

menuBar = new JMenuBar ();

menu = new JMenu("A Menu");
menuBar.add(menu);

menuItem = new JMenuItem("An item");
menu.add(menuItem);

Results:
supported issues difficulty
yes 2 0

Introduction

Simple menus are treated nearly the same way in Java an C#. Problems may occur
with specialties like checkboxes which will be examined later in this document.

Java Source Code

The relevant function here is createMenuBar() in line 8. A JMenuBar is created
and a menu and an item are added.

1 import javax.swing.JMenu;
2 import javax.swing.JMenuItem;
3 import javax.swing.JMenuBar;
4 import javax.swing.JFrame;
5

6 public class MenuSimple {
7

8 public JMenuBar createMenuBar () {
9 JMenuBar menuBar;

10 JMenu menu;
11 JMenuItem menuItem;
12

13 menuBar = new JMenuBar ();
14

15 menu = new JMenu("A Menu");
16 menuBar.add(menu);
17

117

II Java Language Conversion Assistant

18 menuItem = new JMenuItem("An item");
19 menu.add(menuItem);
20

21 return menuBar;
22 }
23

24 private static void createAndShowGUI () {
25 JFrame frame = new JFrame("Menu1");
26 frame.setDefaultCloseOperation(JFrame.

EXIT_ON_CLOSE);
27

28 MenuSimple demo = new MenuSimple ();
29 frame.setJMenuBar(demo.createMenuBar ());
30

31 frame.setSize (450 , 260);
32 frame.setVisible(true);
33 }
34

35 public static void main(String [] args) {
36 createAndShowGUI ();
37 }
38 }

Conversion Results

MenuSimple.java

Conversion Issues for
MenuSimple.createMenuBar()

Type Severity Description
1 ToDo 2 The equivalent in .NET for method

’javax.swing.JMenuBar.add’ may return
a different value.

2 ToDo 2 The equivalent in .NET for method
’javax.swing.JMenu.add’ may return a
different value.

Conversion Issues for MenuSim-
ple.createAndShowGUI()

Type Severity Description
1 ToDo 2 Method ’java.awt.Component.setSize’

was converted to ’System.Windows.
Forms.Control.Size’ which has a
different behavior.

118

9 Conversion Tests with JLCA

2 ToDo 2 Method ’java.awt.Component.
setVisible’ was converted to ’System.
Windows.Forms.Control.Visible’ which
has a different behavior.

3 ToDo 2 ’System.Windows.Forms.Application.
Run’ must be called to start a main
form.

Converted C# Code

The converted code looks nearly the same as the Java code. The converted code
works as expected but is not most efficient or even not as a human would write it:
The creation of menu and menuItem is done in two steps. First the objects are
created and the title is given in a second line of code while both classes support
giving a title inside the constructor.

1 using System;
2

3 public class MenuSimple
4 {
5

6 public virtual System.Windows.Forms.MainMenu
createMenuBar ()

7 {
8 System.Windows.Forms.MainMenu menuBar;
9 System.Windows.Forms.MenuItem menu;

10 System.Windows.Forms.MenuItem menuItem;
11

12 menuBar = new System.Windows.Forms.MainMenu ();
13

14 menu = new System.Windows.Forms.MenuItem ();
15 menu.Text = "A Menu";
16 menuBar.MenuItems.Add(menu);
17

18 menuItem = new System.Windows.Forms.MenuItem ();
19 menuItem.Text = "An item";
20 menu.MenuItems.Add(menuItem);
21

22 return menuBar;
23 }
24

25 private static void createAndShowGUI ()

119

II Java Language Conversion Assistant

26 {
27 System.Windows.Forms.Form frame = SupportClass.

FormSupport.CreateForm("Menu1");
28 frame.Closing += new System.ComponentModel.

CancelEventHandler(MenuSimple.
MenuSimple_Closing_EXIT_ON_CLOSE);

29

30 MenuSimple demo = new MenuSimple ();
31 frame.Menu = demo.createMenuBar ();
32

33 //UPGRADE TODO : Method ’ j a v a . awt . Component . s e t S i z e ’ was conve r t ed

to ’ System . Windows . Forms . Con t r o l . S i ze ’ which has a d i f f e r e n t

b eh a v i o r .

34 frame.Size = new System.Drawing.Size (450 , 260);
35 //UPGRADE TODO : Method ’ j a v a . awt . Component . s e t V i s i b l e ’ was

conve r t ed to ’ System . Windows . Forms . Con t r o l . V i s i b l e ’ which has a

d i f f e r e n t b eh a v i o r .

36 //UPGRADE TODO: ’ System . Windows . Forms . A p p l i c a t i o n . Run ’ must be

c a l l e d to s t a r t a main form .

37 frame.Visible = true;
38 System.Windows.Forms.Application.Run(frame);
39 }
40

41 [STAThread]
42 public static void Main(System.String [] args)
43 {
44 createAndShowGUI ();
45 }
46 private static void MenuSimple_Closing_EXIT_ON_CLOSE

(System.Object sender , System.ComponentModel.
CancelEventArgs e)

47 {
48 e.Cancel = true;
49 SupportClass.CloseOperation ((System.Windows.Forms

.Form) sender , 3);
50 }
51 }

120

9 Conversion Tests with JLCA

9.14 Swing: Menu with Submenu

Summary

Test: javax.swing.JMenu (used as submenu)

menu = new JMenu("A Menu");
submenu = new JMenu("A submenu");
...
menu.add(submenu);

Results:
supported issues difficulty
yes 5 0

Introduction

In this test a menu containing a submenu item is created. This functionality is
available both in Java and C#.

Java Source Code

The relevant function here is createMenuBar() in line 8.

1 import javax.swing.JMenu;
2 import javax.swing.JMenuItem;
3 import javax.swing.JMenuBar;
4 import javax.swing.JFrame;
5

6 public class MenuSubmenu {
7

8 public JMenuBar createMenuBar () {
9 JMenuBar menuBar;

10 JMenu menu , submenu;
11 JMenuItem menuItem;
12

13 menuBar = new JMenuBar ();
14 menu = new JMenu("A Menu");
15 menuBar.add(menu);
16

17 menuItem = new JMenuItem("An item");
18 menu.add(menuItem);
19

20 menu.addSeparator ();
21

121

II Java Language Conversion Assistant

22 //a submenu

23 submenu = new JMenu("A submenu");
24

25 menuItem = new JMenuItem("An item in the submenu"

);
26 submenu.add(menuItem);
27

28 menuItem = new JMenuItem("Another item");
29 submenu.add(menuItem);
30

31 menu.add(submenu);
32

33 return menuBar;
34 }
35

36 private static void createAndShowGUI () {
37 JFrame frame = new JFrame("Submenu demo");
38 frame.setDefaultCloseOperation(JFrame.

EXIT_ON_CLOSE);
39

40 MenuSubmenu demo = new MenuSubmenu ();
41 frame.setJMenuBar(demo.createMenuBar ());
42

43 frame.setSize (450 , 260);
44 frame.setVisible(true);
45 }
46

47 public static void main(String [] args) {
48 createAndShowGUI ();
49 }
50

51 }

Conversion Results

There are fife Issues in the relevant method. But all issues concern the same method:
add which may return a different value. This value is not used in the given example
and will be rarely used in other applications.

MenuSubmenu.java

Conversion Issues for
MenuSubmenu.createMenuBar()

Type Severity Description

122

9 Conversion Tests with JLCA

1 ToDo 2 The equivalent in .NET for method
’javax.swing.JMenuBar.add’ may return
a different value.

2 ToDo 2 The equivalent in .NET for method
’javax.swing.JMenu.add’ may return a
different value.

3 ToDo 2 The equivalent in .NET for method
’javax.swing.JMenu.add’ may return a
different value.

4 ToDo 2 The equivalent in .NET for method
’javax.swing.JMenu.add’ may return a
different value.

5 ToDo 2 The equivalent in .NET for method
’javax.swing.JMenu.add’ may return a
different value.

Conversion Issues for MenuSub-
menu.createAndShowGUI()

Type Severity Description
1 ToDo 2 Method ’java.awt.Component.setSize’

was converted to ’System.Windows.
Forms.Control.Size’ which has a
different behavior.

2 ToDo 2 Method ’java.awt.Component.
setVisible’ was converted to ’System.
Windows.Forms.Control.Visible’ which
has a different behavior.

3 ToDo 2 ’System.Windows.Forms.Application.
Run’ must be called to start a main
form.

Converted C# Code

The conversion again worked correctly. An interesting line is line 21. The menu
.addSeparator() command has changed to a menu item containing a - as its
title which is the usual way to add separators in C#.

1 using System;
2

3 public class MenuSubmenu
4 {

123

II Java Language Conversion Assistant

5

6 public virtual System.Windows.Forms.MainMenu
createMenuBar ()

7 {
8 System.Windows.Forms.MainMenu menuBar;
9 System.Windows.Forms.MenuItem menu , submenu;

10 System.Windows.Forms.MenuItem menuItem;
11

12 menuBar = new System.Windows.Forms.MainMenu ();
13 menu = new System.Windows.Forms.MenuItem ();
14 menu.Text = "A Menu";
15 menuBar.MenuItems.Add(menu);
16

17 menuItem = new System.Windows.Forms.MenuItem ();
18 menuItem.Text = "An item";
19 menu.MenuItems.Add(menuItem);
20

21 menu.MenuItems.Add(new System.Windows.Forms.
MenuItem("-"));

22

23 //a submenu

24 submenu = new System.Windows.Forms.MenuItem ();
25 submenu.Text = "A submenu";
26

27 menuItem = new System.Windows.Forms.MenuItem ();
28 menuItem.Text = "An item in the submenu";
29 submenu.MenuItems.Add(menuItem);
30

31 menuItem = new System.Windows.Forms.MenuItem ();
32 menuItem.Text = "Another item";
33 submenu.MenuItems.Add(menuItem);
34

35 menu.MenuItems.Add(submenu);
36

37 return menuBar;
38 }
39

40 private static void createAndShowGUI ()
41 {
42 System.Windows.Forms.Form frame = SupportClass.

FormSupport.CreateForm("Submenu demo");
43 frame.Closing += new System.ComponentModel.

CancelEventHandler(MenuSubmenu.
MenuSubmenu_Closing_EXIT_ON_CLOSE);

44

45 MenuSubmenu demo = new MenuSubmenu ();
46 frame.Menu = demo.createMenuBar ();

124

9 Conversion Tests with JLCA

47

48 //UPGRADE TODO : Method ’ j a v a . awt . Component . s e t S i z e ’ was conve r t ed

to ’ System . Windows . Forms . Con t r o l . S i ze ’ which has a d i f f e r e n t

b eha v i o r .

49 frame.Size = new System.Drawing.Size (450 , 260);
50 //UPGRADE TODO : Method ’ j a v a . awt . Component . s e t V i s i b l e ’ was

conve r t ed to ’ System . Windows . Forms . Con t r o l . V i s i b l e ’ which has a

d i f f e r e n t b eha v i o r .

51 //UPGRADE TODO: ’ System . Windows . Forms . A p p l i c a t i o n . Run ’ must be

c a l l e d to s t a r t a main form .

52 frame.Visible = true;
53 System.Windows.Forms.Application.Run();
54 }
55

56 [STAThread]
57 public static void Main(System.String [] args)
58 {
59 createAndShowGUI ();
60 }
61 private static void

MenuSubmenu_Closing_EXIT_ON_CLOSE(System.Object
sender , System.ComponentModel.CancelEventArgs e)

62 {
63 e.Cancel = true;
64 SupportClass.CloseOperation ((System.Windows.Forms

.Form) sender , 3);
65 }
66 }

Visualisation

Java:

C#:

125

II Java Language Conversion Assistant

126

9 Conversion Tests with JLCA

9.15 Swing: Menu with Checkbox and Radiobut-

tons

Summary

Test: javax.swing.JRadioButtonMenuItem,

JCheckBoxMenuItem

rbMenuItem = new JRadioButtonMenuItem("A
radio button menu item");

rbMenuItem.setSelected(true);
group.add(rbMenuItem);
menu.add(rbMenuItem);

Results:
supported issues difficulty
yes 11 4

Introduction

Checked menus are supported by both frameworks. Hence a correct conversion was
expected.

Java Source Code

In Java there is a special menu item called JRadioButtonMenuItem for al-
ternative selection and JCheckBoxMenuItem for single decision selection. The
radiobuttons are added to a group to determine the alternatives.

1 import javax.swing.JMenu;
2 import javax.swing.JMenuBar;
3 import javax.swing.JFrame;
4 import javax.swing.JCheckBoxMenuItem;
5 import javax.swing.JRadioButtonMenuItem;
6 import javax.swing.ButtonGroup;
7

8 public class MenuCheckbox {
9

10 public JMenuBar createMenuBar () {
11 JMenuBar menuBar;
12 JMenu menu;
13 JRadioButtonMenuItem rbMenuItem;
14 JCheckBoxMenuItem cbMenuItem;
15

127

II Java Language Conversion Assistant

16 menuBar = new JMenuBar ();
17 menu = new JMenu("A Menu");
18 menuBar.add(menu);
19

20 //a group o f r a d i o button menu i t ems

21 ButtonGroup group = new ButtonGroup ();
22

23 rbMenuItem = new JRadioButtonMenuItem("A radio

button menu item");
24 rbMenuItem.setSelected(true);
25 group.add(rbMenuItem);
26 menu.add(rbMenuItem);
27

28 rbMenuItem = new JRadioButtonMenuItem("Another
one");

29 group.add(rbMenuItem);
30 menu.add(rbMenuItem);
31

32 menu.addSeparator ();
33

34 //a group o f check box menu i t ems

35 cbMenuItem = new JCheckBoxMenuItem("A check box

menu item");
36 menu.add(cbMenuItem);
37

38 cbMenuItem = new JCheckBoxMenuItem("Another one")
;

39 menu.add(cbMenuItem);
40

41 return menuBar;
42 }
43

44 private static void createAndShowGUI () {
45 JFrame frame = new JFrame("Checkbox and

Radiobutton demo");
46 frame.setDefaultCloseOperation(JFrame.

EXIT_ON_CLOSE);
47

48 MenuCheckbox demo = new MenuCheckbox ();
49 frame.setJMenuBar(demo.createMenuBar ());
50

51 frame.setSize (450 , 260);
52 frame.setVisible(true);
53 }
54

55 public static void main(String [] args) {
56 createAndShowGUI ();

128

9 Conversion Tests with JLCA

57 }
58 }

Conversion Results

MenuCheckbox.java

Conversion Issues for
MenuCheckbox.createMenuBar()

Type Severity Description
1 ToDo 2 The equivalent in .NET for method

’javax.swing.JMenuBar.add’ may
return a different value.

2 ToDo 2 Class ’javax.swing.ButtonGroup’ was
converted to ’System.Collections.
ArrayList’ which has a different
behavior.

3 ToDo 2 Class ’javax.swing.ButtonGroup’ was
converted to ’System.Collections.
ArrayList’ which has a different
behavior.

4 ToDo 2 Constructor ’javax.swing.
JRadioButtonMenuItem.
JRadioButtonMenuItem’ was converted
to ’System.Windows.Forms.MenuItem’
which has a different behavior.

5 ToDo 2 The equivalent in .NET for method
’javax.swing.ButtonGroup.add’ may
return a different value.

6 ToDo 2 The equivalent in .NET for method
’javax.swing.JMenu.add’ may return a
different value.

7 ToDo 2 Constructor ’javax.swing.
JRadioButtonMenuItem.
JRadioButtonMenuItem’ was converted
to ’System.Windows.Forms.MenuItem’
which has a different behavior.

8 ToDo 2 The equivalent in .NET for method
’javax.swing.ButtonGroup.add’ may
return a different value.

9 ToDo 2 The equivalent in .NET for method
’javax.swing.JMenu.add’ may return a
different value.

129

II Java Language Conversion Assistant

10 ToDo 2 The equivalent in .NET for method
’javax.swing.JMenu.add’ may return a
different value.

11 ToDo 2 The equivalent in .NET for method
’javax.swing.JMenu.add’ may return a
different value.

Conversion Issues for MenuCheck-
box.createAndShowGUI()

Type Severity Description
1 ToDo 2 Method ’java.awt.Component.setSize’

was converted to ’System.Windows.
Forms.Control.Size’ which has a
different behavior.

2 ToDo 2 Method ’java.awt.Component.
setVisible’ was converted to ’System.
Windows.Forms.Control.Visible’ which
has a different behavior.

3 ToDo 2 ’System.Windows.Forms.Application.
Run’ must be called to start a main
form.

Converted C# Code

The converted code does not behave like the Java source. The visual representation
is correct but there is no built in behavior for check boxes or radio buttons as in
Java menus.

In line 87 and line 100 there are two event handlers that had to be created manually.
These handlers deal with click events and manage the checking and unchecking of
the menu items.

1 using System;
2

3 public class MenuCheckbox
4 {
5 //moved from createMenuBar ()

6 private System.Collections.ArrayList _buttonGroup =
new System.Collections.ArrayList ();

7

130

9 Conversion Tests with JLCA

8 public virtual System.Windows.Forms.MainMenu
createMenuBar ()

9 {
10 System.Windows.Forms.MainMenu menuBar;
11 System.Windows.Forms.MenuItem menu;
12 System.Windows.Forms.MenuItem rbMenuItem;
13 System.Windows.Forms.MenuItem cbMenuItem;
14

15 menuBar = new System.Windows.Forms.MainMenu ();
16 menu = new System.Windows.Forms.MenuItem ();
17 menu.Text = "A Menu";
18 menuBar.MenuItems.Add(menu);
19

20 //a group o f r a d i o button menu i t ems

21 //UPGRADE TODO : C l a s s ’ j a v a x . swing . ButtonGroup ’ was conve r t ed to ’

System . C o l l e c t i o n s . A r r a yL i s t ’ which has a d i f f e r e n t b eha v i o r .

22 //moved to top as i n s t a n c e v a r i a b l e

23 //System . C o l l e c t i o n s . A r r a y L i s t group = new System . C o l l e c t i o n s .

A r r a y L i s t () ;

24

25 System.Windows.Forms.MenuItem temp_menuitem;
26 //UPGRADE TODO : Con s t r u c t o r ’ j a v a x . swing . JRadioButtonMenuItem .

JRadioButtonMenuItem ’ was conve r t ed to ’ System . Windows . Forms .

MenuItem ’ which has a d i f f e r e n t b eha v i o r .

27 temp_menuitem = new System.Windows.Forms.MenuItem
();

28 temp_menuitem.RadioCheck = true;
29 temp_menuitem.Text = "A radio button menu item";
30 rbMenuItem = temp_menuitem;
31 rbMenuItem.Checked = true;
32 _buttonGroup.Add((System.Object) rbMenuItem);
33 rbMenuItem.Click += new EventHandler(

rbMenuItem_Click);
34 menu.MenuItems.Add(rbMenuItem);
35

36 System.Windows.Forms.MenuItem temp_menuitem2;
37 //UPGRADE TODO : Con s t r u c t o r ’ j a v a x . swing . JRadioButtonMenuItem .

JRadioButtonMenuItem ’ was conve r t ed to ’ System . Windows . Forms .

MenuItem ’ which has a d i f f e r e n t b eha v i o r .

38 temp_menuitem2 = new System.Windows.Forms.
MenuItem ();

39 temp_menuitem2.RadioCheck = true;
40 temp_menuitem2.Text = "Another one";
41 rbMenuItem = temp_menuitem2;
42 _buttonGroup.Add((System.Object) rbMenuItem);
43 rbMenuItem.Click += new EventHandler(

rbMenuItem_Click);

131

II Java Language Conversion Assistant

44 menu.MenuItems.Add(rbMenuItem);
45

46 menu.MenuItems.Add(new System.Windows.Forms.
MenuItem("-"));

47

48 //a group o f check box menu i t ems

49 cbMenuItem = new System.Windows.Forms.MenuItem("A
check box menu item");

50 cbMenuItem.Click += new EventHandler(
cbMenuItem_Click);

51 menu.MenuItems.Add(cbMenuItem);
52

53 cbMenuItem = new System.Windows.Forms.MenuItem("
Another one");

54 cbMenuItem.Click += new EventHandler(
cbMenuItem_Click);

55 menu.MenuItems.Add(cbMenuItem);
56

57 return menuBar;
58 }
59

60 private static void createAndShowGUI ()
61 {
62 System.Windows.Forms.Form frame = SupportClass.

FormSupport.CreateForm("Checkbox and

Radiobutton demo");
63 frame.Closing += new System.ComponentModel.

CancelEventHandler(MenuCheckbox.
MenuCheckbox_Closing_EXIT_ON_CLOSE);

64

65 MenuCheckbox demo = new MenuCheckbox ();
66 frame.Menu = demo.createMenuBar ();
67

68 //UPGRADE TODO : Method ’ j a v a . awt . Component . s e t S i z e ’ was conve r t ed

to ’ System . Windows . Forms . Con t r o l . S i ze ’ which has a d i f f e r e n t

b eh a v i o r .

69 frame.Size = new System.Drawing.Size (450 , 260);
70 //UPGRADE TODO : Method ’ j a v a . awt . Component . s e t V i s i b l e ’ was

conve r t ed to ’ System . Windows . Forms . Con t r o l . V i s i b l e ’ which has a

d i f f e r e n t b eh a v i o r .

71 //UPGRADE TODO: ’ System . Windows . Forms . A p p l i c a t i o n . Run ’ must be

c a l l e d to s t a r t a main form .

72 frame.Visible = true;
73 System.Windows.Forms.Application.Run();
74 }
75

76 [STAThread]

132

9 Conversion Tests with JLCA

77 public static void Main(System.String [] args)
78 {
79 createAndShowGUI ();
80 }
81 private static void

MenuCheckbox_Closing_EXIT_ON_CLOSE(System.Object
sender , System.ComponentModel.CancelEventArgs e)

82 {
83 e.Cancel = true;
84 SupportClass.CloseOperation ((System.Windows.Forms

.Form) sender , 3);
85 }
86

87 private void cbMenuItem_Click(object sender ,
EventArgs e)

88 {
89 System.Windows.Forms.MenuItem item = (System.

Windows.Forms.MenuItem)sender;
90 if (item.Checked)
91 {
92 item.Checked = false;
93 }
94 else
95 {
96 item.Checked = true;
97 }
98 }
99

100 private void rbMenuItem_Click(object sender ,
EventArgs e)

101 {
102 foreach (System.Windows.Forms.MenuItem item in

_buttonGroup)
103 {
104 if (sender == item)
105 {
106 item.Checked = true;
107 }
108 else
109 {
110 item.Checked = false;
111 }
112 }
113 }
114 }

133

II Java Language Conversion Assistant

Analysis

The Java behavior could have been adapted with a simple event handler. By adding
several handlers to a single event, the programmer does not have to deal with these
handlers performing the selection but only has to deal with a handler that manages
the semantic of the menu item.

134

9 Conversion Tests with JLCA

9.16 Swing: FileChooser

Summary

Test: javax.swing.JFileChooser, javax.swing.

filechooser.FileFilter

JFileChooser fc = new JFileChooser ();
fc.addChoosableFileFilter(new MyFileFilter("txt"));

Results:
supported issues difficulty
yes 11 2

Introduction

This test demonstrates the conversion of the FileChooser dialog box. It is a
simple Application that pops up a Save File Dialog when clicking on the button.
In Java it is necessary to add FileFilter objects. Those filter do not exist in
C#. While the file filters are very powerful and may do nearly anything to decide
whether a file should be displayed or not, in C# only filtering by file extensions is
possible. In this example file extension filtering is used that can be mapped to the
C# dialog.

Java Source Code

In line 9 the file chooser is created and from line 13 on configured with choosable
file filters that result in the drop down box to let the user choose the extension.

The class MyFileFilter (line 41)is used to filter the file extensions.

1 import java.awt .*;
2 import java.awt.event .*;
3 import javax.swing .*;
4 import javax.swing.filechooser.FileFilter;
5 import java.io.File;
6

7 public class FileChooser {
8

9 JFileChooser fc = new JFileChooser ();
10

11 FileChooser () {
12 // Con f i g u r e JF i l eChoo s e r

13 fc.addChoosableFileFilter(new MyFileFilter("txt")
);

135

II Java Language Conversion Assistant

14 fc.addChoosableFileFilter(new MyFileFilter("doc")
);

15 fc.addChoosableFileFilter(new MyFileFilter("jpg")
);

16 fc.addChoosableFileFilter(new MyFileFilter("gif")
);

17

18 // Crea te a JFrame . . .

19 JFrame mainFrame = new JFrame("FileChooser Demo")
;

20 mainFrame.setDefaultCloseOperation(JFrame.
EXIT_ON_CLOSE);

21 mainFrame.setSize (128 ,128);
22 mainFrame.getContentPane ().setLayout(new

FlowLayout ());
23

24 //Add a button . . .

25 JButton button = new JButton("FileChooser");
26 button.addMouseListener(new MouseAdapter () {
27 public void mouseClicked(MouseEvent e) {
28 fc.showOpenDialog(null);
29 }
30 });
31 mainFrame.getContentPane ().add(button);
32

33 //Show the JFrame . . .

34 mainFrame.show();
35 }
36

37 public static void main(String [] args) {
38 FileChooser demo = new FileChooser ();
39 }
40

41 class MyFileFilter extends FileFilter {
42

43 String extension;
44

45 public MyFileFilter(String extension) {
46 this.extension = extension;
47 }
48

49 public boolean accept(File f) {
50 if (f.isDirectory ()) {
51 return true;
52 }
53

54 String e = Utils.getExtension(f);

136

9 Conversion Tests with JLCA

55 if (e != null) {
56 if (e.equals(this.extension)) {
57 return true;
58 } else {
59 return false;
60 }
61 }
62

63 return false;
64 }
65

66 public String getDescription () {
67 return "*."+this.extension;
68 }
69 }
70 }

An additional class Utils is used to query file extensions from files. Since file filter-
ing works totally different in C#, this class is no longer necessary in the converted
version and therefore not shown here.

Conversion Results

FileChooser.java

Conversion Issues for File-
Chooser.mouseClicked(java.awt.event.MouseEvent)

Type Severity Description
1 ToDo 2 The equivalent in .NET for method

’javax.swing.JFileChooser.
showOpenDialog’ may return a
different value.

Conversion Issues for
FileChooser.FileChooser()

Type Severity Description
1 Compile 1 Method ’javax.swing.JFileChooser.

addChoosableFileFilter’ was not
converted.

2 Compile 1 Method ’javax.swing.JFileChooser.
addChoosableFileFilter’ was not
converted.

137

II Java Language Conversion Assistant

3 Compile 1 Method ’javax.swing.JFileChooser.
addChoosableFileFilter’ was not
converted.

4 Compile 1 Method ’javax.swing.JFileChooser.
addChoosableFileFilter’ was not
converted.

5 ToDo 2 Method ’java.awt.Component.
setSize’ was converted to ’System.
Windows.Forms.Control.Size’ which
has a different behavior.

6 ToDo 2 Method ’javax.swing.JFrame.
getContentPane’ was converted to
’System.Windows.Forms.Form’ which
has a different behavior.

7 ToDo 2 Constructor ’java.awt.FlowLayout.
FlowLayout’ was converted to
’System.Object[]’ which has a
different behavior.

8 ToDo 2 Method ’java.awt.Container.add’ was
converted to ’System.Windows.
Forms.ContainerControl.Controls.
Add’ which has a different behavior.

9 ToDo 2 Method ’javax.swing.JFrame.
getContentPane’ was converted to
’System.Windows.Forms.Form’ which
has a different behavior.

10 ToDo 2 ’System.Windows.Forms.Application.
Run’ must be called to start a main
form.

Conversion Issues for File-
Chooser.MyFileFilter.Declarations

Type Severity Description
3 Compile 1 Class ’javax.swing.filechooser.

FileFilter’ was not converted.
1 Compile 2 Class hierarchy differences between

’javax.swing.JFileChooser’ and
’System.Windows.Forms.FileDialog’
may cause compilation errors.

2 ToDo 2 Constructor may need to be changed
depending on function performed by
the ’System.Windows.Forms.
FileDialog’ object.

138

9 Conversion Tests with JLCA

Utils.java

There are no issues for this file.

Converted C# Code

JLCA does not convert the file filtering at all. As shown from line 41 is just tells
the user that the lines were not converted. The solution to this issue is the insertion
of line 50. C# uses pairs of description and extension devided by |. Those pairs
again are devided by |.

1 using System;
2

3 public class FileChooser
4 {
5 static private System.Int32 state2;
6 //UPGRADE NOTE : F i e l d ’ E n c l o s i n g I n s t a n c e ’ was added to class ’

AnonymousClassMouseAdapter ’ to a c c e s s i t s e n c l o s i n g i n s t a n c e .

7 private class AnonymousClassMouseAdapter
8 {
9 public AnonymousClassMouseAdapter(FileChooser

enclosingInstance)
10 {
11 InitBlock(enclosingInstance);
12 }
13 private void InitBlock(FileChooser

enclosingInstance)
14 {
15 this.enclosingInstance = enclosingInstance;
16 }
17 private FileChooser enclosingInstance;
18 public FileChooser Enclosing_Instance
19 {
20 get
21 {
22 return enclosingInstance;
23 }
24

25 }
26 public void mouseClicked(System.Object

event_sender , System.EventArgs e)
27 {

139

II Java Language Conversion Assistant

28 Enclosing_Instance.fc.ShowDialog(null);
29 }
30 }
31 private static void mouseDown(System.Object

event_sender , System.Windows.Forms.MouseEventArgs
e)

32 {
33 state2 = ((int) e.Button | (int) System.Windows.

Forms.Control.ModifierKeys);
34 }
35

36 //UPGRADE TODO : Con s t r u c t o r may need to be changed depend ing on f u n c t i o n

per fo rmed by the ’ System . Windows . Forms . F i l eD i a l o g ’ o b j e c t .

37 internal System.Windows.Forms.FileDialog fc = new
System.Windows.Forms.OpenFileDialog ();

38

39 internal FileChooser ()
40 {
41 // Con f i g u r e JF i l eChoo s e r

42 //UPGRADE ISSUE : Method ’ j a v a x . swing . JF i l eChoo s e r .

a d dCh o o s a b l e F i l e F i l t e r ’ was not conve r t ed .

43 f c . a d dC h o o s a b l e F i l e F i l t e r (new M y F i l e F i l t e r (t h i s , ” t x t ”)) ;

44 //UPGRADE ISSUE : Method ’ j a v a x . swing . JF i l eChoo s e r .

a d dCh o o s a b l e F i l e F i l t e r ’ was not conve r t ed .

45 f c . a d dC h o o s a b l e F i l e F i l t e r (new M y F i l e F i l t e r (t h i s , ” doc ”)) ;

46 //UPGRADE ISSUE : Method ’ j a v a x . swing . JF i l eChoo s e r .

a d dCh o o s a b l e F i l e F i l t e r ’ was not conve r t ed .

47 f c . a d dC h o o s a b l e F i l e F i l t e r (new M y F i l e F i l t e r (t h i s , ” j pg ”)) ;

48 //UPGRADE ISSUE : Method ’ j a v a x . swing . JF i l eChoo s e r .

a d dCh o o s a b l e F i l e F i l t e r ’ was not conve r t ed .

49 f c . a d dC h o o s a b l e F i l e F i l t e r (new M y F i l e F i l t e r (t h i s , ” g i f ”)) ;

50 fc.Filter = " Alle Dateien |*.*|*. txt |*.txt|*.doc
|*. doc|*.jpg|*. jpg |*. gif|*.gif";

51

52 // Crea te a JFrame . . .

53 System.Windows.Forms.Form mainFrame =
SupportClass.FormSupport.CreateForm("
FileChooser Demo");

54 mainFrame.Closing += new System.ComponentModel.
CancelEventHandler(this.
FileChooser_Closing_EXIT_ON_CLOSE);

55 //UPGRADE TODO : Method ’ j a v a . awt . Component . s e t S i z e ’ was conve r t ed

to ’ System . Windows . Forms . Con t r o l . S i ze ’ which has a d i f f e r e n t

b eh a v i o r .

56 mainFrame.Size = new System.Drawing.Size
(128 , 128);

57 //UPGRADE TODO : Method ’ j a v a x . swing . JFrame . getContentPane ’ was

140

9 Conversion Tests with JLCA

conve r t ed to ’ System . Windows . Forms . Form ’ which has a d i f f e r e n t

b eha v i o r .

58 //UPGRADE TODO : Con s t r u c t o r ’ j a v a . awt . FlowLayout . FlowLayout ’ was

conve r t ed to ’ System . Object [] ’ which has a d i f f e r e n t b eh a v i o r .

59 ((System.Windows.Forms.ContainerControl)
mainFrame).Tag = new System.Object []{(int)
System.Drawing.ContentAlignment.TopCenter
, 5 , 5};

60 ((System.Windows.Forms.ContainerControl)
mainFrame).Layout += new System.Windows.Forms.
LayoutEventHandler(SupportClass.
FlowLayoutResize);

61

62 //Add a button . . .

63 System.Windows.Forms.Button button = SupportClass
.ButtonSupport.CreateStandardButton("
FileChooser");

64 button.MouseDown += new System.Windows.Forms.
MouseEventHandler(FileChooser.mouseDown);

65 button.Click += new System.EventHandler(new
AnonymousClassMouseAdapter(this).mouseClicked)
;

66 //UPGRADE TODO : Method ’ j a v a x . swing . JFrame . getContentPane ’ was

conve r t ed to ’ System . Windows . Forms . Form ’ which has a d i f f e r e n t

b eha v i o r .

67 //UPGRADE TODO : Method ’ j a v a . awt . Con ta i n e r . add ’ was conve r t ed to ’

System . Windows . Forms . Con t a i n e rCon t r o l . C on t r o l s . Add ’ which has a

d i f f e r e n t b eha v i o r .

68 ((System.Windows.Forms.ContainerControl)
mainFrame).Controls.Add(button);

69

70 //Show the JFrame . . .

71 //UPGRADE TODO: ’ System . Windows . Forms . A p p l i c a t i o n . Run ’ must be

c a l l e d to s t a r t a main form .

72 mainFrame . Show () ;

73 System.Windows.Forms.Application.Run(mainFrame);
74 }
75

76 [STAThread]
77 public static void Main(System.String [] args)
78 {
79 FileChooser demo = new FileChooser ();
80 }
81

82

83 private void FileChooser_Closing_EXIT_ON_CLOSE(
System.Object sender , System.ComponentModel.

141

II Java Language Conversion Assistant

CancelEventArgs e)
84 {
85 e.Cancel = true;
86 SupportClass.CloseOperation ((System.Windows.Forms

.Form) sender , 3);
87 }
88 }

Analysis

The pure conversion of the file dialog works with one problem: Java uses the user’s
home directory as starting directory while C# starts in the current working directory
(i.e. the starting directory of the application). JLCA does not adjust this difference.
Another test has to show the behavior when a starting directory is given explicitly.

The conversion of Java’s powerful file filters fails completely although it is possible
to express the same semantics in case of file extension filtering. Admittedly this
was a very hard task for the JLCA to recognize whether file extension filtering is
implemented in the file filters or something more complicated.

The appearance of the dialog box in C# is – as expected – windows style and will
the current windows style on each version.

Visualisation

Java:

142

9 Conversion Tests with JLCA

C#:

143

Related Work 10 ch
ap

te
r

10.1 Borland Janeva

The goal of Borland Janeva is to provide a high performance connectivity between
the Microsoft .NET Framework on the one side and the J2EE and CORBA envi-
ronments on the other. With the help of the Janeva runtime, this tool allows .NET-
based applications to access heterogeneous J2EE and CORB server-side components
via the Internet Inter-ORB Protocol (IIOP), thus avoiding many problems Web Ser-
vices and many other proprietary bridging solutions bring with them. Janeva is also
tightly integrated with popular Microsoft .NET Framework development environ-
ments,including Borland C#-Builder and Microsoft Visual Studio .NET.

Janeva consists of 2 parts: a set of code generators that produce the .NET stubs
needed to connect to J2EE and CORBA servers during development and the afore
mentioned runtime, which is embedded directly within the deployed applications.

10.1.1 Janeva compilers

Within Janeva, two compilers are included. One is for connecting to J2EE servers;
the other is for connecting to CORBA servers. Although the J2EE-based compiler
reads interfaces specified in Java RMI and the CORBA-based compiler reads inter-
faces specified in the OMG IDL, both compilers produce .NET stubs. These stubs,
which can optionally be configured to use the Microsoft .NET Remoting Framework,
are packaged in to .NET Assemblies that can then be imported into a development
tool supporting .NET. Because the stubs do not target a specific language, but
rather the Common Type System (CTS), they are directly accessible in any .NET
language and can be inspected by any tool supporting .NET assemblies.

The generated stubs consist of two layers, the ease-of-use layer and the raw stub
layer. The bottom layer of the assembly is the raw stub layer. This layer uses the
Janeva runtime to access the low-level server technology, such as the Naming Service,
the Transaction Service, and the EJB Home and Remote objects. The .NET client
can access this raw layer for a direct client mapping of the J2EE server technologies.

II Java Language Conversion Assistant

The ease-of-use layer on the other hand provides a .NET-oriented mapping of the raw
J2EE server technologies. It maps the J2EE design patterns into the corresponding
design patterns of the Microsoft .NET Framework, for example the Naming Service
style lookups of J2EE are converted to URL style lookups of .NET Remoting and
calls to J2EE Home objects are converted to .NET Remoting instantiation calls.

10.1.2 Janeva runtime

The Janeva runtime is an implementation of Borland Enterprise Server client-side
functionality and therefore supports a rich set of middleware capabilities, including
Marshaling, Connection Management and so on. The only significant capability that
is not included in full is the Portable Object Adapter, which is required to implement
CORBA servers. The Janeva runtime is compliant with the Microsoft CLR and is
therefore code that is executed and managed within the .NET Framework itself.

10.1.3 Conclusion

As already mentioned, Janeva’s goal is not to convert whole J2EE or CORBA ap-
plications to any .NET Language, but to generate a link between these two environ-
ments. This is accomplished without any modifications done on the server side, but
with the generation of .NET stubs from the J2EE and CORBA interfaces, so that
you only have to write a new client to your application but don’t have to touch your
(working) servers. Therefore it may be best suited in situations where companies
want to keep their current servers for a number of reasons and just want to open
their applications to .NET clients (for the new market, for better GUIs or for other
reasons).

10.2 Ja.NET

Ja.NET is a bridge between Java and Microsoft .NET. With its help it is possible
to write clients for Enterprise Java Beans in any language supported by the CLR,
access .NET components from any type of Java object and therefore mix and match
web server technologies with other middleware technologies (for example you can use
ASP.NET with EJBs or Java Servlets with .NET components) without re-writing
any code. Using this tool, Java components appear to be CLR components and
CLR components appear to be Java components.

To make this happen, Ja.Nets developer Intrinsyc states that their tool leverages
.NET Remoting. Therefore it has the usual remoting advantages over any Web
Service based bridging solution (for example support for callbacks, activation and
lifetime control of remote objects by the client and so on). As you can configure

146

10 Related Work

and extend the transport protocol and data formatting in .NET Remoting, Ja.NET
is open to many protocols and data formattings. Currently it supports both HTTP
and TCP/IP transport protocols, and either SOAP or binary data formatting.

Ja.NET consists of 5 components, the Ja.NET Runtime, the Janetor configuration
tool, used to create a configuration file that configures the Ja.NET runtime with
core details such as the location, type and channel of remote objects and so on, the
GenNet development tool, which is used to generate .NET proxies from Java classes,
the GenJava development tool, used to generate Java proxies from .NET classes and
the GenService windows service. This service service, which is invoked by GenNet
or GenJava to read (in the case of GenJava) or write (in the case of GenNet) .NET
assemblies, is the only non-Java component of Ja.NET and is only deployable on
Windows platforms. All other components are 100

Capabilities (Version 1.5)

• Support for .NET Framework 1.1 and 1.0

• Supported JVM versions 1.2.2, 1.3.1 and 1.4.0

• see http://j-integra.intrinsyc.com/ja.net/doc/release.html for ex-
plicit details

10.2.1 Example

In order to make Ja.NET work you have to install and use a number of tools. If you
want to access an EJB from .NET for example, you first have to start the GenNet
tool that generates a .NET component containing proxies for the EJB client-side
classes. Then you have to let Janetor generate a Web application archive (WAR)
file containing all the files to be deployed in the Web server. The WAR file can be
then easily deployed in any Web server that supports servlets. The CLR client, which
can be written in any .NET language, can access the EJBs as if it were accessing
local CLR components.

10.2.2 Conclusion

As it is hard to get any deeper insights into Ja.NET without testing it, it wouldn’t
make much sense to give any conclusion until we finish testing.

10.3 IIOP.NET

IIOP.NET is basically a .NET remoting channel based on the IIOP protocol and
converts the .NET type system to CORBA and vise versa. It is an open-source

147

http://j-integra.intrinsyc.com/ja.net/doc/release.html

II Java Language Conversion Assistant

project hosted on sourceforge (http://iiop-net.sourceforge.net/). It works
with many ORBs and J2EE servers.

10.3.1 Components

This tool consists basically of three parts:

1. a .NET remoting channel to communicate with ORBs via IIOP
(IIOPChannel)

2. the CLSToIDLGenerator, a tool to generate IDL descriptions from .NET
assemblies

3. the IDLToCLSCompiler, a compiler to create assemblies from IDL files that
can be used to access CORBA services with .NET.

10.3.2 Conclusion

Like Janeva and some other tools, IIOP.NET tries to connect .NET programs with
Java via CORBA. It may not be used to convert these Languages.

If a client to a distributed system is converted from Java to C# using the JLCA for
a better look and feel and better support of MS Windows GUI capabilities, it may
be connected to the original Java server application through CORBA by using one
of these tools.

10.4 Automatic Language Conversion Case Study

This is based on a paper by Andrey A. Terekhov1. It describes the reengineering
process of an application written in HPS*Rules to Visual Basic and COBOL as
a case study. The application contains more than 1.5 million lines of code and
consists of a server part (to be converted into COBOL) and two client parts (one to
be converted into Visial Basic and the other into COBOL).

Rules is a programming language which is part of the High Productivity System
(HPS). Programs written in this language basically define business logic rules. On
the ends of the business logic, there are data declarations (bindings) and GUI window
descriptions.

In the opinion of the author, it will never be possible to convert 100% of an appli-
cation and is focused on reeingeineering. While converting HPS*Rules to COBOL

1Automatic Language Conversion: A Case Study, Andrey A. Terekhov, see
http://ddt.tepkom.ru/alc.pdf

148

http://iiop-net.sourceforge.net/

10 Related Work

an automation of 90% was achieved on the server side while it was ony 60% on the
client side. Conversion to Visual Basic was even worse: only 30% could be converted
automatically. This was traced back on the fact that the group that developed the
conversion tool had little experience with Visual Basic. After improving the tool an
amount of nearly 90% was possible.

This turns out that the development of a conversion tool requires well-founded
knowledge of the source and target programming languages. Visual Basic and
HPS*Rules are very similar in many ways. Anyhow the first conversion results
have been unacceptable. This leads to an assumption that can also be noticed
when looking at JLCA: Because of the similarity of the languages, the authors of
the conversion tools as well as the users don’t pay much attention on understand-
ing both languages as a whole but instead they assume that one language and the
programming experience can be mapped to the other one nearly directly.

According to the author, some of the factors affecting the automation level of lan-
guage conversion are:

1. programming paradigms of the languages

2. expressive power of target and source languages

3. amount of interaction with the user.

While matters 1 and 2 may be marked as OK for Java and C#, the third point is a
problem especially when converting Java Swing to Windows Forms.

149

III pa
rt

Project
This part of the document gives a report about the conversion of a
complete project with the Java Language Conversion Assistant.
First, the selected project is described and analyzed followed by
an account of the issues that arose during the conversion of the
application. Finally, there is a summary of the experiences gathered
with the automatic conversion of large projects.

Selected Project 11 ch
ap

te
r

In addition to the already covered parts of the analysis of the Java Language Con-
version Assistant, it also seemed desirable to examine how the JLCA handles ap-
plications that are significantly larger than average test cases. As the Java Swing
technology proved to be an essential element of this analysis, the tested application
is mostly based on this technology.

The open source project JHotDraw1 is a Java GUI framework for technical and
structured graphics. It has been developed as a “design exercise” but is already quite
powerful. Its design relies heavily on some well-known design patterns. JHotDraw’s
original authors have been Erich Gamma and Thomas Eggenschwiler. The following
sections comprise a short overview of JHotDraw, its package organization, and its
structure.

11.1 Description of JHotDraw

Based upon Java Swing, JHotDraw defines a basic skeleton for a GUI editor with
tools in a tool palette, different views, user-defined graphical figures, and support
for saving, loading, and printing drawings. The framework can be customized using
inheritance and combining components.

Besides the main drawing window, JHotDraw offers some support for different kinds
of windows, such as text editors. With some basic knowledge of JHotDraw’s struc-
ture, one can extend the framework to include missing functionality. If you run the
examples included in the distribution, you can see what a typical, JHotDraw based
application looks like. For example, JavaDraw is a standard drawing application
that shows very well what is possible with JHotDraw.

For software engineering purposes, JHotDraw is interesting as well. Originally de-
veloped in Smalltalk by Kent Beck and Ward Cunningham, JHotDraw was one of
the first software development projects explicitly designed for reuse and labeled a
framework. It has also been documented very early in terms of design patterns 2,

1See http://jhotdraw.sourceforge.net for details.
2ftp://st.cs.uiuc.edu/pub/papers/HotDraw/documenting-frameworks.ps

III Project

Figure 11.1: JavaDraw as a typical application of JHotDraw.

154

11 Selected Project

and was therefore very influential to the design pattern community. Erich Gamma
and Thomas Eggenschwiler developed the first version of JHotDraw.

In JHotDraw version 5.2, the original AWT components have been replaced by their
JFC Swing counterparts. It also supports new JFC Swing features like windows
with several internal frames, split panes, scrollbars, toolbars, and pop-up menus.
Therefore, JHotDraw (as an application-specific GUI framework) is based on the
general-purpose GUI facilities that the Java Swing technology offers, but it adds its
own features and functionalities. This report refers to this version.

11.2 Package Organization

All JHotDraw classes and interfaces are organized in packages according to their
functionality. The package CH.ifa.draw.framework contains mostly interface
definitions of core component requirements - their responsibility, functionality, and
interoperation. You can find a standard implementation of these interfaces in CH.
ifa.draw.standard and additional functionality in CH.ifa.draw.figures
and CH.ifa.draw.contrib. Skeletons of an application and an applet are
defined in CH.ifa.draw.application or CH.ifa.draw.applet, respec-
tively.

11.3 Structure of JHotDraw

A more detailed look at the packages, in particular at the core framework package,
reveals JHotDraw’s structure and shows which role each of its components plays.
(See figure 11.2 on the next page)

An application that uses JHotDraw has a window dedicated to drawing. This
DrawWindow is the editor window and is a subclass of javax.swing.JFrame.
It contains one or more internal frames, each associated with a drawing view. The
DrawingView, a subclass of javax.swing.JPanel, is an area that can display
a Drawing and accept user input. Changes in the Drawing are propagated to
the DrawingView that is responsible for updating any graphics. The Drawing
consists of Figures, which in turn can be containers for other Figures. Each
Figure has Handles, which define access points and determine how to interact
with the Figure (e.g. how to connect the Figure to another Figure). In a
DrawingView, you can select several figures and manipulate them. Usually, the
DrawWindow itself has one active Tool from the tool palette, which operates on
the Drawing associated with the current DrawingView.

155

III Project

Figure 11.2: Basic components of JHotDraw’s architecture.

156

Main Issues 12 ch
ap

te
r

After the conversion of all of JHotDraw’s 160 classes, a total number of 696 issues
were generated by the JLCA and could be seen in the Conversion Report. Of
course, it would go beyond the scope of this analysis to explain every single reported
issue. Furthermore, there are more issues, that have not been reported by the tool.
Therefore, only those issues will be described, that could be common problems when
converting large projects or had the most impact and caused the greatest workload
in fixing or reprogramming.

12.1 Exceptions

Problem

As in the JHotDraw project, exception handling is essential in nearly all projects.
The StorableInput class in the CH.ifa.draw.util package shall exemplify
this.

Java Source Code

The relevant lines here are the catch blocks in line 6, 9, 11, and 13.

1 [...]
2 private Object makeInstance(String className) throws

IOException {
3 try {
4 Class cl = Class.forName(className);
5 return cl.newInstance ();
6 } catch (NoSuchMethodError e) {
7 throw new IOException("Class " + className
8 + " does not seem to have a no-arg

constructor");
9 } catch (ClassNotFoundException e) {

III Project

10 throw new IOException("No class : " +
className);

11 } catch (InstantiationException e) {
12 throw new IOException("Cannot instantiate : "

+ className);
13 } catch (IllegalAccessException e) {
14 throw new IOException("Class (" + className

+ ") not accessible");
15 }
16 }
17 [...]

Converted C# Code

In general, the JLCA can handle the conversion of exceptions. However, it can hap-
pen that the JLCA converts an exception to a different type of exception. More often
than not, the JLCA simply generalizes an unknown Java exception to a System.

Exception in C#, as you can see in line 16 and 21.

The problem is that now all exceptions are caught, even those that were not caught
before in line 16, and even if there is a specialized catch block for the exception that
is thrown later in line 25 (e.g. System.UnauthorizedAccessException).

1 [...]
2 private System.Object makeInstance(System.String

className)
3 {
4 try
5 {
6 //UPGRADE TODO : The d i f f e r e n c e s i n the format o f

pa ramete r s for method ’ j a v a . l ang . C l a s s . forName ’

may cause c omp i l a t i o n e r r o r s .

7 System.Type cl = System.Type.GetType(
className);

8 //UPGRADE TODO : Method ’ j a v a . l ang . C l a s s . newIns tance ’ was

conve r t ed to ’ System . A c t i v a t o r . C r e a t e I n s t an c e ’

which has a d i f f e r e n t b eha v i o r .

9 return System.Activator.CreateInstance(cl
);

10 }
11 catch (System.MethodAccessException e)
12 {
13 throw new System.IO.IOException("Class "

+ className + " does not seem to have

a no-arg constructor");
14 }

158

12 Main Issues

15 //UPGRADE NOTE : Excep t i on ’ j a v a . l ang . C lassNotFoundExcept ion ’

was conve r t ed to ’ System . Except ion ’ which has d i f f e r e n t

b eha v i o r .

16 catch (System.Exception e)
17 {
18 throw new System.IO.IOException("No class

: " + className);
19 }
20 //UPGRADE NOTE : Excep t i on ’ j a v a . l ang . I n s t a n t i a t i o n E x c e p t i o n ’

was conve r t ed to ’ System . Except ion ’ which has d i f f e r e n t

b eha v i o r .

21 catch (System.Exception e)
22 {
23 throw new System.IO.IOException("Cannot

instantiate : " + className);
24 }
25 catch (System.UnauthorizedAccessException e)
26 {
27 throw new System.IO.IOException("Class ("

+ className + ") not accessible");
28 }
29 }
30 [...]

Analysis

There is not a single perfect solution to this problem, it always depends on the
situation where it arises. For a start, you should move all specialized catch blocks
(like the one in line 25) in front of the generalized catch blocks and after that remove
any multiple catches for the same exception as it is the case here (in line 16 and
21). Now, you have to consider your situation closely and decide whether self-made
exceptions are an option – you have to rewrite this part of your application – or
if the problem on hand is simply not that important and you can do without the
specialized catch blocks.

12.2 Reference Paremeters

Problem

In Java, parameters with a type derived from java.lang.Object are passed by
reference whereas simple values are passed by value. In C#, structs are derived
from System.Object but passed by value by default. As the JLCA tries to reuse

159

III Project

as much standard libraries as possible it maps some object types to structs. This
could result in a different behavior of some methods. To overcome this, the keyword
ref can be used and, more important, will be used by several standard libraries of
C#. However, this can lead to problems.

For example, the EllipseFigure class in the CH.ifa.draw.figures pack-
age contains a parameterless constructor that calls the other constructor. This con-
structor has two parameters of type Point which should be mapped wisely onC#’s
struct Point.

Java Source Code

The relevant line here is line 5.

1

2 public class EllipseFigure extends AttributeFigure {
3 [...]
4 public EllipseFigure () {
5 this(new Point (0,0) , new Point (0,0));
6 }
7

8 public EllipseFigure(Point origin , Point corner) {
9 basicDisplayBox(origin ,corner);

10 }
11

12 [...]
13

14 }

Converted C# Code

As you can see, the JLCA converts the this(...) call to the code in line 6.
But this code is not compilable because the constructor that is called expects two
reference parameters (line 15). That’s why the constructor must be rewritten as the
code in lines 7 to 12.

1 public class EllipseFigure:AttributeFigure
2 {
3 [...]
4

5 //UPGRADE TODO : Parameter cannot be pas sed by r e f e r e n c e .

6 p u b l i c E l l i p s e F i g u r e () : t h i s (new System . Drawing . Po in t (0 , 0) , new

System . Drawing . Po in t (0 , 0))

7 public EllipseFigure ()
8 {

160

12 Main Issues

9 System.Drawing.Point origin = new System.
Drawing.Point (0,0);

10 System.Drawing.Point corner = new System.
Drawing.Point (0,0);

11 basicDisplayBox(ref origin ,ref corner);
12 }
13

14 //UPGRADE NOTE : r e f keyword was added to struct−type pa ramete r s .

15 public EllipseFigure(ref System.Drawing.Point
origin , ref System.Drawing.Point corner)

16 {
17 //UPGRADE NOTE : r e f keyword was added to struct−type

pa ramete r s .

18 basicDisplayBox(ref origin , ref corner);
19 }
20 [...]
21

22 }

Analysis

There is an easy solution to the problem in this case, as there is only one method
called within the constructor. However, in other cases, where more complicated op-
erations and initializations are made within the constructor, or when the parameters
are by default read only, there is not such an easy solutions and you have to deter-
mine an solution appropriate to the specific case. Possibly, problems resulting out
of reference parameters can become very subtle and therefore hard to work around.

12.3 Double Names

Problem

In Java, method names and local variable names are completely separated from
each other, i.e. a local variable may have the same as a method without hiding it.
Contrary, in C# this is not possible, at least because methods can be referenced by
name only (without a parameter list, e.g. when used as a parameter for delegates).

As obviously not being aware of this problem, the JLCA doesn’t touch these names
and translates them directly to the C# code. Since such a naming is not allowed
in the C# language, the C# compiler issues an compiling error when encountering
such an issue. The ColorMap class within the CH.ifa.draw.util package will
do as an example.

161

III Project

Java Source Code

The relevant lines here are line 13 and 14, where the program checks if the parameter
color equals the color that is returned when calling the method color(String

name) with the string “None”.

1 [...]
2

3 public static Color color(String name) {
4 for (int i = 0; i < fMap.length ; i++)
5 if (fMap[i]. fName.equals(name))
6 return fMap[i]. fColor;
7

8 return Color.black;
9 }

10

11 [...]
12

13 public static boolean isTransparent(Color color) {
14 return color.equals(color("None"));
15 }
16

17 [...]

Converted C# Code

Here you should closely examine line 16, where theoretically the same happens as in
the Java context. Like already mentioned the C# compiler won’t compile this file,
because the name of the parameter hides the name of the method.

1 [...]
2

3 public static System.Drawing.Color color(System.
String name)

4 {
5 for (int i = 0; i < fMap.Length ; i++)
6 if (fMap[i]. fName.Equals(name))
7 return fMap[i]. fColor;
8

9 return System.Drawing.Color.Black;
10 }
11

12 [...]
13

14 public static bool isTransparent(ref System.
Drawing.Color color)

162

12 Main Issues

15 {
16 return color.Equals(color("None"));
17 }
18

19 [...]

Analysis

The solution in such a case is very easy, renaming the local variable or parameter
to a unique identifier will always do. Alternatively, the method call could be fully
qualified. But this would not enhance readibility.

12.4 Interfaces

12.4.1 Image Observer

Problem

As an example of problems that arise when trying to map standard libraries on each
other.

The interface ImageObserver is one of Java’s standard library interfaces for which
no direct equivalent in the .NET environment exists. It provides for information
about an image that was previously requested using an asynchronous mechanism.
A closer look to the DrawingView interface of the CH.ifa.draw.framework
package will show what happens if reference to such an interface occurs.

Java Source Code

The relevant line here is line 1.

1 public interface DrawingView extends ImageObserver ,
DrawingChangeListener {

2 [...]
3 }

Converted C# Code

As you can see in line 2 the JLCA does not convert this interface and issues a
warning.

163

III Project

1 //UPGRADE ISSUE : I n t e r f a c e ’ j a v a . awt . image . ImageObserver ’ was not conve r t ed .

2 public interface DrawingView:ImageObserver ,
DrawingChangeListener

3 {
4 [...]
5 }

Analysis

In this special case there is not much of a problem since there is no other place in the
JHotDraw project where the Image Observer interface is referenced. Therefore
you can simply delete the interface and the application will run as intended.

However, in most cases, this is no solution. You then have to rebuild your project
or to create such interfaces and to implement the appropriate mechanisms. One
example in the selected project (and in many other applications using the Java Swing
technology) is the EventListener class. Although this class is no interface but a
”real” class, it is mainly used as an interface in the JHotDraw project and therefore
provides a good example.

12.4.2 Event Listener

In Java, this class must be derived to create new event listeners. When extending
this class, you have to specify that you are creating an event-listening interface
to listen to your own custom events. In the .NET Framework, there is no direct
equivalent. In contrast to the problem described above, the interface in this case is
used in different places.

Java Source Code

This code is part of the FigureChangeListener interface within the CH.ifa

.draw.framework package. The relevant line here is line 1.

1 public interface FigureChangeListener extends
EventListener {

2 [...]
3 }

Converted C# Code

164

12 Main Issues

As you can see in line 2 the JLCA does not convert this interface and issues a
warning.

1 public interface FigureChangeListener:EventListener
2 {
3 [...]
4 }

Analysis

The problem here is that the EventListener class is not only used as
a base class in this interface (and therefore provides the interface of the
EventListener class to the FigureChangeListener interface), but also
in the FigureChangeEventMulticaster class in the CH.ifa.draw.

standard package (see section 12.5 for the source code of this class). In this
case, simply deleting the interface would solve one problem (the compilation error
for the FigureChangeListener class), but the consructor and some methods of
the AWTEventMulticaster class would still need parameters with the interface
of the EventListener class. In cases such as this one, either you have to rewrite
a big part of your application or to create an EventListener like interface manually.
This interface should be placed in a project or namespace that all parts of your
application can access.

12.5 AWTEventMulticaster

Problem

This issue stands for the many issues that arise when using the AWT package within
an Java Swing application. In Java, this class implements efficient and thread-safe
multi-cast event-dispatching for the AWT events defined in the java.awt.event
package. It manages an immutable structure consisting of a chain of event listeners
and dispatches events to those listeners. Since the structure is immutable, it is safe
to use this class to add or remove listeners during an event dispatch operation. In
the .NET Framework, there is no direct equivalent. All delegate classes derive from
the System.MulticastDelegate class.

Java Source Code

The relevant lines here are line 1 and 4.

1 public class FigureChangeEventMulticaster extends

165

III Project

2 AWTEventMulticaster implements FigureChangeListener {
3

4 public FigureChangeEventMulticaster(EventListener a,
EventListener b) {

5 super(a, b);
6 }
7

8 [...]
9

10 }

Converted C# Code

As you can see in line 2 the JLCA does not convert this interface and issues a
warning. To give an example of the problems that arise with the “missing” class
you should take a look at line 5, where a call to the non-existing base class is made.

1 public class FigureChangeEventMulticaster:
AWTEventMulticaster , FigureChangeListener

2 {
3 //UPGRADE ISSUE : Con s t r u c t o r ’ j a v a . awt . AWTEventMult icaster .

AWTEventMult icaster ’ was not conve r t ed .

4 //UPGRADE ISSUE : I n t e r f a c e ’ j a v a . u t i l . E v en tL i s t e n e r ’ was not
conve r t ed .

5 public FigureChangeEventMulticaster(EventListener
a, EventListener b):base(a, b)

6 {
7 }
8

9 [...]
10

11 }

Analysis

One solution of this problem is a clear, but not very easy or fast one. You have
to manually rebuild the AWTEventMulticaster class in C Sharp as a Support
Class where you add handlers (listeners) to the first delegate, using the System.

Delegate.CombineImpl method. It is not a big problem to create this class.
However, as in most cases when there are issues with the AWT part of an application,
you need some time to implement the missing classes or features.

166

Summary 13 ch
ap

te
r

After the conversion of the JHotDraw project and another, smaller project that
cannot be presented here, there are several statements to give.

First and foremost, the conclusion is that the JLCA together with the Extensibility
Kit is a powerful tool that can do a lot of typing work for you if you want to convert
a project from Java to C#. However, there is no way that this tool will do all the
work for you as the execution environments differ too much. Generally, the more
complicated your application is and the more sophisticated concepts it uses, the
more work goes to your hands.

This is especially true for Java Swing applications. Although it is said that the
“JLCA can effortlessly convert Swing applications to C#” (and this statement is
somewhat true as it is capable of translating simple Swing applications), you will
hardly have no problems with the AWT part of your application, since Swing is
based on AWT and the assistant is not in any way capable of converting AWT
technology.

Thus, the more complicated your project gets and therefore the more AWT compo-
nents you use (like the AWTEventMulticaster for example) or the more you use
constructs like the Event Listener interface that don’t exist in C#, the more
problems you will have with the conversion.

Furthermore, it is noticeable that well written Java Code with well thought naming
conventions is much easier to convert.For example the JLCA does not have the ability
to detect if there are already classes with the same name when he automatically
creates some needed classes, for example when he converts anonymous classes.

That beeing said, although the JHotDraw project is a somewhat complicated exam-
ple of an Java Swing applications it was possible to solve nearly all of the generated
issues of the conversion and to get it running as a C# project. The impression is
that this method of first converting and then fixing the issues was still a lot faster
than a complete new build in C#.

 ISBN 3-937786-10-4
 ISSN 1613-5652

	Titel
	Impressum
	Contents
	1 Introduction
	I LanguageAnalysis
	2 Overview
	2.1 Java Programming Language
	2.2 Java Execution Environment

	3 Entity Declarations and Modifiers
	3.1 Code Structuring
	3.1.1 Java
	3.1.2 C#

	3.2 Data Structuring
	3.2.1 Memory Allocation and Deallocation
	3.2.2 Primitive Types
	3.2.3 Reference Types

	3.3 Object Model
	3.3.1 Inheritance
	3.3.2 Abstract Classes and Interfaces
	3.3.3 Inner Classes

	3.4 Accessibility
	3.4.1 Content of Packages/ Assemblies
	3.4.2 Content of Classes

	4 Expressions andStatements
	4.1 Expressions
	4.1.1 operators

	4.2 Statements
	4.2.1 The switch Statement
	4.2.2 The break and continue Statements
	4.2.3 The synchronized Statement and Modifier

	5 Execution Environment
	5.1 Exception Handling
	5.2 Basic Mappings

	II Java LanguageConversionAssistant
	6 Introduction
	6.1 Conversion Example

	7 Diff-Patch Tool
	7.1 Motivation for the Diff-Patch Tool
	7.2 The Tool Suite
	7.3 Diff-Patch Tool Example

	8 Extensibility Kit
	8.1 Extensibility Kit Basics
	8.2 Basic Mapping Definitions
	8.3 Overriding Built-In Conversion Rules
	8.4 Declaration Mappings
	8.5 Custom Error Messages
	8.6 The Extensibility Kit and The Diff-Patch Tool
	8.6.1 The Java Library
	8.6.2 The Java Program
	8.6.3 The Custom Conversion Rules
	8.6.4 The C# Library
	8.6.5 The Converted Program

	9 Conversion Tests with JLCA
	9.1 Sample Report
	9.2 Hello World
	9.3 Anonymous Classes
	9.4 Inner Classes
	9.5 Identifier Scope
	9.6 Assert Keyword
	9.7 Exception Hierarchy
	9.8 java.lang.reflect.Modifier
	9.9 java.lang.reflect.Proxy
	9.10 java.lang.ref.WeakReference
	9.11 java.lang.Runtime.addShutdownHook
	9.12 Swing: Hello World
	9.13 Swing: Simple menu example
	9.14 Swing: Menu with Submenu
	9.15 Swing: Menu with Checkbox and Radiobuttons
	9.16 Swing: FileChooser

	10 Related Work
	10.1 Borland Janeva
	10.1.1 Janeva compilers
	10.1.2 Janeva runtime
	10.1.3 Conclusion

	10.2 Ja.NET
	10.2.1 Example
	10.2.2 Conclusion

	10.3 IIOP.NET
	10.3.1 Components
	10.3.2 Conclusion

	10.4 Automatic Language Conversion Case Study

	III Project
	11 Selected Project
	11.1 Description of JHotDraw
	11.2 Package Organization
	11.3 Structure of JHotDraw

	12 Main Issues
	12.1 Exceptions
	12.2 Reference Paremeters
	12.3 Double Names
	12.4 Interfaces
	12.4.1 Image Observer
	12.4.2 Event Listener

	12.5 AWTEventMulticaster

	13 Summary

