
Proceedings of the
2. Ph.D. retreat of the
HPI Research School on
Service-oriented Systems
Engineering

Profs. Dres. Christoph Meinel, Andreas Polze, Mathias
Weske, Jürgen Döllner, Robert Hirschfeld, Felix
Naumann, Holger Giese, Hasso Plattner (edt.)

Technische Berichte Nr. 23
des Hasso-Plattner-Instituts für Softwaresystemtechnik
an der Universität Potsdam

Technische Berichte des Hasso-Plattner-Instituts für Softwaresystemtechnik

an der Universität Potsdam

Nr. 23

Proceedings of the
2. Ph.D. retreat of the
HPI Research School on
Service-oriented Systems
Engineering

Profs. Dres. Christoph Meinel, Andreas Polze, Mathias Weske,
Jürgen Döllner, Robert Hirschfeld, Felix Naumann, Holger
Giese, Hasso Plattner (edt.)

Potsdam 2008

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über
http://dnb.d-nb.de abrufbar

Die Reihe Technische Berichte des Hasso-Plattner-Instituts für Softwaresystemtechnik an der
Universität Potsdam erscheint aperiodisch.

Herausgeber:

Redaktion:

Verlag:

Druck:

Professoren des Hasso-Plattner-Instituts für Softwaresystemtechnik
an der Universität Potsdam

Prof. Dr. C. Meinel, Prof. Dr. A. Polze, Prof. Dr. M. Weske, Prof. Dr. R.
Hirschfeld, Prof. Dr. F. Naumann, Prof. Dr. H. Giese, Prof. Dr. H. Plattner
(edt.)

Universitätsverlag Potsdam
Am Neuen Palais 10
14469 Potsdam
Fon +49 (0) 331 9774623
Fax +49 (0) 331 977 4625
E-Mail: ubpub@uni-potsdam.de
http://info.ub.uni-potsdam.de/verlag.htm

allprintmedia GmbH
Blomberger Weg 6a
13437 Berlin
E-Mail: info@allprint-media.de

© Hasso-Plattner-Institut für Softwaresystemtechnik an der Universität Potsdam, 2008

Dieses Manuskript ist urheberrechtlich geschützt. Es darf ohne
vorherige Genehmigung der Herausgeber nicht vervielfältigt werden.

Heft Nr. 23 (2008)
ISBN 978-3-940793-42-3
ISSN 1613-5652

http://dnb.d-nb.de/

Contents

1. Styling for Service-Based 3D Geovisualization
Benjamin Hagedorn

2. The Windows Monitoring Kernel

Michael Schöbel

3. A Resource-Oriented Information Network Platform for
Global Design Processes
Matthias Uflacker

4. Federation in SOA – Secure Service Invocation across

Trust Domains
Michael Menzel

5. KStruct: A Language for Kernel Runtime Inspection

Alexander Schmidt

6. Deconstructing Resources
Hagen Overdick

7. FMC-QE – Case Studies

Stephan Kluth

8. A Matter of Trust
Rehab Al-Nemr

9. From Semi-automated Service Composition to

Semantic Conformance
Harald Meyer

Fall 2007 Workshop 1-1

Styling for Service-Based
3D Geovisualization1

Benjamin Hagedorn

benjamin.hagedorn@hpi.uni-potsdam.de

Styling geovisualizations means to control the geovisualization process, i.e., to define
which geoinformation to include and how to visualize them. It is a crucial aspect for
enabling flexible and adaptable geovisualization systems and applications as it allows
authors and users to influence the visual appearance of the geovisualization and so
to adapt it to specific tasks and preferences. Especially for the service-based
implementation of geovisualization systems, it has to be specified how a service
consumer can define the visual appearance of a geovisualization which might base
on distributed heterogeneous geoinformation and might be synthesized by the
combination of independent geovisualization services. This paper describes the
styling of three-dimensional geovisualizations in two scenarios. First, a Web
Perspective View Service (WPVS) for the generation of high-quality visualization of
domain specific building information within its GIS context is described. Second, the
Web View Annotation Service (WVAS) and its combination with a WPVS for the
synthesis of textual annotated views are introduced. Both implementations are
demonstrated for a 3D campus model.

1 Introduction

1.1 The Role of Visualization in High-Level Geoservices
Geoinformation resources and capabilities for geodata processing and
geovisualization are increasingly distributed among various providers. Service-
oriented computing is concerned with describing, finding, and using these capabilities
for different processes, users, and tasks. In the field of distributed geoinformation
systems we can distinguish between geodata access, geodata processing, and
geodata visualization services. The Open Geospatial Consortium (OGC) has
standardized a set of geoinformation services that define interfaces to these
functionalities. Important OGC web service standards are the Web Feature Service
(WFS) for geodata access, the Web Map Service (WMS) for 2D maps, and the
Geography Markup Language (GML) for the interoperable description of geospatial
and georeferenced data. The Web Perspective View Service (WPVS), a first

1 This work has been published in part by Hagedorn and Döllner (2007) and Hagedorn et al. (2007). It
has been adapted for the special purpose of this technical report.

Styling for Service-Based 3D Geovisualization

1-2 Fall 2007 Workshop

approach for 3D portrayal, is currently under discussion to become an OGC
standard.
The OGC web services such as Web Feature Service (WFS), Web Coverage
Service, and Web Map Service (WMS) provide means to communicate geodata and
can be considered generic, low-level geoinformation services. However, current
geodata infrastructures need to evolve towards integrated systems for the provision
of customized information and services (Morales and Radwan, 2004). High-level
geoinformation services are generally characterized by the following capabilities and
functionalities:

Enhancing geoinformation: Include services that enhance geodata by adding,
manipulating, correcting, or transforming geodata, e.g., a specialized mass
coordinate transformation.

Provision of specific business functionality: The usage of (value added)
geoinformation for special purposes in a variety of business processes will be a main
issue in the future development of service-based geoinformation provision. An
example of such specific business functionality is a plausibility check for edited and
updated geoinformation. This check includes domain-specific knowledge about the
information structure, semantics, and rules for consistency.

Integration of complex geoinformation: 3D geovirtual environments (3D GeoVE)
provide a conceptual and technical framework for the seamless integration of
geoinformation that is different in format, scale, and amount of details. They provide
mechanisms to enable the composition, management, editing, analysis, and
visualization of this integrated geoinformation. 3D GeoVEs include complex
geoinformation such as illustrated in Figure 1. For the integration of complex
geoinformation there are two principal ways, "integration at data level" and
"integration at visualization level". (Döllner and Hagedorn 2007a)

Terrain Buildings Traffic Networks Vegetation

City Furniture Water Bodies Land Usage Groupings

Figure 1: Aspects of complex geoinformation considering 3D GeoVEs.

 1 Introduction

Fall 2007 Workshop 1-3

Integration at data level means the unification of geoinformation by transformations
into common data formats or data models. While data format integration is at the
syntactical level, data model integration works on a semantical level and introduces a
higher added value to the integrated data itself.
Integration at visualization level means the provision of imagery and therefore
inherently includes the issues of data selection, data mapping, image synthesis,
image transfer, and user interaction.

Provision of high-quality visualizations: About 80 percent of all information has a
spatial reference which can be used as a basis for the integration and the effective
and consistent visualization of such information. Geovisualization can support a user
in analysis tasks and in gaining new insights into geodata. In common (two
dimensional) geoinformation systems visualization is an essential part. And so it is in
distributed geoinformation systems which implies that visualization is a main issue in
geoinformation services.

Support of user interaction: Especially for visualization services, the support of
user interaction can be an essential capability. Additionally, high-level user interaction
services are imaginable, which are set up on the top of other geovisualization
services.
In this context user interaction means to explore and analyze the information space.
For fulfilling these tasks, navigation is an important interaction technique as it allows
the user to move around and perceive the information of interest.

Support of context awareness: Dey and Abowd (1999) define a system to be
context-aware "if it uses context to provide relevant information and/or services to the
user, where relevancy depends on the user's tasks". Thereby context "is any
information that can be used to characterize the situation of an entity. An entity is a
person, place or object that is considered relevant to the interaction of a user and an
application, including the user and applications themselves."
In the field of service-based provision of geoinformation, context-awareness refers to
identifying and providing information about the tasks the user fulfills and the devices
that the users deploys.

Besides high-quality visualization itself, geovisualization plays a role for the
implementation of other high-level functionalities, too:

• The integration of complex geoinformation can be performed at the
visualization level.

• User interaction is closely linked to visualization as user input by devices such
as keyboard, mouse, and stylus lead to updates of the visualization that itself
can support interaction by presenting items to interact with.

• Context awareness can be supported by the appropriate visualization for a
specific user with a specific task.

Styling for Service-Based 3D Geovisualization

1-4 Fall 2007 Workshop

1.2 Separation and Distribution of Geovisualization Concerns
The visualization pipeline (Spence, 2001) of 3D GeoVEs includes accessing and
selecting geodata, mapping them to computer graphical representations, and
rendering of depictions, which can be perceived by humans. Using this visualization
pipeline as a basis for portrayal raises the question about the exchanged information
and the separation of rendering concerns between the portrayal service provider and
consumer. The following types of exchanged information can be distinguished:

• Raw data, e.g., a terrain model in raster format.

• Geographic model, e.g., a CityGML city model.

• Computer graphic model, e.g., a VRML scene graph.

• Generated images, e.g., a two-dimensional map or a three-dimensional
perspective view.

• Sequences of images, e.g., an MPEG video.
The different types of transferred information also mean different separations of
visualization tasks.
In the case of raw data and of geographic models the service consumer has to
implement the whole visualization process, i.e., data selection, information mapping,
and rendering, which are intensive in hardware, processing, and storage
requirements. When exchanging computer graphic models, the service consumer
does not need any geographical knowledge for mapping geodata to computer
graphic objects. But as a drawback the semantics of this geodata is not available for
the rendering process or for supporting interaction. When the portrayal service
provides already synthesized images, the service consumer is freed from any
computer graphical processing. By this way geovisualization also gets applicable on
small devices. Additionally, the protection of the underlying geoinformation against
unauthorized usage is inherent in images as transfer formats. For raw data additional
effort is necessary for digital rights management. Image sequences are a kind of
image provision which especially can improve the usability of portrayal services.
Mixed forms of geographical portrayal services are possible, which provide
information from different sources and thereby can reduce the named constraints. As
an example a WMS can provide the operation GetFeatureInfo and thereby support
additional semantical information about a graphical object at a specific pixel position
of the previously provided 2D map.

A core concept of service-based systems represents the composition of distributed
functionality in a standardized manner. This enables the construction and flexible
adaptation of complex and value-added systems and applications. In the
geoinformation domain, service composition is often referred to as geoinformation
service chaining. Alameh (2003) distinguishes three service composition patterns:
Client-based chaining, aggregate services, and workflow service-based chaining.

1.3 Styling 3D-Geovisualizations
For controlling the steps of the geovisualization pipeline and so the final outcome,
different visualization aspects are important. These are especially views, styles, and

 1 Introduction

Fall 2007 Workshop 1-5

rendering and interaction constraints. In Figure 2, they are illustrated in the context of
creating geovisualizations by a high-level geoservice and their provision to human
users or integration into business processes.

Views: Views represent different selections of the information which can be provided
by a concrete portrayal service. Views allow customizing the visualization to concrete
user groups and user tasks. The views supported by a service correspond with the
abstraction level of the service, i.e. its granularity. E.g., a portrayal service for urban
management visualization could provide a city planning view, an emergency
response view, etc. Views correspond to the filtering stage of the rendering pipeline,
as they may define the data which is integrated (e.g., imported from other
geoinformation services).

Styles: Styles address the mapping of the geographic model on the computer
graphic model. Styles influence the graphical character of the synthesized image. For
example, they can define:

• Elements to hide or unhide.

• Opacity of objects.

• Graphical character of objects (sketchiness, cartoon style, etc.).
The distinction between view and style is not a strict one. Especially in higher level
visualization services, views might include style issues. E.g., in an emergence
response view the coloring of buildings of interest might be predefined by the view
and is not changeable by user-defined styles.
Both, possible views and possible styles must be represented in the service
description and must be considered in the service interface.

Rendering constraints: Rendering constraints address aspects such as
requirements on image size, image resolution, color modes or transfer formats to
use. E.g., imagery can be provided by a static image showing the situation at one
point in time or by video which can be used for showing spatial changes of the

In
te

rn
et

High-Level
Geoservice

Distributed
(low-level)
Geoservices

In
te

rn
et

Geo-
visualization

View Style Rendering Interaction

Configuration data

Virtual 3D
City Model

Human Users

Business Processes

Figure 2: Geovisualization within the context of high-level geoservices.

Styling for Service-Based 3D Geovisualization

1-6 Fall 2007 Workshop

camera position or for representing changes in time, e.g., for flood visualizations, or
for showing historic scenes and their development over time.

User interaction aspects: User interaction may be restricted by different
constraints, as devices (keyboard, mouse, stylus, etc.), user constraints (age,
handicaps, handkerchiefs, etc.), or environmental circumstances (little light, noise,
etc.).

2 Styling for BIM Visualization
This section describes the implementation of a high-level geoservice for the
visualization of building information models (BIM) within its geospatial context. This
geovisualization service is designed to integrate complex geoinformation, and
provide high-quality geovisualizations for the specific domain of building information.
This work has been published by Hagedorn and Döllner (2007). Here, the question of
styling is addressed especially by providing different views and visualization styles to
the service consumer.

2.1 Visualization of BIM by Virtual 3D City Models
While a growing number of manifold geoinformation sources become available,
detailed information about individual buildings is typically not managed nor
represented by GIS data. To enhance and complement virtual 3D city models in this
respect, information provided by CAD models and other building-management tools
needs to be integrated and helps to bridge the gap between the BIM, CAD, and GIS
domains (Figure 3).
We describe an approach to visualize and analyze CAD-based 3D building
information models (BIM) within 3D virtual city models. This way, detailed
georeferenced building information about usage, structure, properties, and
associated workflows becomes available embedded into their spatial context. Without
such integration, we would not be able to see the spatial context of BIM.
Furthermore, the approach represents a general strategy to seamlessly integrate
georeferenced data from the domain of CAD with GIS data at the visualization level.

For the visualization of building information we identify two challenging tasks:

• The visualization of internals of composite structures (e.g., enabling an inside-
view for a building).

• The visualization of intangible information (e.g., the usage of a room or
groupings such as stories)

Both are regarded by the building visualization techniques that are described in this
section. We present two techniques for the automated ad-hoc visualization of BIM
and GIS information. This high-level functionality can be provided in a service-based
manner and so can be included into ad-hoc rescue-processes for enabling, e.g.,
high-quality visualization.

 2 Styling for BIM Visualization

Fall 2007 Workshop 1-7

As a use case we defined a fire and rescue scenario, which represents an application
domain where the availability of building information is of high interest for saving
people and assets. The following geo-referenced building information can be
considered relevant for such fire and rescue scenarios:

• Fire extinguishers;

• Sensors such as smoke detectors, temperature sensors, or motion detectors
for estimating the source of fire and the overall condition;

• Sprinklers, hydrants, hose reels, rising mains;

• Statics and material of building structures, e.g. windows;

• Cables, ducts, and funnels spreading heat, fire, and smoke;

• Information about locking of windows and doors (e.g., lattices) and key
owners;

• Storage locations of dangerous substances (e.g., gas, oil, cleaning supplies,
and chemicals);

• Expected overall number of people, number of people who need assistance
(e.g., young and older ones);

• Navigation hints (e.g., room numbers) for supporting the orientation of helpers;

• Tracking information of people and objects.

2.2 Mapping BIM to Geometry
For each BIM data to be mapped onto the city model there must be an existing or
derived geometry whose appearance can be adjusted according to the type and
value of the building information.

Figure 3: Scales and degree of semantics found in 3D building models with
corresponding CityGML level-of-detail categories; the proposed visualization bridges
the gap between BIM, CAD, and GIS model use.

Styling for Service-Based 3D Geovisualization

1-8 Fall 2007 Workshop

If the original building information is of type geometry, this geometry is reused for the
city model object. If no such inherent geometry exists, either another BIM object can
be used for representing the building information or a corresponding geometry has to
be generated. For example, derived geometry is required for visualizing relationships
such as room’s connectivity, escape routes (topology) or stories (grouping of rooms).
The geometry can be composed from surfaces, e.g., for extracting the story
geometry from all associated walls, windows, etc.
Non-geometric building information can be mapped to attributes of geometry. For
example, the energy consumption of buildings could be mapped to the height of the
building’s block model. Alternatively, non-geometric building information can be
represented by annotations of the 3D scene, for example, to visualize the presence
of extinguishers, HVAC installations, or first-aid kits. 3D annotations can be
visualized by texts, symbols, or 3D objects (e.g. an extinguisher model) and are
integrated into the 3D scene or positioned within the view plane as described by
Maass and Döllner (2006a, 2006b).

2.3 Enabling Insight for BIM Visualization
One approach for visualizing BIM information hides and emphasizes building
structures: Important objects are highlighted and less important objects are reduced
in perceptibility or even removed from the visualization. Apart from removal case, this
technique leaves geometry unaltered, which enables to perceive and judge the real-
world spatial configuration and relationships.

• A BIM-view configuration describes the objects that are included or excluded
from the visualization and which BIM-style to apply.

• A BIM-style controls the visual variables and defines the appearance of city
model objects and building objects.

For the visualization of values, a BIM style offers the possibility to define one of the

Figure 4: View showing the relative
temperature on the second floor.

Figure 5: View showing the rooms
 with hazardous materials.

 2 Styling for BIM Visualization

Fall 2007 Workshop 1-9

object attributes whose values modify the original object color. Furthermore, a base
color hue (whose value is modified) and a normal range for the attribute’s values are
defined.
According to the rendering, we are using only color, transparency, and outlines for
this visualization technique.
Figure 4 shows a 3D building. Only its second floor is inspected in detail. The view
contains all elements of the first floor in normal style. For the second floor only room
objects are included. For the story separation CityObjectGroups have been
evaluated. The rooms on second floor are colored according to their temperature
value from light red to dark red. In the sense of the fire scenario this can indicate the
fire source.
Figure 5 shows another view for identifying any rooms in the building that include any
hazardous materials, e.g., oil, gas, or chemicals. Therefore, only rooms of the
building are displayed in transparent mode and only those rooms are colored which
contain such materials.

2.4 Deforming Building Structures for BIM Visualization
As another approach to visualizing BIM we distort the geometry of building elements
on the basis of their semantics. In detail CityGMLGroupings are evaluated for
identifying the stories of a building and all story elements. Those are used for
exploding the building model vertically and for popping open the building model
vertically, respectively.
For explosion views, a geometrically translation is applied to the building stories and
roof. Thereby insight into every story is enabled and indoors elements such as
furniture can be perceived without modifying the building objects’ appearance, e.g.,
by using transparency. Such visualization is essential when dynamic data such as

Figure 6: Tilting up of the building for
gaining insight.

Figure 7: Explosion view for gaining
insight; room usage is color coded.

Styling for Service-Based 3D Geovisualization

1-10 Fall 2007 Workshop

tracking data of firefighters shall be integrated with this building model and all their
positions shall be visible at the same time.
A second deforming technique just tilts up the building structures above a defined
storey, see Figure 6. On the one side this tilting provides less information than the
explosion view, on the other side it needs less image space and still contains more
information than just removing the upper building parts from the visualization.
As shown in Figure 7 this deforming visualization technique can be combined with
the mapping technique described above. The view includes all building information;
only for the second floor the room usage is color-coded.

2.5 Web Perspective View Service for BIM (BIM-WPVS)
In general, the BIM-related high-level geoinformation service could be implemented
on top of the following OGC web services:

• Data-oriented: A Web Feature Service (WFS) would deliver and modify
feature objects and their attributes;

• Scenegraph-oriented: A Web 3D Service (W3DS) would deliver a scene
graph, i.e., a specification of a virtual 3D world including 3D objects, their
attributes und hierarchical structure; this data is processed by 3D rendering
engines for visualization.

• Visualization-oriented: A Web Perspective View Service (WPVS) would
provide perspective views of a static 3D scene as image, i.e., a rendering of a
3D GeoVE.

The BIM-WPVS is implemented in a visualization-oriented way. Using a WPVS has
the key advantage that there is no need for consumer-side 3D rendering because
image synthesis is performed at the server side; the server can be equipped with
appropriate 3D computer graphics hardware. In particular, we can deploy high-quality
3D rendering without having to consider the diverse client 3D rendering capabilities
since BIM visualization results need only to be transferred to and displayed by light-
weight client applications (Singh, 2001). This separation allows us to implement
specialized 3D visualization techniques such as for natural phenomena (e.g.,
including water or sky), to apply processing-intensive techniques (e.g., non-
photorealistic rendering, vegetation rendering, or ambient occlusion for simulating
global illumination in 3D GeoVEs).
As a disadvantage, WPVS (as well as W3DS) do not transfer any further semantics
to the client than the information contained in the synthesized image (or scene graph,
respectively). Semantical information is currently only provided by data services,
such as the OGC WFS, which, e.g., could deliver a semantical model of a geospatial
scene in the CityGML format. This approach would require additional knowledge
about the format and processing of CityGML at the service consumer side.

Compared to the OGC WPVS, our BIM-WPVS is extended as follows:
• BIM-WPVS includes integration capabilities for different geoinformation, i.e.,

terrain data, vegetation, several building data, and additional building
information.

 2 Styling for BIM Visualization

Fall 2007 Workshop 1-11

• BIM-WPVS provides different views that are configurable with respect to
visualized data and visualization style.

The perspective view provided by the BIM-WPVS can be integrated into different
processes for giving users insight into the geoinformation in an effective way. The
application of the BIM-WPVS can be further enhanced by the combination with other
services which could enable the access to further complex geoinformation (e.g., to
ad-hoc sensor network data), provide functionality for further improving the visual
representation of the virtual 3D environment (e.g., by adding annotations to the view),
or supply interaction capabilities (e.g., for navigation and editing). Security is another
important issue that can be addressed with service composition. In the context of a
BIM-WPVS this includes user authentication and authorizing the access to the
underlying data which has to be appointed with user restrictions, accordingly.

2.5.1 Service Architecture
Figure 8 illustrates the system architecture of the BIM-WPVS. Various sources and
formats of geoinformation are accessed, integrated and composed by the central
LandXplorer-based server component. It is capable of integrating terrain data, aerial
images, LOD-4 building models, additional detailed building information, and further
context buildings for the geospatial surrounding on the basis of a virtual 3D city
model.

In our case the different geoinformation is accessed from a central database, but it
might be distributed and could be accessed by using WFS and WMS web service
adaptors that we have added to the LandXplorer CityGML viewer as a contribution to
the CAD/GIS/BIM thread within OGC’s web services initiative, phase 4 (OGC, 2007).
In contrast to that work, the BIM-WPVS deploys a fat-server/thin-client approach.

Figure 8: System architecture of the BIM-WPVS.

Styling for Service-Based 3D Geovisualization

1-12 Fall 2007 Workshop

2.5.2 Service Interface
Similar to the OGC WPVS, the BIM-WPVS provides two operations, GetCapabilities,
which provides information about the service and its capabilities, and GetView, which
provides the synthesized image.

GetCapabilities: Describes the geoinformation layers that are available through the
service and can be selected by the service consumer for visualization. Building
information is modeled as one layer of the BIM-WPVS. The GetCapabilities response
further describes different general analysis views, which can be chosen for the
server-side image rendering process. These views define the in-scope building
information and how they are visualized.

GetView: Provides the capabilities of the BIM-WPVS to the service consumer, i.e.,
the rendering of an image that emphasizes specific building information. For its
configuration, the service provides several parameters which a) define the
geoinformation layers to include, b) define the position of the virtual camera or leave
this to the server for automated calculation, c) define the requested image size, d)
define the general analysis view to apply, or e) define a task- and domain-specific
view with explicitly setting the relevant entities and the visualization style.
Figure 9 shows the results for two GetView requests which integrate detailed building
information for a large campus building within its geospatial context (e.g., terrain
data, aerial image, and surrounding buildings). They use the explosion view to allow
the service consumer to gain insight into the building structure and properties. The
examples use color-coding highlighting a single room and for showing the room
temperatures within the building.

2.6 Results
We have outlined design and implementation of a high-level geoinformation service
that helps to close the gap between spatial information at the building level and
spatial information at the city model level. We have explained how to map BIM data
to components of virtual 3D city models, and exemplified the approach by two BIM-

Figure 9: Explosion views of a large campus building within its geospatial context for
finding a single room (left) and for showing room temperatures.

 3 Styling with Distributed 3D Geovisualizations

Fall 2007 Workshop 1-13

specific visualization techniques. We demonstrated the applicability of the approach
by our implementation of a BIM-WPVS, which successfully utilizes virtual 3D city
models for seamlessly integrating and visualizing GIS and BIM data; rendering styles
can be configured by the service operation parameters and different views for
analysis purposes can be obtained.

As a general insight, we consider the BIM-WPVS as an example of a high-level
geoinformation service that synthesizes complex data and applies advanced 3D
visualization techniques while offering a high degree of interoperability due to the
server-side 3D rendering.

3 Styling with Distributed 3D Geovisualizations
This section describes an approach for the textual annotation of a perspective view
generated by a WPVS. This functionality corresponds to the TextSymbolizer offered
by the SLD specification but is extended to 3D geovisualization and is additionally
implemented by distributed portrayal and processing services. A composition client
uses and combines the functionality of these independent services. This work has
been published by Hagedorn et al. (2007).

3.1 Annotation of 3D Geovirtual Environments
Annotations are essential elements to communicate textual and symbolic information
for cartographic maps and within 3D GeoVEs. Traditionally, they name point, line, or
area features, such as locations, streets, rivers, districts, or lakes. A number of
criteria, e.g., a clear correlation with the feature, the legibility of the annotation, and
the occlusion of other annotations or important image parts have to be considered to
optimize the information transfer to the user and to achieve an aesthetical
appearance of the annotated depiction. The use of electronic media for map creation
and presentation raises the need for automated annotation techniques. This need
has been strengthened by the increased use of interactivity in today’s
geovisualization applications and systems, which allows users the real-time
exploration, analysis, and modification of geospatial data.
A first approach for the automated labeling of interactive 3D GeoVEs was presented
by Bell et al. (2001). They developed a view management data structure that
efficiently supports the registration and query of rectangles on the view plane. This is
used to mark such regions as occupied that show important scene elements or
formerly placed labels. Maass and Döllner (2006b) present another view
management strategy that is optimized for point feature labeling of terrains.
Furthermore, they develop a technique that directly embeds annotations as 3D
elements into the 3D scene instead of presenting them as screen overlays (Maass
and Döllner 2006a, 2007).

3.2 Composition Concept
Our approach to annotated 3D views of GeoVEs combines two main services, an
extended Web Perspective View Service (WPVS) and the Web View Annotation
Service (WVAS). The service chain is implemented as client-based service
composition. Complementary to the thick geovisualization service, this client is
constructed as a thin client. It knows about the component services and completely

Styling for Service-Based 3D Geovisualization

1-14 Fall 2007 Workshop

controls the service-based geovisualization process. Figure 10 illustrates the overall
architecture of our implementation and the main message transfer between the
involved components.

Our approach to an extended WPVS encapsulates the access to and the integration
of geoinformation in one 3D GeoVE comprising large terrain models, large aerial
images, and building data in different formats (e.g., CityGML, 3DS). It is capable of
synthesizing high-quality images using rendering techniques for ambient occlusion
and atmospheric effects such as sun and clouds. In our case study, the service
provides access to the integrated GeoVE of a 3D campus model composed of a
terrain model, topographic imagery, and several building models such as main
building, auditorium, library, cafeteria, and nearby train station. The composition
client receives a perspective view and a depth image from the extended WPVS and
forwards them to the WVAS along with a set of annotation descriptions and
configurations. Finally, the WVAS calculates and overlays the embedded textual
annotations. Figure 11 shows a screenshot of the composition client.

For adding user-defined annotation to the 3D GeoVE, we have integrated a
transactional WFS in our WPVS. This data can be requested by other users and can
be utilized for creating the WVAS request.
Functionality and interface of the WPVS have been extended to enable their
composition with the WVAS. Both services are described in Section 3 and Section 4.

3.3 The Web View Annotation Service
The WVAS provides the single operation GetAnnotatedView. Service request and
response are encoded as SOAP messages sent over Http. For both, input and
output, images can be transferred in different ways. First, a URL pointing to the
image on a web server or representing a URL-encoded service request, e.g., to a
WPVS, can be used. Second, the images can be submitted within or attached to the

Figure 10: Architecture of the service chain for annotated views of GeoVEs.

 3 Styling with Distributed 3D Geovisualizations

Fall 2007 Workshop 1-15

SOAP message as described by Powell (2004), e.g., using the SOAP extension
DIME (Direct Internet Message Encapsulation) for attaching binary data. In our
current implementation the color and depth images are encoded as base64 strings
and sent within the SOAP messages.

The WVAS is implemented as a stateless service: It does not provide any user or
session handling and does not store any camera, canvas, or annotation descriptions.
Therefore all input data has to be included in every service request. Some of the data
that defined the preceding image rendering process has to be included into the
service request as well. In detail the GetAnnotatedView operation use the following
input parameters:

• List of annotations: An annotation is defined by an annotation text and a 3D
position, the annotation’s reference point. The annotation can be described as

Figure 11: Screenshot from the composition client showing an overview of the
campus area.

Styling for Service-Based 3D Geovisualization

1-16 Fall 2007 Workshop

an abstract GML feature containing a georeferenced gml:Point.

• 2D color image: The 2D color image represents a perspective view of a 3D
scene for a specific viewpoint and contains RGB values for each pixel.

• 2D depth image: The 2D depth image is related to the color image. Each pixel
stores the distance of the visible scene element to the camera with float
precision.

• Camera definition: As usual in the 3D computer graphics domain, the camera
is defined by the look-from vector, look-to vector, look-up vector, near plane,
far plane, and field-of-view angle. This is different from the camera model of
the OGC WPVS which is defined by the point of interest (that is the look-to
point in our model), the camera distance to that point, angles describing the
north direction, pitch, and field-of-view. However, both models can be
transformed into each other.

• Canvas definition: The canvas definition describes the width and height of the
input color and depth images.

• Annotation configuration: The appearance of the annotations generated by the
technique can be adjusted by parameters such as the placement variant,
color, font, and annotation size.

The WVAS is currently implemented as .NET Web Service executed by the Microsoft
Internet Information Services (IIS). Its implementation is based on the Virtual
Rendering System, “a computer graphics software library for constructing interactive
3D applications. It provides a large collection of 3D rendering components.” (VRS
2007, Döllner and Hinrichs 1995)

3.4 Extended WPVS

3.4.1 Extension for Depth Image Provision
The WPVS has been extended by providing additional image-encoded scene
information, i.e., the service not only delivers the RGB image of a 3D GeoVE but also
an additional image that encodes scene depth. The depth image cannot be created
by SLD or SE feature visualization styles, which only influence the mapping of
geoinformation to graphical primitives. Instead, the rendering stage in the
visualization pipeline has to be modified. We identified at least the following
possibilities for integrating such rendering functionality into WPVS:

• Extending the GetView operation by an additional RenderingStyle parameter:
Depending on this parameter the service decides about the creation of the
default color image or the depth image and the format in which they are
delivered (e.g., as application/octet-stream for raw binary data).

• Extending the WPVS service interface by an additional operation
GetDepthView: This operation generates the depth image and only provides
appropriate transfer data. The further parameters of the operation are identical
to the GetView request.

 3 Styling with Distributed 3D Geovisualizations

Fall 2007 Workshop 1-17

Both ways provide access to intermediate data of the visualization pipeline, which
have not been accessible before to service consumers. This data is not intended for
perception by humans but serves as input for new service-based visualization
techniques.
Our WPVS implements the additional operation GetDepthView. Nevertheless, the
option of explicitly supporting RenderingStyles seems to be very promising as it is a
more general concept for enabling additional rendering techniques.

3.4.2 Service-Based User-Interactivity
To support user interaction, we have extended the WPVS by a GetFeatureInfo
operation. Corresponding to the WMS GetFeatureInfo operation, it provides additional
information about features in the perspective view of the 3D GeoVE that is returned
by a previous GetView request. Because of the stateless implementation of the WPVS
the GetFeatureInfo request has to specify most of the parameters of the GetView
request, i.e., canvas and camera settings, layers to include, and styles to apply. As
further parameter the 2D image position of interest is specified.
The server-side implementation of GetFeatureInfo uses a ray intersection test for
identifying the selected objects. A 3D ray request is originated at the camera position
and shot into the scene. The primarily hit GeoVE object is evaluated and thematic
information such as the GeoVE object type (e.g., building, roof, terrain, etc.), object
identifier, and geospatial position can be derived and included into the GetFeatureInfo
response message.
For the interactive specification of annotations, this position can be used as
annotation anchor point. Additionally, object-related information such as the object
center, footprint center, or other predefined building-related points of interest (e.g.,
meeting places, elevators, emergency exits) can be delivered to support the user in
specifying annotations.

3.5 Composition Client
The combination of the extended WPVS and the WVAS is performed by the
composition client. The client application catches the user input and forwards it to the
extended WPVS. This is the same for the user’s navigation input, which is mapped to
a new camera position and results in a new execution of the service chain.
Additionally, session state handling is addressed, including tracking the camera
settings and determining the annotations to be added to the perspective view. In our
case, the session handling was performed by the composition client itself. Server-
side session handling is another approach, which could be implemented with a
service-based composition approach. The sequence diagram in Figure 12 illustrates
the steps performed by the composition client to process the user input (for
annotation definition) and combine the extended WPVS and WVAS (for annotated
view creation). This scenario contains the storage of user-defined annotations at the
WFS-T.
Currently, the client application is implemented on a JavaScript basis. As with AJAX,
this enables asynchronous communication with web services using the
XMLHttpRequest object with SOAP messages. The input and output image data is
encoded as base64-string and transmitted as part of the SOAP request or response
messages, respectively.

Styling for Service-Based 3D Geovisualization

1-18 Fall 2007 Workshop

3.6 Results
We have implemented a client-controlled service-chain supporting the 3D annotation
of 3D GeoVEs. Figure 13 shows two annotated views of the 3D GeoVE of our
campus and how the automatic annotation supports a high legibility by preventing
occlusions with scene objects and other annotations.
The presented concept and prototype show how two complementary 3D visualization
techniques can be seamlessly combined by implementing these techniques by two
independently designed, implemented, and deployed web services; chained together
they form a higher-level web service chain. In particular, separating core scene
rendering of 3D GeoVE from specialized 3D visualization techniques, for example
annotation rendering, facilitates the systematic, modular composition of complex
visualization applications and simplifies their implementation. For example, the
annotation service could be reused in other web service chains, or it could be
enhanced by a navigation information service.
The presented concept can be applied to all visualization services that basically
operate in image space provided that the WPVS offers additional scene information.
This way, we can use an optimized 3D rendering engine for the most time-critical
part, the rendering of complex 3D GeoVEs, and other aligned web visualization
services do not depend on the underlying internal representation – they rely on a
clearly defined, image-based interface. This approach also offers a high degree of

Figure 12: Sequence diagram describing the overall workflow for defining and
creating the annotated perspective view.

 4 Related Work

Fall 2007 Workshop 1-19

interoperability because the individual web services do not need to exchange
contents of 3D GeoVE, for which no commonly accepted standards exist so far.
The extensions to the WPVS can be generalized: In all standard 3D graphics
systems (e.g., OpenGL, DirectX), the provision of image-encoded scene information
(e.g., depth, surface normals, object identities, etc.) represents a common feature.
Therefore, we suggest including these extension into the official WPVS definition. For
example, higher-level web services that provide advanced stylized images (e.g.,
illustrations) could be implemented this way.

4 Related Work
For the specification of visualization styles for 2D maps the OGC supports the Styled
Layer Descriptor (SLD) and Symbology Encoding (SE) specifications (Lalonde 2002,
Müller 2006). Together with a reference to the input data, a WMS consumer can use
predefined styles for the geovisualization or specify own styles to be applied.
Annotations can be integrated into the WMS-based geovisualization in two ways: The
SLD and SE specifications support textual and graphical annotations by
TextSymbolizers (for label placement) and PointSymbolizers (for 2D graphics
placement).
Until now, for the styling of 3D GeoVEs, no standards emerged. Neubauer and Zipf
(2007) have proposed extensions to the SLD specification for third dimension. E.g.,
they suggest SolidSymbolizers and SurfaceSymbolizers as new features, 3D
legends, billboard integration, 3D placement, and the extension of material definitions
for supporting enhanced shading. This extension is leaned against SLD styling
mechanism for 2D simple features (such as points, lines and polygons) but does not
address the visualization of more complex structured features such as CityGML
buildings, which include walls, doors, windows, etc.
Regarding the service composition for geovisualization, the OGC WMS specification
together with the SLD specification supports the definition of external geodata
sources for being used within the geovisualization process. Neis et al. suggest an

Figure 13: Screenshots of annotated views of the 3D campus model from a bird’s eye
(left) and close to ground (right) perspective generated by the service chain
implementation.

Styling for Service-Based 3D Geovisualization

1-20 Fall 2007 Workshop

Accessibility Analysis Service (AAS, Neis et al. 2007a) and an Emergency Route
Service (Neis et al. 2007b), which employ service composition by aggregate services.
For example, they combine street network data from WFS with processing
capabilities of their AAS (which generates new geometry described as GML) and
WMS mapping capabilities. Weiser et al. (2007) show the possibility of using BPEL
engines together with WSDL service descriptions of OGC web services for a
workflow-based service orchestration. We do not know about other work about the
service-based externalization of intermediate rendering results for beeing used with
other geovisualization services.

5 Conclusions and Future Work
This paper introduces two approaches for enabling styling within 3D geovisualization.
First, it targets at a domain-specific styling of complex building information and the
visualization within its geospatial context. Second, the externalization of intermediate
rendering results and combination with additional rendering functionality in a
distributed visualization system is shown.
In our future work, we will address the following aspects: First, we will develop
advanced BIM visualization techniques that focus on providing insight into complex
spatial assemblies using non-photorealistic, illustrative 3D rendering techniques.
Second, we will implement the service chain by an aggregate service, which includes
the logic for service chaining, currently implemented by the composition client. Third,
we will provide web-service adapters to general web services (WMS, WFS), which
provide access to geodata (e.g., maps, 3D terrains, and city models), offer lookup
services whose results can be visualized by annotations (e.g., taxi stations,
restaurants, or parcel tracking information), and use the annotation service for
analysis and exploration tasks. Fourth, we want to enhance user interaction
implemented by web services. This includes functionality to interactively specify
annotations also for line and area features, used to add user comments in urban city
planning scenarios, as well as to support network-based multi-user collaboration.

References
[1] Alameh, N. 2003. Chaining Geographic Information Web Services. In Internet

Computing, IEEE Computer Society, Sept.-Oct. 2003, pp. 22-29.
[2] Dey, A.K. and Abowd, G.D. 1999. Towards a Better Understanding of Context

and Context-Awareness. In Proceedings of the 1st international symposium on
Handheld and Ubiquitous Computing (Karlsruhe, Germany, 1999).

[3] Bell, B., Feiner, S., and Höllerer, T. 2001. View Management for Virtual and
Augmented Reality. In Proceedings of the 14th ACM Symposium on User
Interface Software and Technology (UIST), ACM Press, pp. 101-110.

[4] Döllner, J. and Hagedorn, B. 2007. Integrating Urban GIS, CAD, and BIM Data
by Service-Based Virtual 3D City Models. 26th Urban Data Management
Symposium (Stuttgart, Germany, October, 2007). UDMS 2007.

 References

Fall 2007 Workshop 1-21

[5] Döllner, J. and Hinrichs, K. 1995. The Virtual Rendering System - A Toolkit for
Object-Oriented 3D Rendering. EduGraphics - CompuGraphics Combined
Proceedings, pp. 309-318.

[6] Hagedorn, B. and Döllner, J. 2007. High-Level Web Service for 3D Building
Information Visualization and Analysis. Proceedings of the 15th ACM
International Symposium on Advances in Geographic Information Systems
(Seattle, USA, Nov. 2007). ACM GIS’07.

[7] Hagedorn, B., Mass, St., and Döllner, J. 2007. Chaining Geoinformation Services
for the Visualization and Annotation of 3D Geovirtual Environments. Proceedings
of the 4th International Symposium on LBS and Telecartography (Hong Kong,
China, Nov. 2007). LBS’07.

[8] Lalonde, W. (Ed.) 2002. Styled Layer Descriptor Implementation Specification.
Open Geospatial Consortium (September 2002).

[9] Maass, S. and Döllner, J. 2006a. Dynamic Annotation of Interactive
Environments using Object-Integrated Billboards, In Proceedings of the 14th
International Conference in Central Europe on Computer Graphics, Visualization
and Computer Vision (Plzen, Czech Republic), WSCG'2006. pp. 327-334.

[10] Maass, S. and Döllner, J. 2006b. Efficient View Management for Dynamic
Annotation Placement in Virtual Landscapes. In Proceedings of the 6th Int.
Symposium on Smart Graphics (Vancouver, Canada, 2006), pp. 1-12.

[11] Maass, S. and Döllner, J. 2007. Embedded Labels for Line Features in
Interactive 3D Virtual Environments. In Proceedings of the 5th International
Conference on Computer Graphics, Virtual Reality, Visualization and Interaction
in Africa (October 2007), ACM AFRIGRAPH 2007.

[12] Mäs, St., Reinhardt, W., and Wang, F. 2006. Conception of a 3D Geodata Web
Service for the Support of Indoor Navigation with GNSS. In Innovations in 3D
Geoinformation Science, Abdul-Rahman, A., Zlatanova, S., and Coors, V. (Eds.)
Lecture Notes in Geoinformation and Cartography. Springer. pp. 306-316.

[13] Morales, J., and Radwan, M. 2004. Architecting Distributed Geo-Information
Services: Beyond Data Infrastructures. In Proceedings of the 20th Congress of
the International Society for Photogrammetry and Remote Sensing (Istanbul,
Turkey, July 12-23, 2004). ISPRS 2004. pp. 1227-1232.

[14] Müller, M. (Ed.) 2006. Symbology Encoding Implementation Specification. Open
Geospatial Consortium (July 2006).

[15] Neis, P., Dietze, L., and Zipf, A. 2007a. A Web Accessibility Analysis Service
Based on the Open LS Route Service. 10th AGILE Internation Conference on
Geographic Information Science (Aalborg, Denmark).

[16] Neis, P., Schilling, A., and Zipf, A. 2007b. Interoperable 3D Emergency Routing
Based on OpenLS. 3rd International Symposium on Geoinformation for Disaster
Management (Toronto, Canada, May 23-25, 2007), GI4DM.

[17] Neubauer, St., Zipf, A. 2007. Vorschläge zur Erweiterung der OGC Styled Layer
Descriptor (SLD) Specification in die dritte Dimension – eine Analyse möglicher
Visualisierungsvorschriften für 3D Stadtmodelle. Symposium Angewandte
Geoinformatik (Salzburg, Austria, July 4-6, 2007). AGIT’07.

[18] OGC 2007. Summary of the OGC Web Services, Phase 4 (OWS-4)
Interoperability Testbed. http://portal.opengeospatial.org/files/?artifact_id=21371.

Styling for Service-Based 3D Geovisualization

1-22 Fall 2007 Workshop

[19] Powell, M. 2004. Web Services, Opaque Data, and the Attachments Problem.
Web Services Technical Articles. The Microsoft Developer Network Library.
http://msdn2.microsoft.com/en-us/library/ms996462.aspx.

[20] Singh, R.R. (Ed.) 2001. OpenGIS OGC Interoperability Program Report, OGC
Web Terrain Server (WTS). Open Geospatial Consortium.

[21] Spence, R. 2001. Information Visualization, Addison Wesley.
[22] Weiser, A. and Zipf, A. 2007. Web Service Orchestration (WSO) of OGC Web

Services (OWS) for Disaster Management. 3rd International Symposium on
Geoinformation for Disaster Management (Toronto, Canada, May 23-25, 2007),
GI4DM 2007.

[23] VRS 2007. The Virtual Rendering System, http://www.vrs3d.org.

The Windows Monitoring Kernel

Michael Schöbel

michael.schoebel@hpi.uni-potsdam.de

We describe the Windows Monitoring Kernel (WMK), a custom-built version of the
latest Windows Server 2003 operating system that includes a fine-grained logging in-
frastructure for operating system kernel events. Event traces can be used for analyzing
the Windows operating system behavior at runtime. Furthermore, the event trace can
be used to investigate behavior of arbitrary applications running on the Windows oper-
ating system.

Besides describing the WMK design and implementation, we present reporting tools
that visualize the logged events and their relationships. We discuss how the WMK can
be used to get a better understanding of OS behavior and application behavior.

Our work is based on the Windows Research Kernel, a version of the Windows
sources available to academic institutions.

1 Introduction

In this section we define the context of the work described in this paper. First, we
show how the Windows Research Kernel (WRK) can be used for dynamic program
analysis and introduce the developed Windows Monitoring Kernel (WMK). Afterwards,
the usefulness of the WMK in the field of server system analysis and performance
tuning is described. An outlook on the application of the WMK on server systems is
given.

1.1 WRK and dynamic program analysis

Since the introduction of the Windows NT operating system in 1993, very few details
about the kernel structure and behavior have been known to the research community.
While UNIX and Linux sources are freely available for research and analysis, Windows
NT has always been a closed source. Besides the definitive book by Mark Russinovich
and David Solomon [6] only limited documentation is available of how things work inside
the Windows kernel.

In 2006, Microsoft changed its policy for the kernel sources [5] and published the
core part of the Windows Server 2003 Enterprise Edition kernel sources as the Win-
dows Research Kernel (WRK). The WRK is available to academic institutions for re-
search purposes [3,11] and can be used to build customized versions of the Windows
kernel. It requires a running instance of a Windows Server 2003 Enterprise Edition, as
it only provides a modified version of ntoskrnl.exe.

Fall 2007 Workshop 2-1

The Windows Monitoring Kernel

Available kernel source code can be used in different ways to analyze the Windows
operating system or applications running on the Windows platform. Static code analy-
sis can be done. We used the open source tool doxygen to generate call graphs and
HTML documentation for the kernel1. The subject of this paper is our tool for dynamic
analysis: we have prepared a modified WRK version called Windows Monitoring Kernel
(WMK).

The WMK adds an event logging infrastructure to the Windows kernel that allows
logging of any arbitrary function/activity inside the source code. We also developed a
reporting tool that allows post-mortem analysis and generates diagrams or graphs.

To analyze an arbitrary Windows application the original Windows kernel has to be
replaced by the WMK version. The WMK can operate in two modes: either global
logging is enabled, which can be used to log every event in the system independent
from a specific application, or local logging which can be used to monitor only specific
applications. The global logging mode allows the monitoring of the Windows boot
process and all inter-process dependencies. Local logging of specific applications can
be used for debugging or analysis of specific intra-process activities.

Different event types provide different pieces of information about runtime behavior.
Basic events such as scheduling activities, process synchronization or file access in
combination with timestamps can be used to analyze important aspects of applications.
Profiling, dead lock detection, and determining lock contention can be done.

The WMK builds the foundation for a collection of tools for dynamic program analy-
sis on the Windows platform. The availability of source code allows the implementation
of complex instrumentation directly in the kernel. This allows the tracing of events which
are otherwise not accessible.

1.2 Dynamic program analysis and server systems

Monitoring and observing runtime behavior of server systems can be used in different
ways [1,7]. Two main application areas are debugging and optimization:

Debugging - Most server systems use a set of components which are connected in a
complex way, e.g. a web server, an application server, and a database manage-
ment system. Subtle runtime errors can be detected by observing the connected
components and the exchanged data.

Optimization - By continuously observing performance metrics (e.g. throughput or
latency) it is possible to detect bottleneck components or components which are
never used. Afterwards, such components can be optimized or removed.

Furthermore, concepts as described in [9,10] rely on a fine-grained, low-level under-
standing of server request processing. The Windows Monitoring Kernel can be used
as a flexible foundation for this problem area and others. It allows for event logging of
arbitrary events as described in the remaining parts of this paper.

1Access via the web is provided on request [11].

2-2 Fall 2007 Workshop

2 DESIGN AND IMPLEMENTATION

1.3 Contributions and structure

The main contributions are as follows: (1) We built a modified version of the Windows
NT kernel which can be used for dynamic program analysis, (2) we implemented an
efficient event logging infrastructure therein, (3) we implemented tools that analyze
and visualize recorded events, and (4) we demonstrate the application of the WMK
system for analyzing system behavior.

The WMK can be used as basis of a complete logging and debugging infrastructure
as described above.

The remaining part of the paper is organized as follows: First, we present design
and implementation of our event logging infrastructure. Secondly, we evaluate the per-
formance impact of the WMK. Afterwards, detailed case studies are presented which
show the possibilities offered by the WMK. Finally, we review related work and conclude
the paper with an outlook on future work.

2 Design and Implementation

In this section we present the overall architecture of the WMK logging infrastructure.
As it is a straight-forward implementation derived from our requirements, we will start
motivating those requirements, presenting details of the architecture, introducing cur-
rently supported event types, and finally presenting the API of WMK as well as tools
that help evaluating and/or interpreting traced logfiles.

2.1 Requirements

The Windows Monitoring Kernel is designed for providing an efficient event logging
infrastructure that allows for logging arbitrary kernel events. For this reason, we define
the following conditions to be met by the WMK:

Reliability : WMK events are used for system evaluation. Therefore, it is crucial that
the underlying infrastructure is reliable with respect to missing or dropping events.
That is, events must not be dropped silently without any confirmation. Otherwise
evaluation results might be corrupt.

Low Overhead : WMK must not disturb the system’s performance by orders of mag-
nitude, as, for instance, a kernel debugger does. However, we consider a small
amount of overhead suitable for the sake of monitoring arbitrary kernel events.
We will discuss the performance impact in more detail in section 3.

Availability : The event logging infrastructure must be accessible from within all kernel
modules and must be executable under any arbitrary circumstances, like proces-
sor mode or interrupt request level (IRQL).

Non-blocking Synchronization : Logging kernel events requires efficient synchro-
nization between different event providers. The synchronization must be imple-
mented in a non-blocking, wait-free manner, i.e., logging an event must not lead

Fall 2007 Workshop 2-3

The Windows Monitoring Kernel

WMK Core

Instrumentation

NTDLL.DLL KERNEL32.DLL *.DLL

Usermode Applications

System Calls

WmkCommitEvent

Thread CreationWaitFor*Object

Context Switch ...

WmkAllocateEvent

WmkDiskWriterThread

Harddisk Logfiles

Event Log Buffer

Active Passive

Process Creation

Kernelmode

Figure 1: WMK components - overview

to the preemption of the thread or task currently being executed. For example, if
a blocking system function call is executed while instrumenting an interrupt ser-
vice routine like the page fault handler, the system will halt with the infamous blue
screen of death, because no other task is scheduled until the ISR is completed.

Variable Size Events : In order to achieve logging of arbitrary events, WMK must
provide means to define custom event types regardless of their size, i.e., different
event types may have different sizes. Also WMK must provide means for dynamic-
size events, i.e., events whose size is unknown at compile time. Such events, for
example, include file access events where it might be considered useful to also
log the name of the file.

Ease of Use : WMK must be easy to use for both operating system developers and
application developers or application maintainers.

2.2 Architecture

The architecture of WMK is shown in Figure 1. The WMK Core component forms the
basis of the WMK logging infrastructure. It is implemented directly as part of the kernel
in order to achieve access to it from within instrumented kernel modules. WMK Core
contains the event log buffer and implements both the disk writer thread and the WMK
event logging API.

The event log buffer is allocated from the non-paged pool section of the operating
system’s address space, i.e., it is not subject to paging. This is essential in order to
fulfill the availability requirement: page faults are not always allowed to occur when an
event might be logged. For example, when instrumenting an ISR like the page fault

2-4 Fall 2007 Workshop

2 DESIGN AND IMPLEMENTATION

WmkAllocateEvent(WMK_E_TIMER_EXPIRATION)
WmkEvent->Object = Timer;
WmkEvent->ExpirationType = WMK_EXPIRED;
WmkEvent->DueTime = Timer->DueTime.QuadPart;
WmkEvent->Hand = Index;

WmkCommitEvent(WMK_E_TIMER_EXPIRATION)

Figure 2: Logging a timer expiration event

handler or a deferred procedure call (DPC), the occurrence of a page fault in such a
condition will cause the system to crash.

The event log buffer is divided into two independent parts; each is dynamically
assigned either the role of the active buffer (= currently used for storing events) or the
role of the passive buffer. When the active buffer is exhausted, its events must be
written to disk. Therefore, the passive buffer is switched to the “active” state and the
other buffer is written to disk by the disk writer thread.

The capacity of each part of buffer must be big enough to cache data while the
other part is written to disk. Also, the capacity of each buffer has an impact on the
performance penalties caused by the WMK. If the buffer is too small, the disk writer
thread is almost always active to flush events to disk and events might be lost. On
the other hand, if the event log buffer is too big, the performance might be influenced
indirectly as OS resources might run short. For our prototypical implementation, we
experienced a buffer size of 4 MByte for each part of the buffer (= 8 Mbyte for the
complete buffer) as sufficient for a typical workload as defined in section 3.

2.2.1 Event Logging API

A kernel event provider must invoke the WMK API for creating an event in the logfile.
There are three steps that are executed by every event provider: it first allocates the
event, secondly it fills the event with data, and finally, it commits the event.

A kernel event is allocated by invoking either WmkAllocateEvent or WmkAllocateEventEx,
depending whether the event provider wants to create a fixed-sized event or a variable-
sized event. In either case, the WMK tries to allocate the appropriate buffer size from
the active buffer. In order to provide a lock-free synchronization between concurrent
event allocators, we use hardware instructions that can atomically compare and ex-
change a value, e.g., CMPXCHG on Intel architectures.

Afterwards, the event data structure can be filled with appropriate data items, like
in figure 2, for a timer expiration event. In that case, the event structure contains four
fields: Object denotes the address of the timer object, ExpirationType denotes why
the timer was released, DueTime denotes the absolute system time when the timer
has to expire, and Hand identifies the timer’s timer list. When all items have been set
appropriately, WmkCommitEvent must be invoked to signal that the event is ready to be
flushed to disk.

While other implementations of how to log kernel events are proposed in recent

Fall 2007 Workshop 2-5

The Windows Monitoring Kernel

publications [4,13], we decided for this allocate-commit approach for the following rea-
sons: on the one hand, WmkAllocateEvent transparently checks whether the given
event type is enabled for logging. If not, nothing else is executed. On the other hand,
event providers can enclose additional function calls in the allocate-event bracket, so
these functions are only invoked as demanded.

2.2.2 Disk Writer Thread

For performance issues, events are stored in the active buffer. If the active buffer is
exhausted, data needs to be written to some secondary storage, like a disk. But as
I/O accesses are slow, the chance is high to miss some events in that time. Therefore,
we use the passive buffer: If WmkAllocateEvent detects that an event will not fit in the
remainder of the buffer, it switches both buffers, i.e., the active buffer becomes the
passive buffer and vice versa. Then, the disk writer thread is signaled, i.e., it resumes
from suspension, and starts to write the contents of the “new” passive buffer to disk as
soon as all pending events are committed. When the thread finishes writing it marks
the passive buffer as empty and blocks.

The size of both buffers is crucial to proper event logging: if buffer size is too small,
the disk writer thread will be unable to write the passive buffer to disk before the active
buffer is exhausted. On the other hand, if buffer size is too big, the OS might indirectly
be influenced as only fewer system resources like non-paged pool available. We further
evaluate proper buffer sizes in section 3.

2.2.3 User-mode API

The WMK also provides an API to user mode, namely a set of system calls, that can
be used for both controlling and configuring dynamic properties. The properties of the
WMK are part dynamic, part static. Static properties are set at compile-time. Such
properties include, for example, the buffer size of the event log buffer, and the initial
logging type, like global or per-process logging. Static properties are crucial as the
WMK is available to kernel modules at a very early stage of the operating system boot
process. Dynamic properties can be set and/or modified during the run-time of the OS.
As the WMK is a part of the operating system, we implemented new system calls to
allow for configuration. The following properties can be configured dynamically:

Enabling or disabling global logging : The WMK allows for global logging, i.e., all
events occurring in the system will be logged. In contrast with per-process log-
ging, only those kernel events will be logged that happen in the context of a
certain process or in the context of any of its child processes. If global logging
is disabled, per-process logging is enabled. Kernel events are logged no sooner
than a process identifier is specified.

Attaching the WMK to a process : We provide a system call that allows for logging
only those events of a certain process or any of its children that were created
after this process was selected for per-process logging.

2-6 Fall 2007 Workshop

2 DESIGN AND IMPLEMENTATION

Event Description

ProcessCreation a new process is created
ProcessTermination a process terminates
ThreadCreation a new thread is created
ThreadTermination a thread terminates
WaitEvent a thread waits for one or more synchroniza-

tion objects
WaitRelease a thread actively signals a event or releases

a synchronization object
Syscall a system service call occurs
SyscallExit a system service call returns
ContextSwitch the scheduler passes the CPU to another

thread
QuantumEnd a thread exhausts its quantum
CreateObject an object reference is created
CreateFile a file reference is created
TimerExpiration a (kernel) timer expires

Table 1: WMK Event Types

Defining a subset of kernel events : As we will motivate in section 3, it can be helpful
to reduce the amount of traced kernel events if only a certain aspect of the kernel
is of interest. For example, when we evaluated the Windows timer management
we disabled all other kernel events to concentrate only on that type of events.

Requesting the active buffer to be flushed : Normally the event log buffer is only
flushed to disk if its space is exhausted. However, if the event arrival frequency
is not high, it may take time until the buffer is actually flushed. To enhance this
process, a user can request the WMK to flush the buffer anyway. Especially, if
only few events are enabled for logging and a certain process is monitored, we
found this feature to be useful.

2.3 Supported Events

Table 1 shows the currently supported event types. Following, each event type is de-
scribed in more detail.

ProcessCreation If a new process is created the corresponding event contains in-
formation about the process creator (thread ID and process ID) and the newly
created process (process ID, process object address, and section base address).
The section base address holds the memory address where the process exe-
cutable is loaded. With this information the process tree can be derived.

ProcessTermination On process termination the calling thread and the process ID of
the terminated process are logged.

Fall 2007 Workshop 2-7

The Windows Monitoring Kernel

ThreadCreation If a new thread is created the logged event contains information about
the thread creator (thread ID and process ID), the newly created thread (thread ID
and process ID), thread object address, thread start address, and the executable
image name the thread belongs to. The thread start address in combination with
the section base address of the corresponding process can be used to resolve
the thread function name if a PDB file with debug information is available.

ThreadTermination On thread termination the thread ID and process ID of the termi-
nating thread are logged.

WaitEvent If a thread invokes a wait function the logged event contains the thread
ID and the process ID of the waiting thread, a flag indicating whether the thread
starts or finishes waiting, a list of objects the thread is waiting for, and (if appli-
cable) the signaled object. Additionally, the return value of the wait function is
logged to detect timeouts. The timestamps of wait start and wait end can be used
to calculate the timespan the thread was blocked.

WaitRelease If a thread signals an event or releases a semaphore, the signaling
thread (thread ID and process ID), the address and type of the signaled syn-
chronization object and the resulting priority boost are logged. The object ad-
dress can be associated with current WaitEvent entries and the synchronization
relation between two concurrent threads can be detected.

Syscall If a user mode application calls the kernel, the thread ID, process ID and the
system service call number are logged.

SyscallExit If the kernel has processed the system service call of a thread, the thread
ID and process ID of the calling thread are logged. In combination with the latest
Syscall event for the specific thread, the processing time for the system service
call can be determined. Additionally, the WMK logfile can be used to identify sys-
tem service calls which may not return to user mode (e.g. NtTerminateProcess).

ContextSwitch If the Windows scheduler selects a new thread for execution, the in-
formation about the new thread is logged: thread ID, process ID, thread priority
and thread quantum length. With this information Windows scheduling concepts
like priority boosts and quantum expansion can be analyzed.

QuantumEnd If a thread’s quantum expires, the according thread ID and process ID
are logged. A subsequent ContextSwitch event shows which thread was selected
to run next.

CreateObject If a thread creates a new object which is managed by the object man-
ager, the creator information (thread ID and process ID), the object type, the
object name, and the object address are logged.

CreateFile A special type of objects are files. If a thread tries to access a file, the
thread information (thread ID and process ID), the requested access type (e.g.
write access), the result of the CreateFile call, and the file name are logged.
With this information, files used by a specific process can be detected.

2-8 Fall 2007 Workshop

3 EVALUATION

TimerExpiration If a kernel timer expires this event logs the kernel timer object ad-
dress, the expiration time, the timer index value, and the expiration status of the
timer. This event can be used to analyze the Windows timer management (see
section 4.2.3 for further explanations).

2.4 WMK Tools

We have created a set of tools for WMK logfile analysis. In this section we give a short
overview of the different kinds of analysis tools we created for the WMK.

Before any analysis the logged events must be re-sorted: possibly the timestamps
of the WMK events are not in the right sequence. This could happen if a WmkAllocateEvent
call is preempted directly after the timestamp counter was read but before the space
for the event was allocated in the buffer. Actually, this happens very seldomly.

The logfile analysis tools can be subdivided into three groups:

Reporting WMK events are logged in binary format. Different tools can prepare the
information in a human readable form. Additionally, different statistics can be
derived from the logfile and displayed in textual form.

Profiling The logged events are tagged with a timestamp counter value. This infor-
mation combined with the test system timestamp counter frequency (= CPU fre-
quency) can be used to derive timing information, e.g. the time spent in different
system service calls or the time waiting for a specific synchronization object.

Graphical Visualization The logfile can be used to derive the process/thread hier-
archy and the wait-for relation of threads and synchronization objects. These
dependencies can be visualized in a graphical way and allow a good exploration
of the logged information.

Where possible, external sources of information such as PDB files with debug infor-
mation are used to enhance the reports generated by the WMK tools. For example a
thread start address can be resolved with a PDB file to get the real source code name
of a specific thread function.

In section 4 the application of the described tool set is demonstrated. Additional
event types can be used to create more tools which analyze different aspects.

Besides these tools for analyzing logfiles, we created a set of tools for the WMK con-
figuration. The API described in section 2.2.3 was used to implement tools for: (1) en-
abling/disabling certain events, (2) starting a monitored process, (3) attaching/detaching
the WMK to running processes, and (4) flushing and closing the logfile for further anal-
ysis.

3 Evaluation

The Windows Monitoring Kernel affects the execution of applications. An evaluation of
overhead is subject of this section.

Fall 2007 Workshop 2-9

The Windows Monitoring Kernel

Three main factors determine the overhead introduced by the WMK: the number
of logged events, the size of logged events, and the buffer size. The event quantity
depends on the characteristic of the executed workload. An IO intensive application
with many system service calls naturally leads to much more (system call) events than
a pure user mode computation. The event size depends on the event types. The
CreateFile event saves the file name in its unicode string representation which leads to
a bigger event size than a QuantumEnd event which stores only the thread information.
With more/bigger events, the buffer size determines the frequency the log file must be
flushed to secondary storage. A smaller WMK buffer must be written to disk more
frequently, given a constant amount of events. On the other hand, the time required
to flush the buffer increases with the buffer size. Therefore, the time the executed
application is influenced by the WMK is bigger.

If an instrumentation point is reached, the WMK checks whether the event has to
be logged or not. This depends on the WMK configuration and on the configuration
of the executed application. Besides these checks the WMK has no influence on the
executed application. Of course, the amount of main memory occupied by the WMK
buffer may influence running applications in terms of available memory.

The more interesting case is the presence of many events. We chose the following
test case, which leads to a high amount of events: for test purposes the Windows
Research Kernel is compiled, and the elapsed time is measured. The high IO activity
of compiler runs leads to many CreateFile and Syscall events. The required time to
generate the Windows kernel is a good measure for system performance. Additionally,
the number of dropped events is evaluated. The size of the WMK buffer should be
chosen in a way that no events are lost.

The test machine was a single processor Pentium 4 (2.66 GHz, 768 MByte RAM)
machine, with Windows Server 2003 Enterprise Edition SP1. The original kernel was
replaced with the WMK version to test. The WRK is compiled ten times and afterwards
the logfile is closed and analyzed. This experiment is repeated ten times, leading to
100 WRK compilations for the different WMK configurations described in the remaining
of this section.

Using the original Windows kernel the compilation of the WRK source code took
165.7 seconds. This base value was determined by 250 builds.

The WMK overhead must be related to the event frequency. All events shown in
table 1 were activated and logged during the compilation. This configuration leads to
around 113 million events. Each event had an average size of 32 Bytes, leading to
a 3.3 GByte logfile. With a compilation time around 170 seconds per WRK build the
WMK has to log about 64k events per second.

Table 2 shows the slow down of the compilation with different buffer sizes. Two
observations can be derived from the test results:

1. The overhead introduced by the WMK is nearly constant and independent from
buffer size. The trade-off between buffer size and disk write frequency seems to
be balanced.

2. With a buffer size ≥ 8 MByte no events are lost. Losing events is not acceptable
for any system analysis task. Therefore the determined 8 MByte buffer size builds

2-10 Fall 2007 Workshop

3 EVALUATION

BufferSize [MB] Slow Down [%] Dropped Events [%]

2 6.5 14.3
4 6.3 7.2
8 6.3 _
16 6.1 _
32 6.4 _
64 6.3 _
96 6.2 _

Table 2: WMK Buffer Size Effects

Event Slow Down [%] Events [≈ 1
s
]

no events 1.1 _
Process* 1.1 3
Thread* 1.3 4
Wait* 1.2 580
Syscall* 5.2 53604
ContextSwitch 1.1 395
CreateObject 1.8 5159
CreateFile 1.8 4901
TimerExpiration 1.1 97

Table 3: WMK Event Type Influence

the absolute minimum.

The actual value of the sufficient buffer size could depend on the speed of the hard
disk used for logfile storage. That influence was not investigated further and should
only have slight impact.

Another point to mention is that our test system could not boot successfully with a
buffer size > 128 MByte. Allocating more than 128 MByte of the available RAM of 768
MByte as non-paged area seems to acquire too much system resources. The non-
paged pool size is determined by heuristics at system startup. Therefore, instead of
using fixed buffer sizes one may consider sizing the buffer dynamically.

In short, the WMK buffer size should be chosen in a way that no events are dropped.
With an event frequency of roughly 64k events per second the overhead is 6.1%.

Table 3 shows the influence of each event type on the WMK overhead. The third
column shows the approximated number of events per second of the specific category.

The main observations derived from the test results are:

1. For our test workload the basic overhead is 1.1%. With the WMK infrastructure
in place and disabled events a basic overhead arises (due to checking whether
the event has to be logged or not). This value holds for the frequency of 64k
events/checks per seconds.

Fall 2007 Workshop 2-11

The Windows Monitoring Kernel

2. Most events are Syscall events. More than 80% of the logged events are system
service calls. The Syscall event alone is responsible for around 5.2% of the WMK
overhead. If the system service call information is not needed the WMK impact
can be reduced significantly.

3. Circa 13k events per second lead to additional 1.0% overhead. With this rule
of thumb the WMK overhead can be estimated considering the expected event
frequency.

In conclusion, the WMK has a performance impact on running applications. This
impact is composed of (1) the cost for checks, whether an event has to be logged or not,
and (2) the event logging cost itself. The actual overhead depends on the frequency of
event occurrence. Of course, the actual values for “cost of one event check” and “cost
of logging one event” depend on the underlying hardware (CPU, RAM, and secondary
storage).

For the applications we had in mind when designing the WMK, like understanding
the Windows operating system or analyzing the dynamic behavior of arbitrary applica-
tions, we believe the overhead is acceptable.

4 Case Studies

This section presents some detailed case studies which demonstrate the applicability of
the Windows Monitoring Kernel. First, we show how the WMK can be used to analyze
the synchronization behavior of Windows applications. Afterwards, the WMK is used
to monitor Windows kernel activities.

The methodology of using the WMK is always the same: replace the original kernel,
reboot the machine, run some applications, get the WMK logfile (by either rebooting
again or by using the NtWmkFlushLogfile system call), and finally use some of the
analyzing tools to process the logfile.

4.1 Monitoring Windows Applications

A common problem in complex multi-threaded applications is the analysis of their syn-
chronization behavior and the analysis of whether a potential deadlock may arise.
Given only a static documentation or the source code of an application, it is difficult to
figure out which thread waits for which synchronization object and which other threads
wait for the same synchronization object. This behavior is monitorable at a systems’s
runtime.

Basing on our wait event monitoring, we created a tool that analyzes and visualizes
dependencies concerning synchronization objects acquired by different threads. For
convenience, we used a simple consumer-producer application which synchronizes
using a mutex object. Figure 3 demonstrates the resulting wait-for dependency graph.

Inside this graph, an ellipse denotes a process object, it contains the executable file
name and unique process ID. A diamond denotes a waitable object, e.g., semaphores,

2-12 Fall 2007 Workshop

4 CASE STUDIES

Figure 3: Producer/Consumer synchronization using a mutex

events, or threads. It contains at least the object address and the object type. If the
diamond denotes a thread object, the thread function name (or thread start address if
no symbol files are available), the executable file name and the unique thread ID are
displayed as well. A thread object which is not used as a synchronization object is
denoted as rectangle.

There are three types of directed edges connecting the nodes: (1) a solid line
shows “create” relationship, i.e., between threads and synchronization objects, or be-
tween threads and other threads, (2) a bold, dashed edge shows “wait” relationship,
i.e., a thread waits for the specific synchronization object, and (3) a thin, dotted edge
shows “release” relationship, i.e., a thread releases a semaphore or an event by calling
ReleaseSemaphore or similar Windows API functions.

To reduce the diagram complexity and to allow for focusing on the synchronization
relations, all synchronization objects which are not part of a “wait” or “release” relation
between multiple threads are omitted. Such synchronization objects could relate to lo-
cal procedure calls or (maybe unused) callback functions. Our example concentrates
on intra-process synchronization between concurrent threads; with enabled global log-
ging the inter-process synchronization can be visualized as well.

Figure 3 shows the example consumer-producer application. The main thread cre-
ates two other threads which execute the Consumer or Producer function respectively.
Additionally, the synchronization object (Mutant) is initialized. Now, the producer and
the consumer thread both wait for the mutant object, for assuring mutual exclusion.
Also, the main thread (executing the mainCRTStartup function) waits for both child
threads to finish their execution.

The Wait-for Graph can be created by connecting the WMK to the specific applica-
tion that should be observed. The process handle is given to the logging infrastructure

Fall 2007 Workshop 2-13

The Windows Monitoring Kernel

via a system service call. Note that this connection can even be established at runtime
when the application has already started.

Other diagram types might also be useful: In section 4.2.1 the process-thread dia-
gram is described. Thread-priority diagrams or Scheduling diagrams can also be de-
rived from WMK logfiles but are not presented in this paper. Further types of diagrams
might be useful depending on the data classes acquired from the WMK infrastructure
and are subject to future work.

The WMK logfile can be processed by reporting and profiling tools which derive
values such as average waiting time for specific synchronization objects, or average
duration of different system service calls. Applying these tools to complex server sys-
tems such as the JBoss application server is also subject to future work.

4.2 Monitoring the Windows Kernel

The WMK logging infrastructure is available early in the system startup phase. There-
fore, the boot process and other activities can be monitored. The next section demon-
strates how the Windows kernel boot activities can be monitored and analyzed by the
WMK tools. Afterwards, the Windows scheduler thread quantum lengths are compared
for different workloads. Finally, we briefly present how the WMK was used to analyze
an anomaly in the Windows kernel timer management.

4.2.1 Boot Process

The Windows operating system is an example of a mature, complex system. The WMK
allows to trace the (operating) system behavior starting very early in the boot process.
To monitor the system the WMK must be globally enabled. This allows to trace the
system startup phase and inter-application dependencies.

Figure 4: Windows boot process - small snapshot showing the thread/process relation

As an example, figure 4 shows a section of the process/thread relation of the Win-
dows boot procedure. Processes (ellipses) and threads (boxes) are show. A graph

2-14 Fall 2007 Workshop

4 CASE STUDIES

Filename

\??\ACPI#FixedButton#2&daba3ff&0#{4afa3d5 ..
\??\Root#dmio#0000#{53f5630e-b6bf-11d0-94 ..
\??\Root#ftdisk#0000#{53f5630e-b6bf-11d0- ..
\??\STORAGE#Volume#1&30a96598&0&Signature ..
\??\Volume{d059368a-6504-11db-a41d-806e6f ..
\DosDevices\C:
\Device\HarddiskVolume1
\??\STORAGE#Volume#1&30a96598&0&Signature ..
\Device\RawDisk
\Device\RawCdRom
\Device\NetWareRedirector
\Device\LanmanRedirector
\Device\Harddisk0\Partition0
\Device\Harddisk0\Partition1
\ArcName\multi(0)disk(0)rdisk(0)partition(1)
\SystemRoot\LastGood
\SystemRoot\System32\ntdll.dll

Table 4: First files accessed during the boot process

edge illustrates the hierarchy dependency. In this way it can be analyzed which thread
or process is started by which thread.

For processes, the graph shows the executable image file name and the unique
process ID. For threads, the unique thread ID and the thread start address is shown. If
possible, the thread function name is extracted from the application debug information
(PDB files).

You can see that the Windows system process (at the top of the graph) starts the
Phase1Initialization thread which starts all other system threads and initializes the
whole system.

Analyzing the process-thread creation can be useful to get a high-level overview of
the components of a monitored system. Such an analysis can be the starting point of
further analysis, e.g. considering synchronization behavior.

The WMK CreateFile event can be used to analyze the files which are accessed by
the Windows kernel during the boot process. Table 4 shows the results.

The very first file the Windows kernel uses is related to the ACPI (Advanced Config-
uration and Power Interface). A fixed feature button is an ACPI concept which relates
to “Power” or “Sleep” keys on the PC box or keyboard. Supposably, some handler
routines are initialized and registered for such buttons.

Subsequently, the disk information is read and different devices are opened. On
our test system, the devices NetWareRedirector and LanmanRedirector could not be
opened successfully by the booting kernel.

Afterwards, the kernel tries to read the \SystemRoot\LastGood file which contains
the last known system state which actually booted successfully. This file was also not

Fall 2007 Workshop 2-15

The Windows Monitoring Kernel

 1

 10

 100

 1000

 10000

 100000

 0.01 0.1 1 10 100

F
re

qu
en

cy

Effective Quantum Length [ms]

Quantum Usage Distribution

Frequency

(a) “office” workload

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100

C
um

ul
at

iv
e

F
re

qu
en

cy

Effective Quantum Length [ms]

Quantum Usage - Different Workload

Video
WRK Build

Linpack (normal prio.)
Linpack (high prio.)

(b) comparison

Figure 5: Quantum Length

present in our test run and the file could not be opened.
Finally, the ntdll.dll is opened and loaded into the memory. From now on, user-

mode applications can be initialized and executed.
The list of accessed files can be a good starting point for a deeper analysis of the

Windows boot procedure. Even for application monitoring the accessed files list can be
helpful for troubleshooting, e.g., find missing DLLs or configuration files.

4.2.2 Analyzing Quantum Lengths

In [4] the effective quantum (= the time an activity was actually allowed to use the CPU)
of different workloads was determined on the Linux platform using KLogger. The WMK
can be used to repeat the experiment on the Windows platform.

Three different workloads were executed under WMK observation: (1) the WRK
was compiled as described in the evaluation section, (2) a 30 seconds video was dis-
played using the Windows Mediaplayer 10, and (3) as pure computational workload the
Linpack benchmark was executed.

Figure 5(a) shows the distribution of effective quantum lengths when using a WMK
observed system as workstation (e.g., for reading email or doing text processing) for
some time. More than the half of all thread activity was processed in less than 1ms.
This observation accords to the measurement presented in [4].

On our test system the maximal quantum which could be used by a thread was
180ms. This value can be calculated as follows: the distance between two clock inter-
rupts (15ms) multiplied by the number of quantum units (36 as it is a Windows server
system [6]) divided by three (because three quantum units are subtracted at every clock
interrupt).

In figure 5(b) the effective quanta of the different test workloads are compared using
a cumulative distribution function (CDF) diagram. Playing a video or building the kernel
leads to a similar distribution of the effective quantum lengths. Almost all thread activity
can be done in less than 1ms.

The CPU bound Linpack benchmark was executed in two different modes: (1) as

2-16 Fall 2007 Workshop

4 CASE STUDIES

Count Activity

252 (csrss.exe)
142 ExpWorkerThread
98 ExpWorkerThreadBalanceManager

446 preemptions omitted
1 MiModifiedPageWriter

Table 5: Linpack Preemptors

“normal” application with the Windows standard priority of 8, and (2) with “time critical”
priority set by the SetThreadPriority API, leading to a priority value of 15.

Running at time critical priority the Linpack benchmark was able to use more than
100ms effective quantum in 75% of all cases. At normal priority this fraction decreases
to only 10%.

Another point to mention are the steps in the Linpack CDF graph: the distribution
“jumps” at 15ms steps. This leads to the assumption that there are system activities
using timers which wake up at 15ms intervals.

The WMK logfile can be used to extract all threads which preempt the Linpack
benchmark application and to do further analysis. The available PDB files with debug
information are used to resolve the thread functions. We did this additional analysis for
one exemplary Linpack benchmark run at normal priority.

Table 5 show the analysis results: different system activity is executed in a rela-
tively high frequency. Due to incomplete PDB files the csrss.exe activity which has
preempted the Linpack benchmark 252 times could not be identified. The csrss.exe
updated the graphical user-interface for character-based applications, therefore we as-
sume that the task is Windows GUI related. Threads executing the ExpWorkerThread
function do different work on behalf of the executive component of the Windows sys-
tem, e.g. load drivers at boot time. The Windows balance manager gets activated
once every second and has preempted the Linpack benchmark 98 times. Even the
modified page writer (writes modified memory pages to the page file) has preempted
the benchmark.

The conclusion is that the defined maximum quantum length has nearly no influence
on the behavior of the executed applications. Even CPU bound workload is preempted
at a high frequency which prevents it from using a whole quantum. The quantum length
can be used in its entirety more often if activities are executed at a higher priority level.

4.2.3 Windows Timer Expiration

In this section we present how we used the WMK to verify the existence of an anomaly
in the Windows timer management that we concluded from analyzing the particular
source files. Therefore, we first briefly introduce the anomaly we discovered and ar-
gue about possible consequences, secondly we describe how we used the WMK to
instrument appropriate parts of the kernel, and, finally, we present a solution to the
problem.

Fall 2007 Workshop 2-17

The Windows Monitoring Kernel

Windows Timer Management In most COTS operating systems, timers are orga-
nized in a list of timer objects sorted ascendingly to their due time. Doing so enables
efficient checking whether a timer has expired or not: the operating system simply has
to check against the first due time in the list. In the Windows Server 2003, timers are
organized in 512 lists of timers. These lists are called the timer table. In which list a
timer is inserted depends on its due time: the due time divided by the tick count gran-
ularity modulus the number of entries in the timer table—in our case 512—determines
the index of the timer list. The distribution of timers in such a fashion favors the insert
operation of a timer in the timer list.

The problem we figured out is that the timer table consists of 512 entries. In Win-
dows, each timer has a header of the type DISPATCHER_HEADER that contains, among
others, a field named Hand. This field is used for timers to indicate the particular timer
list the timer belongs to. For design reasons, this field only has a width of 8 bits; thus,
the range of valid values lasts from 0 to 255. As the timer table contains 512 timer
lists, in our particular case, this field might suffer an overflow. We scanned through
the Windows sources to find a location where that field is populated for some reason.
We finally found it in the only two functions that are invoked to remove a timer from
its list. The functions are called KiRemoveEntryTimer and KiRemoveTreeTimer. In both
functions the Hand field is evaluated to determine the list head of the timer’s list. If the
timer is the last one in the list, the head of that list must be modified to indicate that the
list is empty. The list head contains a field, called DueTime, that holds the due time of
the first timer in the list. If the list is empty, by definition, the most significant 4 bytes
of this 8 byte value must be set to 0xffffffff. If the original index was greater than 255,
Hand refers to the wrong list head, so if this wrong list is not empty but the actual list is
empty, the actual list head keeps its due time, i.e., a past due time. (However, the timer
is removed properly anyway, as the kernel provides a list modification API the list head
is not essential for.)

Windows considers these timer list heads for checking timer expiration. In the in-
terrupt service routine (ISR) for the clock interrupt, Windows checks the current timer
list head, depending on the current tick count value whether its due time is less than or
equal to the current time. As mentioned above, if the index of the current list is greater
than 255, it may happen that the head of an empty list is not marked as appropriate.
So, the due time of such an inconsistent list head remains a value pointing to a time
in the past. And although the list is empty, Windows invokes timer expiration routines.
Nonetheless, the inconsistent timer list head is repaired when a new timer arrives at
that list.

Experimental Verification All the issues mentioned above have been identified by
pure code reviewing. Of course, we wanted to see whether our hypothesis about incon-
sistent timer list heads might happen at run-time of the system or whether we missed
some important fact (which is absolutely possible due to the amount of source files).

We used the WMK to instrument appropriate code locations responsible for DPC
handling and timer expiration handling: KiTimerExpiration is responsible for dequeu-
ing an expired timer of its queue and scheduling further DPCs or asynchronous proce-
dure calls (APC) if any, and KeCancelTimer that is responsible for canceling a timer, i.e.,

2-18 Fall 2007 Workshop

5 RELATED WORK

Timer event Occurrences Index %

Expiration 110848 0..511 67.81
Cancellation 2606 0..511 1.59
Re-Expiration 50024 256..511 30.59

Table 6: Tracked timer expiration events during the Windows build process.

simply removes it from its list. These are the only two functions that invoke one of the
suspicious KiRemove*Timer functions. We instrumented in such a way that we could
track timer expiration events, timer cancellation events, and events that were caused
erroneously executed due to an inconsistent timer list head. We called such events
“re-expiration” events. Table 6 contains the observed results.

In total, we measured 163478 timer related events during the boot process of the
Windows OS and 10 builds of the Windows Research Kernel. 30.59% of those events
are caused due to the inconsistent timer list head. In addition, we also determined
the index value (by calculation) of the expired timer. All index values recorded for
re-expiration events were in range 256 to 512. We consider this as proof for our obser-
vation.

Proposed Solution We propose a solution that removes the existence of re-expiration
events completely. Therefore, we modified both functions KiRemoveEntryTimer and
KiRemoveTreeTimer to not evaluate the index value stored in the Hand field of the timer
but to compute by invoking KiComputeTimerTableIndex. The function is invoked ev-
ery time a timer is removed from the list, in our particular case, 113454 times. Let us
assume, that there are at least 10% re-expiration events, which is in our experience
a reasonable lower boundary. In that case, invoking KiComputeTimerTableIndex is
sensible, if the costs for executing KiTimerExpiration are at least 10 times as much
as for KiComputeTimerTableIndex. Indeed, preliminary measurements prove that the
costs for executing KiTimerExpiration are actually higher than a factor of 10. So, we
conclude deploying our solution as sensible.

5 Related Work

On Windows operating systems, the major comprehensive analysis tool at operating
system level is perfmon [6]. Perfmon queries built-in Windows performance counters
and generates diagrams that help system administrators to identify bottlenecks in the
operating system. Performance counters have to be queried by a Windows API, re-
stricting the frequency of the requests. For example, it is impossible to trace every
context switch, because the context switch counter might already have changed while
the result of a query is transfered to the monitoring thread.

Better monitoring facilities are provided by the Windows Management Instrumenta-
tion (WMI) and the Event Tracing for Windows (ETW) tools [6,12]. The general concept
of WMI is the separation of event provider (= instrumentation point) and the tracing

Fall 2007 Workshop 2-19

The Windows Monitoring Kernel

tools (= event consumer). The ETW “NT Kernel Logger” is implemented as WMI event
provider.

The ETW toolkit is part of the Windows driver development kit and provides a unified
logging infrastructure for (kernel-mode) drivers and (user-mode) applications. It can
be enabled/disabled at runtime. Therefore, ETW is better suited than the WMK for
monitoring production environments.

For a better comparison to the WMK we repeated the WRK build test as described
in section 3 and measured the overhead of the ETW tool. With 50 tests, we determined
the average duration of a single WRK build as 167.17s. This results in a slow down
of 0.86% if the ETW tool tracelog is started in “NT Kernel Logger” mode. Addition-
ally, we specified the following command line parameters: -nonet to disable logging of
networking events and -UseCPUCycle to get more precise event timestamps.

However, the ETW and the WMK are not really comparable:

1. ETW aims at driver developers who want to optimize their driver implementation
and system administrators who want to detect faulty components or want to re-
solve performance problems. The WMK primarily aims at researchers who want
to investigate operating system or application behavior.

2. Because of the first point and because of the fact that the ETW has to be applica-
ble in production environments, the ETW environment is more generic and more
complex to program. The WMK interface is simpler: just insert the instrumenta-
tion code and recompile the kernel.

3. The ETW kernel logger interface is not extendable: there is a small set of prede-
fined event providers, e.g., context switch, thread creation, or file access. There-
fore, the WMK offers more possibilities for Windows kernel experiments. The
timer expiration analysis or analyzing system service calls is not possible with
ETW.

4. The 0.86% overhead were measured with an event frequency of only 4700 events
per second. The WMK can handle around 13k events per second for 1% over-
head as shown in the evaluation section. At 4700 events per seconds the WMK
has an overhead around 0.4%.

In short, for monitoring scenarios in production (server) environments the WMK is
not an option: a reboot with a modified kernel is just not possible. In research envi-
ronments, however, the WMK shows a better performance due to a more lightweight
integration into the Windows kernel. Furthermore, the WMK provides a better extensi-
bility regarding available instrumentation points.

In the Linux and UNIX domain, event tracing tools were discussed in the past: the
Linux Trace Toolkit (LTT) [13] was created to instrument the Linux operating system at
source code level. It also provides an efficient event logging infrastructure but requires
a user mode daemon to transfer logged events to the file system. This implies that
the buffer containing logged events can be dumped to the file system at a pretty late
stage in the boot process. To overcome this drawback, a bigger buffer size is required
to guarantee that no events will be lost. As a per-processor buffer approach is chosen,

2-20 Fall 2007 Workshop

7 NEXT STEPS

this approach does not scale well, especially on multiprocessor systems. The same
might hold for KLogger proposed by Etsion et.al. [4]. Also, KLogger focuses more
on kernel developers to improve system performance while WMK is aimed to improve
understanding of applications and the Windows kernel.

Another, yet more flexible approach is taken by DTrace [2] which allows dynamic
modification of kernel code in order to instrument it. It instruments the kernel by re-
placing the opcode at a specified instruction address with a jump instruction to an
instrumentation routine. The ability to add/remove events at runtime eliminates any
overhead induced by DTrace when event logging is disabled. However, DTrace is not
more flexible with regard to arbitrary kernel events: The locations where instrumenta-
tion code can be placed are fixed inside the kernel. Also, the usage domain of DTrace
differs from that of the WMK: DTrace is a tool for administrators in data centers and
should help analyze bottlenecks and identify misconfiguration. In contrast to the WMK,
it is not intended to facilitate the detailed understanding of processes going on inside
the kernel.

6 Summary and conclusion

In this paper, we presented the Windows Monitoring Kernel, a customized version of
the Windows Server 2003 operating system extended by an efficient fine-grained event
logging infrastructure, that provides means for logging variable-sized, arbitrary kernel
events. We achieved a small overhead induced by the WMK; the slow down is only
about 6% at a considerable high event rate of approximately 60,000 events per second.
At event rates typical for other instrumentation frameworks, such as ETW, the overhead
is around 0.4%.

We demonstrated how the WMK can be facilitated for analyzing operating system
behavior under certain aspects: we investigated the Windows boot process, measured
effective quantum lengths, i.e., how long can a thread use a processor before it gets
preempted, and experimentally proved the existence of an anomaly in the Windows
timer management. The WMK has proven to be highly useful for a fine-grained anal-
ysis of applications behavior on the Windows platform. The analysis may include, for
example, synchronization behavior or profiling.

We provide web access to the WMK for the research community through [11] and
will further develop the infrastructure by adding new types of observable events.

7 Next steps

Currently, we prepare a technical report describing the WMK in detail. This report is
intended as a manual for WMK users and developers. Furthermore, a case study is
being prepared in which the WMK is applied to a complex server infrastructure consist-
ing of web server, database system, and different other applications (e.g., external CGI
scripts and applications).

Fall 2007 Workshop 2-21

The Windows Monitoring Kernel

The WMK can be used for fine-grained monitoring of system activities. These activi-
ties can be dynamically adapted with concepts as described in [9,10] depending on the
observed behavior and depending on other properties (e.g. service level agreements
or quality of service requirements).

Acknowledgments

The WMK was presented at the workshop on “Applied Program Analysis” [8] as a
cooperation with Alexander Schmidt. Part of this work on the “Windows Research
Kernel” was funded by Microsoft Grant No. 15899.

References

[1] Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier. Using mag-
pie for request extraction and workload modelling. In OSDI’04: Proceedings of the
6th conference on Symposium on Opearting Systems Design & Implementation,
pages 18–18, Berkeley, CA, USA, 2004. USENIX Association.

[2] Bryan Cantrill, Michael W. Shapiro, and Adam H. Leventhal. Dynamic Instrumen-
tation of Production Systems. In USENIX Annual Technical Conference, General
Track, pages 15–28, 2004.

[3] Microsoft Corporation. Windows Academic Program: Windows Research Kernel.
http://www.microsoft.com/resources/sharedsource/Licensing/researchkernel.mspx.

[4] Yoav Etsion, Dan Tsafrir, Scott Kirkpatrick, and Dror G. Feitelson. Fine Grained
Kernel Logging with KLogger: Experience and Insights. In Proceedings of the
EuroSys 2007, pages 259–272, March 2007.

[5] Andreas Polze and Dave Probert. Teaching operating systems: the Windows
case. In SIGCSE ’06: Proceedings of the 37th SIGCSE technical symposium on
Computer science education, pages 298–302, New York, NY, USA, 2006. ACM
Press.

[6] Mark E. Russinovich and David Solomon. Microsoft Windows Internals. Microsoft
Press, 4th edition, 2005.

[7] Alexander Schmidt. Towards fine-grained SOA instrumentation, April 2007.

[8] Alexander Schmidt and Michael Schöbel. Analyzing System Behavior: How the
Operating System Can Help. In LNI GI Proceedings 110, 2007.

[9] Michael Schöbel. Operating System Abstractions for Service-Based Systems. In
Proceedings of the Fall 2006 Workshop of the HPI Research School on Service-
Oriented Systems Engineering, 2006.

2-22 Fall 2007 Workshop

REFERENCES

[10] Michael Schöbel. Operating System Resource Partitioning for Service-based Sys-
tems, April 2007.

[11] Michael Schöbel and Alexander Schmidt. Windows Research Kernel @ HPI.
http://www.dcl.hpi.uni-potsdam.de/research/WRK, May 2007.

[12] Craig Tunstall and Gwyn Cole. Developing WMI solutions: a guide to Windows
management instrumentation. Pearson Education, Inc., 1st edition, 2002.

[13] Karim Yaghmour and Michel R. Dagenais. Measuring and Characterizing Sys-
tem Behavior Using Kernel-Level Event Logging. In Proceedings of the USENIX
Annual Technical Conference, pages 13–26, June 2000.

Fall 2007 Workshop 2-23

A Resource-Oriented Information
Network Platform for Global Design

Processes

Matthias Uflacker

matthias.uflacker@hpi.uni-potsdam.de

Multinational organizations are pressing hard to develop a culture of distributed col-
laboration and communication to retain efficiency and effectiveness in a global compe-
tition. The transfer and dissemination of domain knowledge between regionally discon-
nected communities is playing a vital role in this process. Information technology can
support knowledge-intense processes and stimulate remote collaboration by assisting
in information sharing activities. In this context I present d.store: a resource-oriented
platform to deploy information networks in distributed collaboration groups. The plat-
form allows semantic annotation and relation of distributed resources by means of
domain-specific taxonomies. Thus, it extends the concept of social bookmarking sys-
tems in hypertext networks through the incorporation of information context, encourag-
ing knowledge transfer and inference. While the platform is being designed versatile
and multi-purpose, this work focuses on the instantiation of knowledge networks in
global communities specialized in human-centered software design.

Keywords: Computer-Supported Cooperative Work, Information Sharing, Semantic Net-
works, Software Design

Fall 2007 Workshop 3-1

A Resource-Oriented Information Network Platform for Global Design Processes

1 Introduction

Being a field of interdisciplinary theories ever since, Knowledge Management (KM) has
become a major subject for research in the information technology sector over the past
recent years. Yet despite the wealth of analysis, it is not surprising that IT-supported
Knowledge Management is still an actively discussed and challenging matter. Possibly,
this is due to its multidisciplinary nature, rooted in diverse disciplines such as eco-
nomics, business, education, or psychology. An isolated, inside-out view on this sub-
ject is therefore futile and misleading, forcing software engineers to team up with other
stakeholders in the development of Knowledge Management Systems (KMS) [14, 40].
Other reasons for complexity are grounded in the social and cultural diversity in the ad-
dressed audience, especially when KM is applied in large and global organizations [2].

However, contributing decisively to the challenges in the application of IT-supported
Knowledge Management is its cross-border nature between the digital world of data
and the real, intellectual world, where it has to demonstrate value to organizations,
groups, and individuals, who are having or seeking knowledge [35]. Satisfying the
end-users’ needs is clearly an outstanding factor for the success of Knowledge Man-
agement Systems and a precondition for knowledge being managed effectively [28,45].
According to Kulkarni et al. [28], the quality of the knowledge content and the overall
quality of the KMS are two key enablers for achieving a rich user experience. In this
case, the quality of a KM system can be understood as a degree of meeting expected
functional and non-functional requirements. Obviously, a close investigation of the in-
ternal work structures within an organization is required in order to get a better under-
standing of the end-user needs, the system and organizational requirements. To this
end, Communities of Practice (CoP) have received wide attention for examination and
definition of knowledge exploitation in organizations. Communities of Practice describe
a group of people within an organization who share a common set of information needs
or problems [12]. Rather than being a formal unit inside an organization, they repre-
sent informal networks that focus on knowledge and explicitly enable the management
of knowledge to be placed in the hands of practitioners [45].

Consequently, knowledge management initiatives must be closely aligned to the
specific needs of the targeted communities. It is the group of individuals which deter-
mines what knowledge needs to be articulated, shared, and transfered. Due to the
nature of knowledge, this is first and foremost an interpersonal process. Any system
incommoding this process will therefore be rejected by the community and rendered
useless.

However, progressing globalization of organizations is raising demands to support
knowledge transfer between collaboration groups with the help of information and com-
munication technology (ICT). The work, learning, and innovation capabilities of an or-
ganization heavily depend on knowledge being timely disseminated and accessible by
other organizational units, regardless of their geographical location. This is true on an
individual, intra-community level as well as between communities. Accordingly, Brown
and Duguid [6] describe organizations as communities of communities and adequately
illustrate the interdependencies of organizational knowledge structures within and be-
tween heterogeneous groups.

3-2 Fall 2007 Workshop

2 COLLABORATION VS. GLOBALIZATION IN THE SOFTWARE INDUSTRY

This diversity and informality in community requirements complicates the installa-
tion of a valuable and desirable knowledge management system extensively and raises
several questions. How can IT systems be aligned with the knowledge and commu-
nication needs of collaborating individuals, all being experts in a specific domain of
practice? How can existing technology be seamlessly integrated into the work habits of
geographically distributed communities in order to support efficient knowledge transfer
and dissemination in a meaningful way? The objectives of this work are to address
these questions and to present a software platform that attempts to be in line with the
demands: d.store.

The goal of the d.store platform is to support collaboration processes in global Com-
munities of Practice. The software provides services for the deployment of community-
specific semantic networks on top of arbitrary, distributed information resources in hy-
pertext networks. It combines the idea of social bookmarking with the semantic an-
notation and relation of concepts to represent common, declarative knowledge struc-
tures, which evolve in communities during the pursuit of a common goal. Collaborating
parties such as project teams are able to describe, interlink, and share the semantic
context of information resources based on domain taxonomies. The information con-
text is formally described through graph structures represented by community-defined
vocabularies for concepts (nodes) and relations (edges). The utilization of the provided
services can help to organize, browse, transfer and derive knowledge from the spanned
resource network.

To further motivate the work, chapter 2 discusses collaboration issues in the context
of progressing globalization and distributed work environments in the software indus-
try. Special emphasis is placed on the needs and demands of global software design
communities, representing the exemplary target user group for the platform. Chapter
3 presents some key challenges of knowledge management systems. Chapter 4 intro-
duces resource-oriented knowledge networks in the context of IT-supported knowledge
management as means to represent declarative domain knowledge in hypertext net-
works. This provides the basis for the d.store platform presented in chapter 5. A service
interface to resource-oriented knowledge networks is defined and demonstrates how
the platform can be realized in a HTTP environment. Details on a prototypical service
implementation are provided.

2 Collaboration vs. Globalization in the Software In-
dustry

Facing the inevitable change caused by industrial globalization, organizations must re-
vise traditional structures of collaboration, communication and coordination. Globaliza-
tion needs to be understood as a complex, non-linear, and multidimensional process,
affecting communication technology, economics, work organization, culture and civil
society in divergent ways [24]. Giddens summarizes this multi-faceted view, when he
defines globalization as ”[...] acting and living (together) over distances, across the ap-
parently separate worlds of national states, religions, regions and continents [...]” [20].
The effects are omnipresent and prevailing in our everyday life, in the way we trade,

Fall 2007 Workshop 3-3

A Resource-Oriented Information Network Platform for Global Design Processes

work and organize, forcing us to adapt and respond to the occurring change process.
In this process, globalization is often perceived diametrically and discussed as both:
a threat and an opportunity. In order to survive on globalized markets, multinational
enterprises are more and more exposed to the pressure of aligning their business
processes to achieve homogenization, coordination, standardization, and performance
optimization. Along with markets and competition, costs and government are further
factors, which render the globalization of business activities a must, rather than a can
do for many organizations [24,27].

For the software industry, globalization has several consequences. Software de-
sign, and engineering design in general, constitutes knowledge-intense processes that
require well-implemented communication and collaboration practices. Teams spend a
considerable amount of time to structure, organize, and leverage information. In this
multi-disciplinary setting, a shared understanding of the domain, the requirements, the
artifacts, and the design process itself is fundamental [41]. In a global context, the
challenges for knowledge transfer are remarkably aggravated. Virtually sharing and
disseminating context-specific knowledge across geographical boundaries puts high
demands on the information technology employed [24], especially in an interactive do-
main such as design, where common ground and a shared understanding is essential.
At the same time, we see a trend towards globalization in the software itself. Service-
oriented software systems are composed of re-usable functional entities, that are po-
tentially distributed across multiple deployment sites and units of responsibility. The
information required to construct distributed systems is more and more decentralized,
which increases the demand for structuring, organizing, and communicating pieces of
information in a collaborating collective.

The complexity of communicating design knowledge within a software project be-
comes also apparent in the diversity of involved process stakeholders. Team members
communicate externally with customers, users and non-users, domain experts and
people otherwise related to the design context. Information is gathered e.g. during
interviews, contextual observations, or feedback sessions. User researchers, design-
ers, engineers, and business people communicate and collaborate with each other to
proceed in the design project and to create design solutions that comply with techni-
cal, business, and user requirements. The acquired information needs to be shared
with the rest of the team to guarantee a concerted view on the process. In case of
globalized organizations, those stakeholders of a design project can be geographically
distributed, rendering this process intricate and knowledge sharing difficult to achieve.
Typical means to capture, communicate, and share design information electronically
are email (attachments), text and multimedia documents, which are stored in distributed
locations, often detached from any context. However, this decoupled handling of infor-
mation resources fails short to provide quick and easy access to important project data
and facilitates knowledge loss.

While knowledge sharing within collocated teams happens mostly implicitly and nat-
urally, the geographic distribution of collaboration partners and information sources
renders this process an explicit activity that demands for support and control. This
must be addressed appropriately by globalized software organizations in order to fully
benefit from a decentralized set up. Information and communication technology is able

3-4 Fall 2007 Workshop

3 DATA, INFORMATION, KNOWLEDGE

to connect distributed units of collaborating communities and can provide a channel to
establish consensus and shared understanding among development teams.

In order to get a better understanding about the knowledge needs and the general
structure of software design teams, a closer view on the targeted user group of the
proposed system is required. For this purpose, the notion of Communities of Design
is introduced. The term refers back to work in the area of collaboration and learning
in social environments, such as business departments, government organizations, or
learning groups. Wenger has shaped here the concept of Communities of Practice
(CoP), which are defined as ”groups of people who share a concern or a passion
for something they do and learn how to do it better as they interact regularly ” [44,
46]. Communities develop and share knowledge to pursue a common purpose. They
collaborate in problem solving, project coordinations, and discussions.

Communities of Design form a subclass of Communities of Practice with the goal
to find an optimal design solution to a given design problem in a user-centered way.
Thus, they delineate a collective of collaborating participants contributing to a design
process. Consequently, end-users involved in the design process also become mem-
bers of the community, which further adds to the heterogeneity among process stake-
holders. End-users substantially contribute to the group’s learning process and provide
critical information during user analysis and evaluation phases, a fact which is often
neglected in the design of tools to support in knowledge sharing.

A Community of Design is usually centered around a particular project and its exis-
tence bounded to the project’s term. It generally features a loose composition of a core
design team, a more or less fluctuating set of internal and external domain experts,
and individuals of an end-user group, targeted by the project. Through this mix of com-
petence and roles, the effects of globalization are likely to result in an increased level
of distribution among community members. Communities of Design accumulate and
leverage design knowledge in order to achieve a common goal. A shared understand-
ing and effective dissemination of knowledge across community members is crucial for
a successful outcome of the design process. The demand for adequate tools to sup-
port in the management of data, information, and knowledge in the context of software
design is exceptionally present.

3 Data, Information, Knowledge

Before arguing on how community knowledge can be managed with the support of
information technology, the meaning of knowledge needs to be rendered precisely and
has to be differentiated from related terms such as data and information.

A common conception of the relationship between those terms is founded in the
DIKW hierarchy (Data, Information, Knowledge, Wisdom) articulated by Ackoff [1] and
earlier references to Cleveland and Eliot [10, 15, 37]. Data, the lowest entity in this
hierarchy, is a raw, purely syntactic sequence of quantifiable symbols. It can be totally
described through a structural, formal representation and thus can be processed by
computers [36]. It has no context except for its relationship to other pieces of data. In
short, data is an uninterpreted, objective resource that may transfer information when

Fall 2007 Workshop 3-5

A Resource-Oriented Information Network Platform for Global Design Processes

processed and brought into a semantic context.
Accordingly, information can be described as data that has been processed, or to

be more precise, a meaningful, organized abstraction represented through data, e.g.
as text, pictures, or sounds. Information has a semantic context so that conclusions
can be drawn from it. This reveals a fundamental challenge for information systems:
computers, being purely syntactical machines, are unable to process information by
themselves. Data, in order to be considered as information, depends on an interpreting
agent (e.g. a human being), capable to map a syntactical representation to a semantic,
meaningful expression. However, there is a strong dissent in this point: While some
are pointing out that e.g. relational database systems process and provide information,
Setzer argues that information cannot be processed by computers at all [36]. Not
delving further into this philosophical dispute, we want for the rest of this article keep to
the definition of information as being an interpreted, meaningful representation of data.

Knowledge, according to Merriam-Webster Online Dictionary, is ” [...] the circum-
stance or condition of apprehending truth or fact through reasoning” and ”the fact or
condition of having information [...]” [13]. Knowledge is purely subjective and directly
connected to the information someone has; the result of internal application and com-
bination of data, information, prior experience and knowledge (apprehension).

Having context is a deciding requirement where knowledge ought to be formed out
of information. When one has context, one can weave the various relationships of infor-
mation. The greater the context, the greater the variety of information that one is able to
pull from [9]. This is also reflected in the definition given by Davenport and Prusak [11],
where knowledge is ”a fluid mix of framed experience, contextual information, values
and expert insight that provides a framework for evaluating and incorporating new ex-
periences and information”.

3.1 Managing Knowledge, Processing Data

From an organizational point of view, the goal of Knowledge Management is to pro-
mote knowledge growth, knowledge communication and knowledge preservation [14].
According to the previous definitions of data, information, and knowledge, knowledge
is personal, subjective, and internalized by the knower. It cannot exist objectively and
detached [23]. Thus, speaking of a knowledge base is a rather imprecise expression in
computer terminology. To be even more strict in the definition, the only system where
knowledge management takes place is the human mind. What needs to be done in
order to meet the goals of Knowledge Management and Knowledge Management Sys-
tems is to link knowledge to articulated information and context, which in turn has to be
mapped to a data representation. This data can then be stored, processed, and trans-
fered electronically within an organization. Once received, data has to be decoded and
can again be interpreted as information. Note that the information that is received by
someone interpreting the data later on is not guaranteed to be consistent to the infor-
mation that was intended to be transfered by the sender. This is where having context
is playing an enabling role. Provided by the KMS, context helps to correctly interpret
the data and to understand its true meaning.

By using and combining this reconstructed information, knowledge can be elicited

3-6 Fall 2007 Workshop

3 DATA, INFORMATION, KNOWLEDGE

by the receiver. Nonaka and Takeuchi [30] try to explain the process as ”Information
is the flow, and knowledge is the stock, [...] knowledge is created by accumulating
information. Thus information is a necessary medium or material for eliciting and con-
structing knowledge”. Thus, organizations and communities that leverage information
technology to optimize the management of their individual knowledge base need to
successfully implement the mapping process from knowledge to articulated informa-
tion to data and vice versa. Information networks can help in this process by putting
data representations in context, which supports data interpretation and re-formation of
knowledge.

3.2 Information Networking

Information networking defines the activity of classifying information resources and
putting these in context by establishing relationships with other resources. By this
means, a semantic link between these sources of information is defined. This link pro-
vides additional context, helping to restore and extract knowledge from the information.
The result is a semantic network of information resources, or a graph of nodes and
edges, representing the individual resources and their relations.

The set of object classes and relation types that are applicable in an information
network is formally appointed by an ontology. Classes and properties that are defined
in this ontology are instantiated in the network, forming a concrete representation of
the abstract definition of types and relations. Through this formal representation of
concepts, instances, and relations, information networks can be automatically queried
to derive and infer knowledge.

In a design context, information networking can be a powerful mechanism to struc-
ture and manage knowledge that is acquired during the design process. Design pro-
cesses can be very heterogeneous. Still, four iterating core activities can be generally
identified on a very abstract level. In brief, these are: a fact finding and observation
phase in which end-users are analyzed through contextual inquiries; a design phase to
creatively unfold innovative opportunities; prototyping for the quick, iterative, and cost-
effective testing of ideas with end-users. This testing makes up the last activity in the
design cycle: evaluation. Figure 1 depicts this very abstract design process.

With this holistic view on the process, knowledge that is generated in these activities
can be likewise grouped into four categories, or knowledge domains:

Contextual Research. Information originated from problem analysis and contextual
end-user research (interviews, observations, contextual inquiries, etc.). Knowl-
edge about user roles, use cases, workflows, user tasks, information flows, etc.,
is derived from these observations and structured by respective concepts. Pre-
vailing items in this domain are e.g. interview notes, pictures, videos, sketches,
or market studies.

Software Specification. The progress of the creative elaboration of specifications for
the software design is captured in sketches, screen designs, or notes during col-
laborative activities such as brainstorming sessions. Emerged design decisions in

Fall 2007 Workshop 3-7

A Resource-Oriented Information Network Platform for Global Design Processes

Understand

Prototype

DesignEvaluate
Design

Knowledge
Base

Figure 1: Core Activities in a Design Process

form of abstract and concrete user interface specifications, data models, or busi-
ness processes are classified and related. Relevant information in this domain is
provided e.g. as requirement specifications, task models, scenario descriptions,
or stories to capture and communicate design ideas.

Prototype Solution. Information about prototypical solutions that emanated from de-
sign activities. For a software solution, this might include wireframes, mock-ups,
code, web-pages, compiled libraries, or executables.

Design Evaluation. Feedback from end-users and other stakeholders, who evaluate
the prototype solutions. The information that is acquired from test sessions is
captured by the design community in order to serve as input for following design
iterations and to refine the problem definition.

4 Resource-oriented Information Networks

Resource-oriented information networks classify the distributed information resources
that are relevant for a specific project or community. They furthermore define im-
plicit semantic relationships between resources that can not explicitly be represented
by the resources itself via hyperlinks. Thus, resource-oriented information networks
are knowledge networks which nodes represent Web resources that are identifiable
through an unique resource identifier (URI). Edges in these networks express a se-
mantic relation between two nodes. Note that the modeled graph is decoupled and
independent from the graph that is spanned by the hyperlinked resources themselves.
The resource-oriented information network is operating on a meta-level, providing a
context-specific view on the Web and the relevant resources. Statements and relations

3-8 Fall 2007 Workshop

4 RESOURCE-ORIENTED INFORMATION NETWORKS

can be defined for arbitrary resources which are not under the control of the knowledge
worker.

A short introduction into the core concepts of resource-orientation and their rela-
tionship to service-oriented systems engineering is meaningful at this point. Service-
oriented architectures (SOA) are today’s architecture of choice. A service is a mech-
anism to provide access to one or more remote capabilities to a service consumer.
Latter may not be known to the service provider and may demonstrate uses of the ser-
vice beyond the scope originally conceived by the provider [29]. If a provider may not
know the actual use of a service, what makes a service a service? What minimum
level of functionality must a service provide to be called a service? Resource orien-
tation [17] solves this dilemma by making every entity explicit, not just services. Such
explicit entity is called a resource. If one can find a noun for an entity, it qualifies as a
potential resource. All restrictions declared for services still hold for resources, i.e. they
have an independent life-cycle and a globally unique reference, their interaction style
is stateless message exchange.

Resource orientation is driven by the fact that application semantics are very ex-
pensive to establish. Thus, in resource orientation semantics are pushed to the pro-
tocol level as much as possible, resulting in a universally comprehensible uniform in-
terface [17]. To give an example, the uniform interface for requests of the Hypertext
Transfer Protocol (HTTP) [16] is described in short:

GET Messages labeled as GET have an empty service request and are guaranteed to
have no substancial effect within the receiver of such request, i.e. they are safe
to call. GET responses are expected to be a description of the current state of
the targeted resource. These attributes allow GET to act as a universal reflection
mechanism, it can be issued without any prior knowledge of the resource. Also,
as GET does not alter the state of the targeted resource, the response can be
cached. This has great benefits to a distributed architecture and both aspects
can be seized without prior semantic knowledge of the targeted resources.

PUT Messages labeled as PUT do cause an effect in the targeted resource, but do so
in an idempotent fashion. An idempotent interaction is defined as replayable, i.e.
the effect of N messages is the same as that of 1. Again, this assumption can be
made without any prior semantic knowledge of the resource envolved.

DELETE Messages labeled as DELETE have the same characteristics as PUT, but
imply a negative connotation. Again, the interpretation is solely the responsibility
of the receiver, i.e. the effect of a DELETE is not necessarily the deletion of a
resource.

POST All other types of messages are labeled as POST, i.e. they cause an effect in
the receiver and they are not safe to replay. This is a catch-all mechanism for
all messages that can not be described by the prior verbs. Without a uniform
interface, all messages would be treated like this, loosing context free reflection,
caching and replayability.

Fall 2007 Workshop 3-9

A Resource-Oriented Information Network Platform for Global Design Processes

Finally, resource orientation proposes content type negotiation, i.e. sender and
receiver can ideally represent and understand the content of a message in several
formats thereby increasing the likelihood of finding a format they can agree on.

All put together, globally unique references, the uniform interface, and content type
negotiation lower the barrier of entry for any participant to the semantic understanding
of the protocol. One of the prime technical reason why the World Wide Web is such a
success.

It is the same success that nowadays leads to a massive increase of information
that is stored and processed online in the Web. Today’s Web application provide the
functionality and comfort that was accredited to desktop applications not too long ago.
Many Web services exist to provide and share a diverse set of media and informa-
tion stored therein, ranging from rich text documents, videos, images, and audio. This
information is easily accessible and referable by everyone due to the concepts of re-
source orientation mentioned above. It is only too natural that communities leverage
this possibilities for their collaborative practices.

4.1 Related Work

Several preceding activities in the area of Web-based knowledge management and
collaboration support have been documented. Considered as closely related to the
approach presented in this article are the following works.

Davies, Duke, and Sure present OntoShare, a knowledge management environ-
ment for virtual communities of practice [12]. The ontology-based knowledge sharing
environment models the interests of community members in the form of a user profile.
Information that is shared by an user is mapped to ontological concepts and transfered
to other users whose profiles predict interest in the classified information. OntoShare
relies on a Java desktop client for its user interface.

OntoWiki [22] targets community-driven ontology engineering and ontology usage
based on Wikis. It allows the collaborative editing of ontology structures and the cre-
ation of instances and relations in a Web-based interface but does not directly imply
external information resources. Also, providing parallel functionality for the design and
application of ontologies is questionable from a user point of view.

SOBOLEO [47] is a tool for social bookmarking and lightweight engineering of on-
tologies. It is specialized and restricted to a simple subset of the Simple Knowledge
Organisation Systems (SKOS) taxonomy. Hence, applicability and semantic expres-
siveness is limited. However, it allows the annotation and tagging of Web resources
based on a structured vocabulary.

Another Wiki-based approach to knowledge management in communities is Platy-
pus Wiki [8]. This tool uses ontology models to represent metadata and relations
between Wiki pages. Thus, it spans a semantic graph of collaboratively editable Web
pages and relationships among them. This graph is restricted to HTML pages gen-
erated by the Platypus Wiki instance. Arbitrary resources outside the scope of the
platform can not be integrated into the graph structure.

The social bookmarking platform del.icio.us (http://del.icio.us) is also closely related
to this work. Its functionality to classify Web resources by means of a community de-

3-10 Fall 2007 Workshop

5 THE D.STORE PLATFORM

fined vocabulary constructed out of freely definable tags is able to provide and share in-
formation based on personal topics and interests. A semantically defined meaning of a
tag-based resource classification however is lacking. Furthermore, the context preser-
vation of a bookmarked resource is weak due to the absence of displayed relationships
to other resources. Therefore, the construction of a semantic resource network is not
possible with del.icio.us.

5 The d.store Platform

This chapter presents the functional concepts of the d.store platform. It aims to provide
services for the collaborative construction of information networks by using arbitrary re-
sources on the Web as nodes, and community-specific ontologies for the classification
and relation of these nodes.

5.1 Data Model

The d.store data model can be split up into two major categories. One part of the model
is statically provided by the platform through a data schema that has been predefined
during design time. Hence, the structure of this part is known beforehand and can be
described here in detail. Its purpose is to define fundamental and universal concepts of
the d.store application and includes concepts and relations for user and rights manage-
ment, project information and general configuration parameters. The second category
of data models contains a non pre-determinable, usage-specific set of descriptions for
concepts and relations for certain domains of expertise. Those data models are utilized
by installed projects, yielding in a 1-to-many relationship between custom data mod-
els and d.store projects: a domain-specific data model can be used by many projects,
whereas each project is related to exactly one domain model. Each usage of a model,
meaning the project-specific instantiation with concrete values and state, is managed
again on individual project level to isolate general concepts from their project-specific
instances.

One of the distinctive characteristics of the d.store platform is that its data model
is being fully described in terms of ontologies. With that, it differentiates from such
semantic applications, which are falling back to relational data models to implement
domain-independent parts of the data structure in a rather traditional approach. The
benefit of a pure ontology-based solution is that the application is instantly able to
reason over the full set of encoded information, including and across project and appli-
cation specific data.

A graphical representation of concepts and relations of the ontologies constituting
the data model is shown in Fig. 2. Ontologies (respectively namespaces) are visualized
by rounded boxes. The d.store ontology is accentuated with bold edges to distinguish
from the second category mentioned above. Concepts (i.e. classes) are represented
as concave boxes inside of the respective namespaces. Properties are shown as la-
beled, directed edges connecting two concepts, indicating the particular value domain
and range (note that for the sake of simplicity, contingent inverse relationships are

Fall 2007 Workshop 3-11

A Resource-Oriented Information Network Platform for Global Design Processes

omitted in the graphic). The dotted edges represent context-specific relations and are
included here for explanatory reasons. They should be read as ’can have’ or ’will have’
relationships.

A detailed explanation of the data model and its entities follows next.

Domain-specific Ontology
Domain-specific Ontology

kStore Ontology
http://hpi-web.de/ns/kstore/0.1/

Project

Person Role

Tag Resource

Domain-specific Ontology

hasRole

contributesTo

tag

ontology

??
?

Domain-specific Ontology
Domain-specific OntologyProject-specific Instances

instances

rdf:type

rdfs:subClassOf

?

Property rdfs:subPropertyOf

Figure 2: d.store Ontologies

5.1.1 The d.store Ontology

A central notion of the platform is the concept of a Project. A project comprises the
collaboration process of people forming a community with the purpose to achieve a
common goal. Hence, Persons (tantamount to users of the system) are related to
projects, indicating that an individual is a member of this community and contributes
data, information or knowledge to the particular project. Each person is assigned to
certain Roles to allow for different permissions and rights for platform interaction.

As pointed out, every project is assigned to a custom data model, that defines con-
cepts and properties for a particular domain of expertise. This domain describes the
thematic area of the project, with the data model providing all relevant entities and
dependencies for team communication and collaboration. These usage-specific con-
cepts and relations are defined by domain-specific ontologies (see next section). This
relationship between a project and a domain ontology is established via the ontology
property. Likewise, the individual instantiation of a domain ontology, i.e. the set of con-
crete individuals and relations identified during the course of a project, is handled in a
project-internal namespace, pointed to by the instances property.

3-12 Fall 2007 Workshop

5 THE D.STORE PLATFORM

Properties and Resources are other first-class entities of the platform. A resource
instance resembles a node in the information network of a project. A property defines a
class of relationships between two resources. The employment of these two concepts
is further discussed in the following section. The platform allows any resource in an
information network to be annotated with a set of community-defined tags, represented
by the Tag concept and property respectively.

5.1.2 Domain-specific Project Ontologies

In terms of sharing knowledge, each community and each project has distinct interests,
which cannot be fully captured during the design of a system. To address this issue, the
d.store platform is designed to work on custom data models that have been defined in-
dependently and externally for individual projects and thematic domains. Those models
are expressed through ontologies and describe the concepts and dependencies that
have relevance for the community from a knowledge sharing perspective. Existing on-
tologies can be re-used and integrated into the data model at any time to be used as a
basis for community collaboration.

Thus, the platform imports and organizes custom, domain-specific ontologies and
assigns them to concrete project instances within the d.store ontology. By this means,
arbitrary concepts and properties defined by custom ontologies are integrated into the
platform and provided to projects. For each project, the community can employ the
structure pointed to via the ontology property and individually instantiate concepts and
define relations.

In order to support re-use and tailoring of existing ontologies, the platform does
not rigidly publish the full set of concept definitions to the project community. In many
cases, only a subset of an ontology is actually required, or some definitions do not
exactly match with existing naming conventions or project peculiarities. To address
the issue, the data model considers only those concepts to be employed in a project
context, which are subclasses of the Resource concept, defined in the d.store ontology.
Instances of those concepts hence become nodes of a projects’ information network.
Using RDFS for example, this subclass relationship can be established through the
subClassOf property, as indicated in Fig. 2. A synonymic mechanism holds true for
properties. In order to mark existing property definitions as utilizable in projects, they
have to be defined subclasses of the provided Property concept.

Custom subclasses of the Resource concept are further annotated with properties
provided by the d.store ontology in order to configure their appearance in the platform.
The label property is used to define a custom d.store text representation for a concept.
Similar, the pluralLabel property terms a plural representation, used by the platform for
a more natural usage of concept names.

On instance level, each individual resource is assigned a unique numeric instan-
ceId, unambiguously identifying it among the resources of a project. The type of a
resource, meaning the concept it represents, is specified through basic ontology prop-
erties such as the RDF type property. Note that a resource instance can be of multi-
ple resource types simultaneously. This instance collection is hold in a project-owned
namespace, referenced to via the instances property.

Fall 2007 Workshop 3-13

A Resource-Oriented Information Network Platform for Global Design Processes

5.2 Platform Services

The d.store platform provides a REST-ful service interface [17] to extract and manip-
ulate information stored in the information networks of the individual projects. In the
following, those services are explained in detail.

5.2.1 Index Resource

The index resource provides the entry point the d.store platform. It is not related to any
project or project ontology and may serve to provide general information about the plat-
form, a list of available projects, or a personalized home page of a user who is logged
in. The index resource is returned when the path of the request is empty or equals ”/in-
dex”. Thus, assuming that the platform server is accessible at http://example.com,
the url to request the index resource can be defined in Backus-Naur-Form (BNF) as:

<index-url> ::= http://example.com ["/index"]

Only GET requests are supported by this URL. Note that from now on, the request
schema and server domain are omitted and only the request path of the service loca-
tions is described using BNF.

5.2.2 Login Resource

In order for the system to identify the user and to grant access rights to particular
project information, users have to log in with a username and a password. This login
functionality is provided by the platform through the resource path

<login-path> ::= "/login"

A GET request for this resource is answered with a HTML form to enter a username
and password. POST ing these values to the same resource will trigger the authen-
tication procedure, which compares the request parameters with the values stored in
the d.store data model. In the case where the user wants to terminate a session the
platform accepts requests to the following resource:

<login-path> ::= "/logoff"

After dispatching a GET request to this resource, the user is no longer identified to the
system and has no access to any restricted resource.

5.2.3 Project Resources

Project resources serve as an abstract or a description of the specific project structure.
A HTML representation of the resource might provide statistical figures, information
about the community involved, and the ontology that defines the project vocabulary,
i.e. concepts and relations of information objects. Resource representations should
include hyperlinks to allow easy navigation to all relevant resources of the project that
make up the specific information network.

A project resource path is of the form

3-14 Fall 2007 Workshop

5 THE D.STORE PLATFORM

<project-path> ::= "/" <project-id>

<project-id> ::= <alphanum>

Hence, projects are accessible by appending an alphanumeric project identifier to the
server address. GET ting these resources results in a representation outlined above.
If the Atom format is requested, this resource can serve as a project-specific Atom
service document, as defined by the Atom Publishing Protocol [21]. If the project ID
can not be resolved by the platform to a known project, a 404 Not Found response [16]
is sent back to the client.

5.2.4 Domain-specific Ontology Concepts

Access to domain-specific concepts (classes) defined in an ontology allows browsing
and determination of the project-related list of individuals in the information network
that belong to certain concept types. Consequently, concept resources are identified
by appending a list of (at least one) concept identifiers to the project resource locator.
The general syntax for concept resources is defined as

<concept-path> ::= "/" <project-id> "/" <concept-list> ["/" <tag-list>]

<concept-list> ::= <concept-id> { "+" <concept-id> }

<tag-list> ::= [<tag-id> { "+" <tag-id> }]

<concept-id> ::= <alphanum>

<tag-id> ::= <alphanum>

The reason for accepting requests for more than one concept lies in the nature of on-
tologies: any individual can be an instance of an arbitrary number of types. Thus, the
appendage of further concepts separated by plus signs acts as a logical AND oper-
ation. The resource located through the resulting path represents all individuals in a
project information network that have all given concepts as direct or indirect type def-
initions. If any of the concepts in the path for a requested resource is unknown and
can not be mapped to class of the project ontology, the platform replies with a 404 Not
Found message. Note that in order to be identifiable via this URL schema, an ontology
class must be a subtype of the Resource concept of the d.store ontology and must
have the label property of the same namespace set to an alphanumeric value match-
ing the requested concept identifier. Additionally, the value of the optional pluralLabel
property can also be used to identify the concept.

An optional list of tags can be appended to the resource path and to the list of
concept identifiers. Thus, this list further acts as a filter for the set of individuals repre-
sented by the requested resource. Identical to the list of concepts, the concatenation
of multiple tags is a logical AND operation. Any node of the knowledge graph that is
not assigned to all the tags in the list is not considered to belong to the set of individ-
uals represented by the requested concept resource. Contrary to the constraints of a
concept list, providing an unknown tag ID in the request of a resource does not result
in an error message.

Two HTTP method types are significant for these resources. The dispatching of
a GET request returns a representation of the set of individual information network

Fall 2007 Workshop 3-15

A Resource-Oriented Information Network Platform for Global Design Processes

nodes of a project (i.e. resources on the Web) that fulfill the constraints encoded in the
request path in terms of concept types and associated tags. This will happen either in
form of an HTML document providing a listing of the meta data and relevant hyperlinks
for each resource, or via an Atom feed that contains entries to represent the set of
individuals.

Sending a POST request to a domain-specific concept resource triggers the affil-
iation of a specified resource to the set of indicated concepts and assigns to it the
list of provided tags. For the information network, this means that a new node is cre-
ated in the project domain and that appropriate relations to concept types and tags
are established for this individual instance. A post request which has been processed
successfully is answered with a 201 Created response message.

5.2.5 Project-specific Instances

The information network of a project is built up by nodes that represent resource on
the Web. The d.store platform provides meta data about this resource and presents
semantic relationships to other nodes in the network. This information is accessible
through instance resources. Instance resources can be accessed using the following
path syntax:

<instance-path> ::= "/" <project-id> "/" <instance-id>

<instance-id> ::= <numeric>

Instance identifiers are project-wide unique numeric identifiers, which are assigned to
a resource when it is added to the network. If a requested ID is not assigned, the
platform responds with a 404 Not Found message.

The representation of an instance resource returned in response of a GET request
contains annotated information and describes the node’s proximity in the information
network, i.e. its context and relationships to other resources. It presents the collab-
oratively defined relations and enables the navigation to linked resources, providing
meaningful information about the connections.

A PUT to a instance resource features an update activity for this node and its re-
lations, according to the message payload sent to the server. Sending a DELETE
message to an instance resource results in the removal of the representing node and
all of its relations in the information network.

5.3 Prototype Implementation

Central parts of d.store platform have been prototyped to test the technical feasibility of
this approach. The Java 2 Platform (Standard Edition) [25] has been chosen to provide
the runtime environment due to the availability and maturity of supporting frameworks.
The prototype implementation demonstrates a deployable Web application that runs
inside an Apache Tomcat [5] server instance. However, any arbitrary Java servlet con-
tainer should comply with the requirements. Figure 3 shows a conceptual sketch of the
prototype architecture.

3-16 Fall 2007 Workshop

5 THE D.STORE PLATFORM

Community

kStore Web Application

RHTTP
PUT/ POST/DELETE

Information
Consumers

Information
Contributors

RHTTP
GET

Web BrowserOffice Suite Modeling
Workplace

HTTP Server

Resource
Manager

RDBMS
(Pers.)

kStore
Graph

Data Access Layer

R

R

Project
Graph

R

ATOM Handler HTML Handler

Index

Knowledge Transfer

R

Figure 3: High-level View on the Architecture

In line with the 3-tier architectural schema, the server application can be described
by dividing it into application layer and data layer. The data layer implements the data
model and provides functionality for convenient access and manipulation to the appli-
cation layer above. To decouple the application logic from concrete data layer imple-
mentations and modeling frameworks, the communication between those two layers is
established via Java interfaces and data access objects. The data model interfaces are
instantiated with concrete implementations using the dependency injection functional-
ity provided by the Spring framework [18, 39]. Data access objects are available for
each concept of the d.store ontology to pass information from and to the data model in
an implementation-independent way.

5.3.1 Data Layer

The data layer of the prototype is built on top of the Jena Semantic Web Frame-
work [26]. The formal foundation for the description of the ontologies is provided by
the OWL Web Ontology Language [42]. More precisely, the sublanguage OWL DL was
chosen to enable the application of sophisticated reasoning algorithms for automatic
inference. Jena provides a programmatic environment for graph models that adhere to
the structure of OWL and includes a rule-based inference engine. Latter one is pow-

Fall 2007 Workshop 3-17

A Resource-Oriented Information Network Platform for Global Design Processes

ered by the open source OWL DL reasoner Pellet [32,38]. The d.store ontologies have
been modeled in OWL using RDF/XML for a textual representation [43], and were im-
ported into the Jena framework. For performance reasons, ontology models are kept
and operated on in main memory during run-time. If required, changes to the models
(e.g. insertion of new relations or individuals) are flushed to a persistent database in
order to prevent data loss. A PostgreSQL [33] database was used for this purpose to
provide this persistency layer and to store the ontology graphs in a uniform schema,
denoting a list of statements in the form of subject-predicate-object triples.

To provide full-text search functionality on the knowledge network, Apache Lucene
[4] is used to index meta data and representation of the resource nodes in the graphs.
Note that none of the technologies, which make up the data layer causes dependen-
cies in the implementation of the application logic that is presented next. Information
between these two layers is transfered using data access objects, representing d.store
concepts such as projects, users, resources, and properties.

5.3.2 Application Layer

As an integral part of the application, the resource manager component in Figure 3
handles all incoming HTTP requests that are sent to the server. When processing
a request, the component starts with a syntactical interpretation of the resource path
that has been requested in order to determine how to handle the request. Based on
the URL syntax definition presented in the previous chapter, the component checks
whether the path segment of the requested URL conforms to one of the valid targets.
If so, the resource manager follows the Model-View-Controller paradigm (MVC) [7] and
instantiates a designated controller, responsible to further handle the request. Until
then, neither the method nor the payload of the HTTP request have been contemplated.

When instantiated by the resource manager, the controllers are initialized with all
the relevant context variables that have been decoded from the requested URL path
segment. For example, the controller type ResourceClassController holds references
to data access objects that aggregate information about the specific project, requested
ontology classes, and the appended tag list. Besides this type of controller, several
other classes have been implemented to handle requests for projects, individual re-
source instances, user login, or the index resource respectively.

The controllers are based on classes provided by the Restlet framework [34], which
provides lightweight functionality to create REST-ful Web services. Similar to ordinary
Java servlets, the process is handled by these controllers through designated method,
which are called by the framework depending on the HTTP request method type. To re-
side with the ResourceClassController as an example, this controller provides meth-
ods to process GET requests (for retrieving a list of instances for a given set of ontology
classes), and POST requests (to assign a new instance to the specific classes).

After having successfully interpreted the syntax of the requested URL and dele-
gated the processing of the request to an appropriate controller method, the payload
of the requests finally gets analyzed. Depending on the encoding format of the trans-
mitted data and the result of a server-driven content negotiation [16], format-specific
handlers are charged with the final generation of the server response. This is done

3-18 Fall 2007 Workshop

6 CONCLUSION

with the support of the data layer interfaces discussed earlier, which by this means
constitute the model component of the MVC pattern. Note that the message body of
GET requests is non-existent, in which case only the content negotiation determines
the appropriate handler.

For this prototype, two request/response formats were in the center of interest: The
Atom Syndication Format [31] (messages of type application/atom+xml), and stan-
dard HTML messages of type application/x-www-form-urlencoded (request) and
text/html (response). The decision to support these two formats is primarily grounded
in their suitability for different usage scenarios. While client-server communication via
HTML is required for human-readable in-browser interaction, Atom is well-qualified to
enable the integration of the services in non-HTML clients such as feed readers, office
suites or modeling environments. Furthermore, the manipulation of resources using
the Atom format is currently in the process of being standardized in form of the Atom
Publishing Protocol [21]. The creation and processing of those Atom feeds is done
using the Apache Abdera [3] implementation, whereas HTML templates are processed
by the FreeMarker template engine [19]. Each of those are therefore forming the basis
of the handler-specific view component of the MVC structure.

While the actual presentation of the response is in the responsibility of the client,
each representation of a requested instance resource contains all relevant information
to describe the context of the resource as described in section 5.2. If the response
message is HTML, the meta information and relations of a requested node are easily
readable in a browser. In case of an Atom response, the information is encoded in
Atom feed entries and is thus interpretable by any compliant client.

6 Conclusion

This report has presented d.store, a resource-oriented collaboration platform to cap-
ture and access community knowledge in domain-specific information networks. The
need for such a platform has been motivated with the increased demand for commu-
nication and collaboration support in the design and implementation of service-based
software systems. In this context, Communities of Design were introduced to describe
the social aspects in global, design-intense processes. With the help of this platform,
explicit community knowledge can be represented through the classification, relation,
and context of arbitrary information resources in distributed hypertext networks such
as the World Wide Web. Information networks have been described as a model to
represent graph structures of classified information resources and their relations in a
community-defined domain. The platform is based on formal representations of ontolo-
gies, defining concepts and relations relevant for a particular project or scenario.

The basic concepts of the platform have been presented and the core services to
deploy semantic knowledge networks were outlined. The data model of the application
is organized in such a way that it can handle multiple projects simultaneously, each
with its own set of vocabulary and instances. This allows for a hosted or centralized
management of multiple project information networks, providing one-stop access to
organizational information and preserved context of several projects.

Fall 2007 Workshop 3-19

A Resource-Oriented Information Network Platform for Global Design Processes

The application of this knowledge management approach in software design com-
munities was taken into special consideration. Current efforts are concentrating on
the design of such a domain ontology for design activities, in particular for prototyping
and end-user evaluation. Prototyping, and evaluation of appropriate user interfaces
and interactions is currently in progress. With this first attempt to deploy resource-
oriented semantic networks in software design processes, new insights into the nature
of information sharing, resource relationships, and used design vocabularies can be
expected.

References
[1] R. L. Ackoff. From data to wisdom. Journal of Applied Systems Analysis, 16:3–9, 1989.

[2] M. Alavi, T. R. Kayworth, and D. E. Leidner. An empirical examination of the influence of organiza-
tional culture on knowledge management practices. Journal of Management Information Systems,
22(3):191–224, 2006.

[3] Apache Abdera. Apache Incubator. http://incubator.apache.org/abdera/, accessed Sep.
26th, 2007.

[4] Apache Lucene. Apache Software Foundation. http://lucene.apache.org/java/docs/index.
html, accessed Sep. 26th, 2007.

[5] Apache Tomcat. Apache Software Foundation. http://tomcat.apache.org/, accessed Sep. 26th,
2007.

[6] J. S. Brown and P. Duguid. Organizational learning and communities-of-practice: Toward a unified
view of working, learning, and innovation. Organization Science, 2(1):40–57, March 1991.

[7] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented Software
Architecture: A System of Patterns, volume 1. Wiley, 1st edition edition, 1996.

[8] S. E. Campanini, P. Castagna, and R. Tazzoli. Platypus Wiki: a Semantic Wiki Wiki Web. In Pro-
ceedings of the 1st Italian Semantic Web Workshop Semantic Web Applications ans Perspectives
(SWAP), pages 1–6, Ancona, Italy, 2004.

[9] D. Clark. Performance, learning, leadership, & knowledge. http://www.nwlink.com/~donclark/.
Accessed Sept. 9, 2007.

[10] H. Cleveland. Information as resource. The Futurist, pages 34–39, 1982.

[11] T. H. Davenport and L. Prusak. Working Knowledge. How Organizations Manage What They Know.
Mcgraw-Hill Professional, 2nd rev. ed. edition, 2000.

[12] J. Davies, A. Duke, and Y. Sure. OntoShare: A Knowledge Management Environment for Vir-
tual Communities of Practice. In K-CAP ’03: Proceedings of the 2nd international conference on
Knowledge capture, pages 20–27, New York, NY, USA, 2003. ACM Press.

[13] Merriam-Webster Online Dictionary. Definition of knowledge. http://www.m-w.com/dictionary/
knowledge. Accessed Sept. 6, 2007.

[14] R. Dieng, O. Corby, A. Giboin, and M. Ribiere. Methods and tools for corporate knowledge man-
agement. Int. Journal of Human-Computer Studies, 51(3):567–598, 1999.

[15] T. S. Eliot. The Rock. Faber & Faber, 1934.

[16] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. Hypertext
Transfer Protocol – HTTP/1.1. Technical report, The Internet Engineering Task Force, 1999. http:
//www.ietf.org/rfc/rfc2616.

3-20 Fall 2007 Workshop

REFERENCES

[17] Roy Thomas Fielding. Architectural styles and the design of network-based software architectures.
PhD thesis, University of California, Irvine, 2000. Chair-Richard N. Taylor.

[18] M. Fowler. Inversion of control containers and the dependency injection pattern. http://
martinfowler.com/articles/injection.html, Accessed Sept. 20th, Jan. 2004.

[19] FreeMarker Java Template Engine Library. http://freemarker.org/, accessed Sep. 26th, 2007.

[20] A. Giddens. Runaway World: How Globalisation Is Reshaping Our Lives. Routledge; Revised
edition, 2002.

[21] J. Gregorio and B. de hOra. The Atom Publishing Protocol (Draft). Technical report, The Internet
Engineering Task Force, 2007. http://tools.ietf.org/wg/atompub/.

[22] M. Hepp, D. Bachlechner, and K. Siorpaes. OntoWiki: community-driven ontology engineering and
ontology usage based on Wikis. In WikiSym ’06: Proceedings of the 2006 international symposium
on Wikis, pages 143–144, New York, NY, USA, 2006. ACM Press.

[23] J. Hey. The Data, Information, Knowledge, Wisdom Chain: The Metaphorical Link. http://ioc.
unesco.org/Oceanteacher/OceanTeacher2/02_InfTchSciCmm/DIKWchain.pdf, December 2004.

[24] E. Hustad. Knowledge networking in global organizations: The transfer of knowledge. In SIGMIS
CPR ’04: Proceedings of the 2004 SIGMIS Conference on Computer Personnel Research, pages
55–64, New York, NY, USA, 2004. ACM Press.

[25] Java Standard Edition. Sun. http://java.sun.com/javase/, Accessed Sept. 26th.

[26] Jena Semantic Web Framework. http://jena.sourceforge.net/, accessed Sep. 26th, 2007.

[27] J. K. Johansson. Global Marketing: Foreign Entry, Local Marketing, & Global Management.
McGraw-Hill / Irwin, Boston, MA, 2000.

[28] U. Kulkarni, S. Ravindran, and R. Freeze. A knowledge management success model: Theoretical
development and empirical validation. J. Manage. Inf. Syst., 23(3):309–347, 06-7.

[29] C. Matthew, Ken Laskey, Francis McCabe, Peter F Brown, and Rebekah Metz. Reference Model
for Service Oriented Architecture 1.0. Technical Report Committee Specification 1, OASIS Open,
2006. http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm.

[30] I. Nonaka and H. Takeuchi. The Knowledge-Creating Company. How Japanese Companies Create
the Dynamics of Innovation. Oxford University Press, 1995.

[31] M. Nottingham and R. Sayre. The Atom Syndication Format, RFC 4287. Technical report, The
Internet Engineering Task Force, 2005. http://www.ietf.org/rfc/rfc4287.

[32] Pellet Open Source OWL DL Reasoner. http://pellet.owldl.com/, accessed Sep. 26th, 2007.

[33] PostgreSQL Open Source Database. http://www.postgresql.org/, accessed Sep. 26th, 2007.

[34] Restlet. Lightweight REST Framework for Java. http://www.restlet.org/, Accessed Sept. 26th.

[35] A. P. Sage and W. B. Rouse. Information systems frontiers in knowledge management. Information
Systems Frontiers, 1(3):205–219, 1999.

[36] V. W. Setzer. Data, Information, Knowledge and Competence. 3rd International Conference on
Information Systems (CONTECSI). http://www.ime.usp.br/~vwsetzer/data-info.html, 2006.

[37] N. Sharma. The origin of DIKW Hierarchy. http://www-personal.si.umich.edu/~nsharma/dikw_
origin.htm, accessed Sep. 6th, 2007, December 2005.

[38] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden Katz. Pellet: A
practical owl-dl reasoner. Web Semant., 5(2):51–53, 2007.

[39] Spring Framework. http://www.springframework.org, accessed Sep. 26th, 2007.

[40] York Sure, Steffen Staab, and Rudi Studer. Methodology for development and employment of
ontology based knowledge management applications. SIGMOD Rec., 31(4):18–23, 2002.

Fall 2007 Workshop 3-21

A Resource-Oriented Information Network Platform for Global Design Processes

[41] G. Toye, M. Cutkosky, L. J. Leifer, J. M. Tenenbaum, and J. Glicksman. SHARE: A Methodology
and Environment for Collaborative Product Development. In Proceedings of the 2nd Workshop on
Enabling Technologies: Infrastructure for Collaborative Enterprises, pages 33–47. IEEE Computer
Society Press, 1993.

[42] W3C. OWL Web Ontology Language. http://www.w3.org/TR/owl-features/, Accessed Sept.
26th.

[43] W3C. RDF/XML Syntax Specification (Revised). http://www.w3.org/TR/rdf-syntax-grammar/,
Accessed Sept. 26th.

[44] E. Wenger. Communities of Practice. Learning as a social system. Systems Thinker, http://www.co-
i-l.com/coil/knowledge-garden/cop/lss.shtml, June 1998.

[45] E. Wenger. Knowledge management as a doughnut: Shaping your knowledge strategy through
communities of practice. Ivey Business Journal, Jan./Feb. 2004.

[46] E. Wenger. Communities of practice - a brief introduction. http://www.ewenger.com/theory/, 2005.

[47] V. Zacharias and S. Braun. SOBOLEO - Social Bookmarking and Lightweight Ontology Engineer-
ing. Workshop on Social and Collaborative Construction of Structured Knowledge (CKC), 16th
International World Wide Web Conference (WWW 2007), 2007.

3-22 Fall 2007 Workshop

Federation in SOA - Secure Service
Invocation across Trust Domains

Michael Menzel

michael.menzel@hpi.uni-potsdam.de

Service Oriented Architectures promise an increased responsiveness to changing
business requirements. The need to communicate with business partners and cus-
tomers demands a seamless integration of services offered by foreign organisations.
To prevent misuse, scalable security solutions are required to establish trust across all
involved business partners. This report outlines approaches and open issues with re-
gard to the composition of services across independent trust domains and introduces
a solution to overcome current limitations.

1 Introduction

SOA facilitates the interoperable and seamless interaction of service consumer and
service provider [14]. With the advent of Web Services as a foundation to realize SOA,
additional standards emerged to secure SOAP-based message exchange [20]. How-
ever, the exchange of WS-Security messages encapsulating simple security creden-
tials is insufficient when multiple trust domains are involved. Each domain may have a
different understanding of security attributes (such as business roles), may support dif-
ferent security mechanisms and may require different information for access control. In
addition, users may have multiple accounts registered with different service providers.
Several solutions for federated identity management such as WS-Federation [17] or
Liberty Alliance [1] have been developed to address these problems.

These specifications provide a good foundation to establish trust and security across
independent domains to enable a seamless interaction between users and services.
However, it is still challenging to manage these security mechanisms in an enterprise
SOA that is based on complex service compositions due to the dynamic negotiation of
security attributes at runtime. Automatic service compositions as well as the modeling
of workflows under security constraints demand the prior evaluation and verification
of security preconditions. The challenges and possible solutions to apply federated
identity specifications are outlined in this report.

The rest of this report is structured as follows. The next section provides an overview
about the basic concepts of federated identity management and introduces the two
most important specifications Liberty Alliance and WS-Federation. Possibilities to ap-
ply these specification particularly with regard to service compositions are introduced
in section 3. The proposed solutions are based on a general security ontology for SOA
that is introduced in the final section.

Fall 2007 Workshop 4-1

Federation in SOA - Secure Service Invocation across Trust Domains

2 Federated Identity Management

2.1 Federation Basics

A digital identity consists of several personal attributes that unambiguously represents
a related subject. This identity information is usually subsumed by an account in a par-
ticular trust domain. Multiple accounts specifying identities in different trust domains
can be assigned to one subject. For instance, one account can be related to the sub-
ject’s company and another to an email provider or an online store. Different personal
attributes are assigned to each account with different privacy requirements and secu-
rity mechanisms. Traditionally, each account is managed independently in each trust
domain. This requires the user to reauthenticate when he tries to access a service in
another domain.

Federated Identity Management provides a solution for these problems by enabling
the propagation of identity information through all trust domains in a federated envi-
ronment to services and other relying parties. The key concept in a federation is the
establishment of trust whereby all parties in a federation are willing to rely on asser-
tions about a set of attributes representing a digital identity. Trust is usually stipulated
by contracts specifying the business relationships and technically realized using se-
curity tokens that contain the assertions. Dedicated components (Identity Providers)
in a federation are able to assert identity attributes that can be promoted to service
providers acting as Relying Parties (RP).

Based on these mechanisms, solutions for federated identity management are de-
signed to support the following features.

2.1.1 Single Sign On

Single Sign on (SSO) prevents that a user has to reauthenticate multiple times. Differ-
ent approaches have been realized in different application domains, for instance portal
solutions, ticketing systems or local solutions. Federated SSO realizes a ticketing sys-
tem and promotes the idea of authentication and authorization as a service. Authen-
tication and authorization mechanisms are decoupled from applications and services
in the different trust domains by describing a set of claims using security assertions,
which can be accepted by all services in the trust domain. For instance, these claims
can represent authentication/authorization decisions, can state permissions such as
’the user is allowed to perform orders that are limited to 10.000 Euro’ or additional in-
formation such as the authentication context. Security tokens are issued by a Security
Token Service (STS) that will also be called Identity Provider (IP), if this token service
supports user authentication. The STS may provide a generic interface for different
token types and can be instructed to generate a specific token for a particular service.
This would allow the STS to encrypt specific attributes if there was a privacy require-
ment. Authenticated user can pass these security tokens to the desired services in
order to gain access. The tokens are signed by the STS and usually include a time
stamp to be valid for a specific period of time.

4-2 Fall 2007 Workshop

2 FEDERATED IDENTITY MANAGEMENT

One possibility to define security assertions is specified by the Security Assertion
Markup Language (SAML) that defines three types of security assertions:

• An authentication assertion states that an individual has proven his identity to an
authentication authority using a particular authentication method.

• An authorization assertion states that an authorization instance has granted or
denied access to a resource for a limited period of time.

• An attribute assertion is a statement signed by an issuing authority that includes
claims about subject attributes such as its role.

In conclusion, SAML facilitates flexible authentication and authorization mechanisms
realized by autonomous STS servers.

Single Log Out Mechanisms are closely related to SSO to enforce that information
related to a session can be removed by the involved service provider.

2.1.2 Propagation of Identity Information

In addition to SSO/SLO, two other approaches can be determined to enable identity
management in a federation.

1. Account Federation - Several accounts can already be assigned to one user in
different trust domains within the federation. Account federation (also called Iden-
tity Federation) enables a subject to link his account in the identity provider do-
main with a configured account at the service provider. When a user tries to
access a resource in another trust domain, a mapping to the identity in the ser-
vice provider’s domain must be performed automatically.

2. Identity Propagation - A subject may own one account solely that is managed by
one identity provider. To access a service in another trust domain it might be nec-
essary to automatically create an account at the relying party. The propagation
of demanded attributes is performed automatically as well.

2.1.3 Attributes and Pseudonyms

Additional information about a subject can be received from an Attribute Service. How-
ever, it will depend on the concrete deployment, if the identity provider queries the
attribute service to put all the information as claims in a single assertion or if the au-
thorization instance in the service domain queries the attribute service to get additional
authorization information.

Another optional service is the Pseudonym Service that is capable to map identities
to facilitate account federation. Such a service enables scenarios in which a mapping
is performed on behalf of the user due to privacy concerns. Another possibility is to
perform the mapping automatically when a token is requested for a target service. In
some scenarios, the target services are allowed to register their own mappings.

Fall 2007 Workshop 4-3

Federation in SOA - Secure Service Invocation across Trust Domains

Random identifiers can also be used as pseudonyms to preserve the user’s privacy
and to prevent a correlation of interactions. In this approach the service has to query
for attributes related to the identifier using the attribute service. Access control can be
established to protect the attributes and finally the user’s privacy.

2.1.4 Deployment

There are various possibilities how components facilitating federated identity manage-
ment can be deployed and configured. For instance, services may need additional
information that has not been included in the security token provided with the request.
In general, two approaches can be distinguished.

The first possibility is to reject all requests that do not contain all required credentials
or attributes. The service can return an error message including a policy constraint that
enables the requester to query all the required credentials to access the service again
(as described in [10]). Altogether, the requester is responsible to present all necessary
information to the service.

An example is shown in Figure 1 that visualizes the interaction between a service
requester, the STS and the resource based on a fictional use case comprising the
companies Fabrikam and Contoso Systems. An employee of the company Fabrikam
wants to bid for a request for proposal. In a first step the federation is established by
exchanging federation documents. When the employee requests the service without
any security tokens, a SOAP-fault is sent back containing a WS-Policy document. The
policy requires a WS-Security token to be present, that is received from the employee’s
local STS and used for the final service invocation.

The second possibility for a service provider to get required information to authorize
a requester is to obtain these attributes from a dedicated Attribute Service in the user
domain as described above. Again, the entities that are allowed to interact with this
service depend on the concrete federation model.

Moreover, there are different ways, how security tokens can be resolved that are
needed to access a desired service. All the steps to resolve the right token can be
done by the client or this work can be delegated to the STS. In the first case, the client
has to ask the resource for a list of trusted STS, which results in a query to one of the
resolved (resource) STS. This STS responds with a list of trusted STS in the clients
domain. Finally the client can query the STS in his domain and the resource’s STS to
get the required token.

The second possibility is to enable the client’s STS to automatically contact the
resource’s STS and to resolve the right security token.

2.2 Solutions for Web Service Federation

Several implementations and standards for Web Service Federation exist, but the two
major approaches are WS-Federation and Liberty Alliance:

4-4 Fall 2007 Workshop

2 FEDERATED IDENTITY MANAGEMENT

Figure 1: WS-Federation

2.2.1 WS-Federation

The Web Service Federation language (WS-Federation) [17] defines a framework to
federate independent trust domains by leveraging WS-* Standards such as WS-Security
[18], WS-Trust [16] and WS-SecureConversation [11]. This specification provides a
model for security token exchange to enable the brokering of identities, the discovery
and retrieval of attributes, and the provision of security claims in a Web Service based
architecture. The token exchange is based on generic Secure Token Services using
WS-Trust, close to the concept introduced above. A meta-data model to describe and
establish a federation is introduced as well [10]. Altogether, WS-Federation is designed
to enable the use of identity attributes across trust domains to facilitate authorization
decisions specified by WS-Policy.

Fall 2007 Workshop 4-5

Federation in SOA - Secure Service Invocation across Trust Domains

2.2.2 Liberty Alliance

Liberty Alliance provides specifications for federated network identity management that
is not just limited to Web Services. This project has been supported by a broad range
of companies (Sun Microsystems, Novell, Intel, Oracle, ...) acting in different business
areas.

The specification defines a basic framework for federation including protocols, bind-
ings and profiles to enable account federation and cross-domain authentication based
on SAML 1.0 (specified in Liberty Identity Federation Foundation (ID-FF)). In addi-
tion, bindings for Web Service Federation are defined (Liberty Identity Web Service
Framework (ID-WSF)) and a set of standard services (Liberty Identity Service Interface
Specifications (IS-SIS)).

In contrast to WS-Federation that can be used to exchange any type of security
token, Liberty Alliance is totally based on SAML. However, this federation specification
has been merged in SAML 2.0.

2.2.3 Comparison

Solutions for federated identity management enable the seamless interaction between
businesses and consumers across organisations. Although the Liberty Alliance and
WS-Federation are quite similar from a conceptual view, their implementation and ap-
plication is different. Microsoft’s solution is focused on the interaction between busi-
nesses and has already been integrated into their products. Active Directory in Win-
dows Server 2008, Card Space and the Windows Communication Foundation support
this specification.

In contrast to WS-Federation, Liberty Alliance is more comprehensive and is par-
ticularly focused on the interaction between users and services. The integration into
SAML 2.0 will promote the adaption to various products, especially in java-based tech-
nologies.

4-6 Fall 2007 Workshop

3 FEDERATION IN SOA

3 Federation in SOA

In the previous section, several ways to deploy security components to enable a secure
federation of Web Services have been introduced. However, a Service Oriented Ar-
chitecture that facilitates dynamic service compositions has special requirements that
have to be considered.

3.1 Security in Service Compositions

Figure 2: Layers in a Service Oriented Architecture

Service compositions in a Service Oriented Architecture are exposed as a service
to the users. The abstract activities in these compositions are mapped to internal or
external services that may have their own security requirements expressed as secu-
rity policies, as shown in Figure 2. Therefore, the security requirement of the service
representing the entire workflow depends on the security policies of the basic services.
However, negotiating policies between the workflow service and the service consumer
would demand the prior calculation of the workflow’s security requirements. A straight-
forward solution is to pass the policy negotiation and to invoke the service providing
just a pseudonym. The pseudonym of the service consumer can be resolved by the
basic services using the clients attribute service, see section 1.3.

However, it is disadvantageous that each service is required to access the user’s
attribute service. Due to privacy requirements the negotiation of required attributes
may be necessary, but the basic services located in the other trust domain may have
no relationship to the client’s domain.

The fact that the query to receive necessary attributes can just be performed at run-
time is another drawback. The designer of the workflow would not be able to verify that
the process can be successfully executed in advance. Dynamic service compositions
may be an additional reason that requires the security preconditions of the workflow in
advance to enable a proper matchmaking. The coexistence of different standards is a

Fall 2007 Workshop 4-7

Federation in SOA - Secure Service Invocation across Trust Domains

further problem, since one trust domain might support WS-Federation while the other
domain supports Liberty Alliance.

3.2 Decoupling federation protocols

The problems related to the integration of different federation technologies can easily
be addressed by the introduction of a federation proxy. The proxy decouples federation
mechanisms and encapsulate federation specific protocols, as shown in Figure 3.

Figure 3: Integration of a Federation Proxy

Moreover, the proxy can act as a STS and attribute service to negotiate between
external basic services and service consumers. In particular, the proxy should sup-
port all interfaces that are defined by the different frameworks such as WS-Trust. The
transformation of security tokens is an important feature, since it might be required to
convert proprietary tokens into SAML tokens that are understood by all services based
on Liberty Alliance. In addition, a proxy can be used to perform all policy negotiations
that might be necessary due to privacy considerations [23].

3.3 Workflow Security Preconditions

A further challenge is the prior determination of security preconditions that must be
fulfilled to execute a workflow successfully. Security preconditions can describe the
security mechanisms that must be supported in order to invoke a service, the required
security tokens and claims that must be provided comprising several attributes. There-
fore, a security ontology is needed to describe security information and their relation-
ships that must be linked with service descriptions. In general, there exists a broad
range of approaches and standards to describe the semantics of services, such as
OWL-S [13], WSMO [12] or WSDL-S [2]. All standards use pre- and postconditions to
enable services to express their requirements.

Based on these conditions several approaches have been described to calculate
the preconditions of semantic workflows. Meyer [15] describes a formal workflow model

4-8 Fall 2007 Workshop

3 FEDERATION IN SOA

P1

0 t1

P2

t2

t3

t4

P3

P4

t5 P5

Sec. Precond.: A

Sec. Precond.: B

Sec. Precond.: B

Sec. Precond.: C

Sec. Precond.: D

Figure 4: Calculating Security Preconditions

based on petri nets to calculate the preconditions and the effects. Security in dynamic
service compositions has been introduced by Carminati, Ferrari and Hung [5]. Their
work is focused on semantic matchmaking under security constraints to guarantee a
selection of secured services that work in a particular service composition. So far, there
is no work that investigates possibilities to calculate security preconditions. However,
the approaches presented in former research work about the calculation of precondi-
tions in semantic workflows provide a suitable foundation for the determination of work-
flow security requirements. An example workflow is shown in Figure 4. Based on the
requirements of a single service, the requirements of the workflow can be calculated
as A ∧B ∧ (C ∨D).

Fall 2007 Workshop 4-9

Federation in SOA - Secure Service Invocation across Trust Domains

4 Security Ontology

A Security ontology is needed to express the security requirements of services and
the relationship among these requirements. Several approaches have been described
to define security in semantic web and Web Services [7, 9], but these work is based
on simple security annotations for services. A comprehensive model that describes all
security aspects including the relationship to policy definitions is missing. This section
introduces such a model to identify the relationship between security requirements and
specific attributes. This model has been defined in cooperation with Christian Wolter
(SAP Research).

4.1 Specifying Security Goals

The abstract concept of security can be defined precisely by specifying a set of security
goals [19]. Although these goals can be further specialized, subdivided or combined,
we will focus on the basic goals in this paper solely:

1. Confidentiality provides protection against the unauthorized notice of stored, pro-
cessed, or transferred information.

2. Integrity ensures the properness (intactness, correctness, and completeness) of
information (data integrity) and the correct functioning of a system (system in-
tegrity) respectively. Transferred, processed, or stored data must not be modified
with proper rights and - in economic terms - modifications must correspond to
business values and expectations. A system must act in an expected and proper
way at each point in time.

3. Authentication ensures the credibility of information - such as a claimed identity -
by confirming this information as authentic.

4. Authorization is the process of granting rights to participants to perform an inter-
action, for instance to access a resource.

5. Traceability and Auditing provide verifiability regarding all performed actions in
an information processing system. This can be related to simple logging mech-
anisms, but also to monitoring as real-time auditing e.g. in intrusion detection
systems.

6. Availability ensures that data, resources and services, which are needed for the
proper functioning of a system, are available at each point in time regarding the
requested quality of service.

These goals can be related to various entities of a process-aware information sys-
tem. These relations among security goals and affected entities are typically described
by Constraints that are composed in a security Policy as indicated by Figure 5.

The basic entity in such a model is an Object. We define an object as an entity that
is capable to participate in an Interaction with other objects. This interaction always

4-10 Fall 2007 Workshop

4 SECURITY ONTOLOGY

Security
GoalConfidentiality

Integrity

Authentication

Availability

Audit

Authorization

Policy

1..*1

ObjectAttribute

Constraint

D
ef

in
es

Interaction

Effect

Security
MechanismGuarantees

1..* 1..*
Fullfills

1..*
1

1..* 1..*
0..*

0..*

1..*

0..*

0..*

0..*

1
1..*

Supports

Has

0..*
0..*

0..*

1..*

Relates to

Relates to

Specifies

0..*

0..*

Is a

Figure 5: Security Policy Model

leads to an Effect, which can comprise the provision of information or the change of
state in a system. The effect can, but does not need to be related to the object that
initiated the interaction. For example, one object could be an application and another
object could be a resource, such as a file. The process of accessing this file would be
the interaction resulting in the effect that data in the file is changed or some information
is returned to the application.

Each object is related to a set of attributes describing its meta information. For in-
stance, if the object represents a user, attributes, such as name, email address, age,
etc. will be assigned. Altogether, policy constraints always refer to a set of objects, a
particular set of objects’ attributes, and optionally a set of interactions and effects that
are related to the objects. Based on these relations, specific constraints for particular
security goals can be defined. These specific constraints define requirements for asso-
ciations between the entities with regard to the particular security goals. In the course
of this paper four of six basic security goals are modeled and described subsequently.
Namely the security goals authorization, authentication, integrity, and confidentiality.

As shown in Figure 5, constraints specify security mechanisms that enforce or guar-
antee the defined constraint. For instance, a confidentiality policy usually specifies an
algorithm (e.g. DES) that must be used to guarantee this requirement.

4.2 Security Mechanisms

In our model a Security Mechanism is designed to characterise techniques that are
used to enforce security constraints (cf. Figure 6). In general, these mechanisms can
be classified as algorithms (e.g. DES), protocols (e.g. WS-Security) or syntax (e.g.
XML). The dependencies between these entities and their relationship to Interaction
and Effect are not visualized in Figure 6. However, it provides the foundation to specify
a comprehensive ontology for security mechanisms.

Besides security mechanisms, a Credential represents another important entity in
our model that subsumes evidences used by security mechanisms. A detailed clas-
sification of security credentials was presented by Denker et al. [8]. In this work they

Fall 2007 Workshop 4-11

Federation in SOA - Secure Service Invocation across Trust Domains

introduced an ontology that divides credentials in simple credentials (e.g. key, login,
certificate) and composed credentials (e.g. Smart Card, SAML, WS-Security Token)
that contain a set of simple credentials.Security Policy

Security
ObjectiveConfidentiality

Integrity

Authentication

Availability

Audit

Authorization

Policy

1..*1

ObjectAttribute

Constraint

D
ef

in
es

Interaction

Effect

Authorization Constraint Authentication Constraint

Subject

Claim

Subject
Attribute

AttributeObject

Integrity Constraint

Interaction Effect

Confidentiality Constraint

Constraint

Audit Constraint

Interaction

Object

Availability Constraint

Security Mechanisms

Security
Mechanism

Protocol

1 1…*
use

1

1…*
use

Algorithm

Encypted
Attibute

Credential

Security
MechanismGuarantees

1..* 1..*

Constraint AssuranceConstraint

1 1

Privilege

AuditConstraint

 1..*

1..*

AvailabilityConstraint

Object Interaction1..* 1

Fullfills

1..*
1

Object

Interaction

Effect

ObjectAttribute

1..* 1..*
0..*

0..*

1..*

0..*

0..*

0..*

1
1..*

Supports

Has

0..*
0..*

0..*

1..*

Relates to

1..*

0..*

1

0..*

0..*1..*
1

0..*

1

0..*

1

0..*

0..* 0..*
Supports

Shared
Secred

1
0..*

1 2..*

0..* 1..*
restrict

0..*

1..*

0..*

0..*
supports

0..*

1..* relates to

1..*

0..*

1

0..*

1..*

0..*

1..*

0..*

Relates to

1..* 1..*

Relates to

Specifies Specifies

Relates to

specify

relates to

Logging 1

specify

relates toCredential

Specifies

1..*
0..*Relates to

Specifies

0..*

0..*

Attributes 1 1

Credential

Composed
Credential

Simple
Credential

1..* 1

Is a
Is aIs a

Is a Is a

Is a

Is a

Is a

Permission

SubjectResourceOperation

Resource
Attribute

Subject
Attribute

0..*

1..*

0..*

1..*

Interaction

Attribute

Object

Environment
Attribute

Constraint

1
0..*

1
0..*

1
0..*

Environment

1

1

1..*

0..*

Specifies

1..*

1..*

Relates to

Is a

Is aIs a

Is a

Describes

Syntax

Security
Mechanism

Protocol

1 1…*
use

Algorithm

Credential

Composed
Credential

Simple
Credential

1..* 1

Syntax

InteractionObject

1..* 1..* 1..* 1..*
Use specify

1

1..*

1..*

1..*

1..*

1..* 1..*

1..*
Executes follow

presumes
define

Figure 6: Security Mechanisms Model

4.3 Security Constraint Models

Based on the given security policy model (cf. Figure 5), we define specific types of
Constraints, each guaranteeing one of the security goals listed above. Due to space
limitations, the models introduced in this section are related to the security goals Autho-
rization, Authentication, Integrity, and Confidentiality. Boxes with a dashed border refer
to entities defined in the aforementioned policy and security mechanism models. Each
constraint is related to a specific set of entities and define rules restricting particular
associations between those entities. These rules must be enforced by security mech-
anisms and are visualized in our model using dashed arrows pointing to the restricted
associations.

4.3.1 Authorization Constraint

A broad range of access control models have been developed in the last decades,
defining access control constraints based on particular security information such as
the user’s role (RBAC [21]) or the user’s team affiliation (TBAC [22]). Since all these
pieces of information can be considered as attributes of involved objects, the attribute-
based access control model (ABAC) can be seen as the most comprehensive access
control model, as described in [4].

4-12 Fall 2007 Workshop

4 SECURITY ONTOLOGY

Security Policy

Security
ObjectiveConfidentiality

Integrity

Authentication

Availability

Audit

Authorization

Policy

1..*1

ObjectAttribute

Constraint

D
ef

in
es

Interaction

Effect

Authorization Constraint Authentication Constraint

Subject

Claim

Subject
Attribute

AttributeObject

Integrity Constraint

Interaction Effect

Confidentiality Constraint

Constraint

Audit Constraint

Interaction

Object

Availability Constraint

Security Mechanisms

Security
Mechanism

Security
Protocol

1 1…*
use

1

1…*
use

Security
Algorithm

Encypted
Attibute

Credential

Security
MechanismGurantees

1..* 1..*

Constraint AssuranceConstraint

1 1

Privilege

AuditConstraint

 1..*

1..*

AvailabilityConstraint

Object Interaction1..* 1

Fullfills

Security
Mechanism

1..*
1

Object

Interaction

Effect

ObjectAttribute

1..* 1..*
0..*

0..*

1..*

0..*

0..*

0..*

1
1..*

Supports

Has

0..*
0..*

0..*

1..*

Relates to

1..*

0..*

1

0..*

0..*1..*
1

0..*

1

0..*

1

0..*

0..* 0..*
Supports

Shared
Secred

1
0..*

1 2..*

0..* 1..*
restrict

0..*

1..*

0..*

0..*
supports

0..*

1..* relates to

1..*

0..*

1

0..*

1..*

0..*

1..*

0..*

Relates to

1..* 1..*

Relates to

Specifies Specifies

Relates to

specify

relates to

Logging 1

specify

relates toCredential

Specifies

1..*
0..*Relates to

Specifies

0..*

0..*

Attributes 1 1

Hardware
Mechanism

Credential

Composed
Credential

Simple
Credential

1..* 1

Is a
Is aIs a

Is a Is a

Is a

Is a

Is a

Permission

SubjectResourceOperation

Resource
Attribute

Subject
Attribute

0..*

1..*

0..*

1..*

Interaction

Attribute

Object

Environment
Attribute

Constraint

1
0..*

1
0..*

1
0..*

Environment

1

1

1..*

0..*

Specifies

1..*

1..*

Relates to

Is a

Is aIs a

Is a

Describes

Figure 7: Authorization Constraint Model

In general, there are three entities involved in an access control decision: The sub-
ject that wants to access a resource, the resource itself, and an operation that can be
performed on this resource. Subject and resource map to objects in our basic con-
straint model, while operation specifies the interaction. According to ABAC, the access
control decision is made based on subject attributes, resource attributes, and attributes
of the resource’s environment. Which attributes must be present, is specified by the
policy constraint called Permission (cf. Figure 7).

4.3.2 Authentication Constraint

Authentication enables the credibility of information and is guaranteed by a credential
that can be verified using security mechanisms. In our model, information is repre-
sented by a set of attributes and can be authenticated by one or more credentials.
Since the credential must be assigned to a subject, it is a subject attribute as well. As
shown in Figure 8, the authentication constraint Claim specifies the relationship be-
tween subject attributes and a set of credentials. For instance, the digital identity of a
user can be authenticated by providing a name and password (i.e., the user’s creden-
tial).

Security Policy

Security
ObjectiveConfidentiality

Integrity

Authentication

Availability

Audit

Authorization

Policy

1..*1

ObjectAttribute

Constraint

D
ef

in
es

Interaction

Effect

Authorization Constraint Authentication Constraint

Subject

Claim

Subject
Attribute

AttributeObject

Integrity Constraint

Interaction Effect

Confidentiality Constraint

Constraint

Audit Constraint

Interaction

Object

Availability Constraint

Security Mechanisms

Security
Mechanism

Security
Protocol

1 1…*
use

1

1…*
use

Security
Algorithm

Encypted
Attibute

Credential

Security
MechanismGurantees

1..* 1..*

Constraint AssuranceConstraint

1 1

Privilege

AuditConstraint

 1..*

1..*

AvailabilityConstraint

Object Interaction1..* 1

Fullfills

Security
Mechanism

1..*
1

Object

Interaction

Effect

ObjectAttribute

1..* 1..*
0..*

0..*

1..*

0..*

0..*

0..*

1
1..*

Supports

Has

0..*
0..*

0..*

1..*

Relates to

1..*

0..*

1

0..*

0..*1..*
1

0..*

1

0..*

1

0..*

0..* 0..*
Supports

Shared
Secred

1
0..*

1 2..*

0..* 1..*
restrict

0..*

1..*

0..*

0..*
supports

0..*

1..* relates to

1..*

0..*

1

0..*

1..*

0..*

1..*

0..*

Relates to

1..* 1..*

Relates to

Specifies Specifies

Relates to

specify

relates to

Logging 1

specify

relates toCredential

Specifies

1..*
0..*Relates to

Specifies

0..*

0..*

Attributes 1 1

Hardware
Mechanism

Credential

Composed
Credential

Simple
Credential

1..* 1

Is a
Is aIs a

Is a Is a

Is a

Is a

Is a

Permission

SubjectResourceOperation

Resource
Attribute

Subject
Attribute

0..*

1..*

0..*

1..*

Interaction

Attribute

Object

Environment
Attribute

Constraint

1
0..*

1
0..*

1
0..*

Environment

1

1

1..*

0..*

Specifies

1..*

1..*

Relates to

Is a

Is aIs a

Is a

Describes Figure 8: Authentication Constraint Model

Fall 2007 Workshop 4-13

Federation in SOA - Secure Service Invocation across Trust Domains

4.3.3 Integrity Constraint

Integrity ensures that a system must act in an expected way at each point in time re-
garding transferred, processed, or stored data and the functioning of the whole system
itself. In other words, an interaction must have exactly one effect that is specified by the
integrity constraint. Such a constraint is called an Assurance in our model (cf. Figure
9). The security mechanisms that need to be defined in the assurance to guarantee the
integrity depend on the concrete application. For example, WS-Policy [6] can be used
as a policy language, specifying WS-Security [18] assurances to enforce the integrity
of SOAP communication.

Security Policy

Security
ObjectiveConfidentiality

Integrity

Authentication

Availability

Audit

Authorization

Policy

1..*1

ObjectAttribute

Constraint

D
ef

in
es

Interaction

Effect

Authorization Constraint Authentication Constraint

Subject

Claim

Subject
Attribute

AttributeObject

Integrity Constraint

Interaction Effect

Confidentiality Constraint

Constraint

Audit Constraint

Interaction

Object

Availability Constraint

Security Mechanisms

Security
Mechanism

Security
Protocol

1 1…*
use

1

1…*
use

Security
Algorithm

Encypted
Attibute

Credential

Security
MechanismGuarantees

1..* 1..*

Constraint AssuranceConstraint

1 1

Privilege

AuditConstraint

 1..*

1..*

AvailabilityConstraint

Object Interaction1..* 1

Fullfills

Security
Mechanism

1..*
1

Object

Interaction

Effect

ObjectAttribute

1..* 1..*
0..*

0..*

1..*

0..*

0..*

0..*

1
1..*

Supports

Has

0..*
0..*

0..*

1..*

Relates to

1..*

0..*

1

0..*

0..*1..*
1

0..*

1

0..*

1

0..*

0..* 0..*
Supports

Shared
Secred

1
0..*

1 2..*

0..* 1..*
restrict

0..*

1..*

0..*

0..*
supports

0..*

1..* relates to

1..*

0..*

1

0..*

1..*

0..*

1..*

0..*

Relates to

1..* 1..*

Relates to

Specifies Specifies

Relates to

specify

relates to

Logging 1

specify

relates toCredential

Specifies

1..*
0..*Relates to

Specifies

0..*

0..*

Attributes 1 1

Hardware
Mechanism

Credential

Composed
Credential

Simple
Credential

1..* 1

Is a
Is aIs a

Is a Is a

Is a

Is a

Is a

Permission

SubjectResourceOperation

Resource
Attribute

Subject
Attribute

0..*

1..*

0..*

1..*

Interaction

Attribute

Object

Environment
Attribute

Constraint

1
0..*

1
0..*

1
0..*

Environment

1

1

1..*

0..*

Specifies

1..*

1..*

Relates to

Is a

Is aIs a

Is a

Describes

Figure 9: Integrity Constraint Model

4.3.4 Confidentiality Constraint

Since confidentiality ensures that authorized subjects are able to notice stored, pro-
cessed, or transferred information solely, it is similar to authorization, but more specific.
The access to the information depends on a credential, the Shared Secret, which is
shared by all authorized subjects, as shown in Figure 10. Confidentiality is guaranteed
by a security mechanism using the shared secret. In our model, the confidentiality
constraint, named as Privilege, specifies the relationship between subject and shared
secret.

Security Policy

Security
ObjectiveConfidentiality

Integrity

Authentication

Availability

Audit

Authorization

Policy

1..*1

ObjectAttribute

Constraint

D
ef

in
es

Interaction

Effect

Authorization Constraint Authentication Constraint

Subject

Claim

Subject
Attribute

AttributeObject

Integrity Constraint

Interaction Effect

Confidentiality Constraint

Constraint

Audit Constraint

Interaction

Object

Availability Constraint

Security Mechanisms

Security
Mechanism

Security
Protocol

1 1…*
use

1

1…*
use

Security
Algorithm

Encypted
Attibute

Credential

Security
MechanismGurantees

1..* 1..*

Constraint AssuranceConstraint

1 1

Privilege

AuditConstraint

 1..*

1..*

AvailabilityConstraint

Object Interaction1..* 1

Fullfills

Security
Mechanism

1..*
1

Object

Interaction

Effect

ObjectAttribute

1..* 1..*
0..*

0..*

1..*

0..*

0..*

0..*

1
1..*

Supports

Has

0..*
0..*

0..*

1..*

Relates to

1..*

0..*

1

0..*

0..*1..*
1

0..*

1

0..*

1

0..*

0..* 0..*
Supports

Shared
Secred

1
0..*

1 2..*

0..* 1..*
restrict

0..*

1..*

0..*

0..*
supports

0..*

1..* relates to

1..*

0..*

1

0..*

1..*

0..*

1..*

0..*

Relates to

1..* 1..*

Relates to

Specifies Specifies

Relates to

specify

relates to

Logging 1

specify

relates toCredential

Specifies

1..*
0..*Relates to

Specifies

0..*

0..*

Attributes 1 1

Hardware
Mechanism

Credential

Composed
Credential

Simple
Credential

1..* 1

Is a
Is aIs a

Is a Is a

Is a

Is a

Is a

Permission

SubjectResourceOperation

Resource
Attribute

Subject
Attribute

0..*

1..*

0..*

1..*

Interaction

Attribute

Object

Environment
Attribute

Constraint

1
0..*

1
0..*

1
0..*

Environment

1

1

1..*

0..*

Specifies

1..*

1..*

Relates to

Is a

Is aIs a

Is a

Describes

Figure 10: Confidentiality Constraint Model

4-14 Fall 2007 Workshop

5 CONCLUSION

5 Conclusion

The provision and exchange of identity information represents an essential aspect in
an federated environment that comprise multiple independent trust domains. Several
solutions for identity management already exist that are designed to be used with Web
Services. However, it is challenging to apply these solutions in an SOA since current
approaches do not consider security aspects at the business process level. The diffi-
culty to manage security solutions independently, complicate the seamless integration
of services and result in an increased error-proneness. The design of service compo-
sitions under security constraints and the enabling of automatic service compositions
require a generic security model. In this report, a model has been introduced that spec-
ifies security goals, policies, and constraints based on a set of basic entities, such as
Objects, Attributes, Interactions, and Effects. The strength of our model is that these
entities can be mapped to an arbitrary application domain. For instance, our model
can represent security in an operating system, database system, or service-oriented
architecture.

This model constitutes the foundation to express security aspects at the business
process level. Existing process models are extensible enough to provide sets of at-
tributes and objects that can be mapped to our general security model. Finally, this
model provide an ontology to calculate the security preconditions of a workflow, which
can be used for policy negotiation with clients from other trust domains. This negotia-
tion can be performed by a federation proxy that encapsulates the federation specific
mechanisms.

5.1 Future Work

The introduced security model is a promising approach to represent security in differ-
ent application domains. The relationship between our security model and the OASIS
reference model for SOA [14] must be investigated. Since the definition of the SOA
reference model is based on the concept of interaction and effects, a straightforward
application should be possible. Based on the security model it is necessary to spec-
ify a formalized model to define the mapping between the business process layer and
our security model to guarantee syntactical and semantical correct security policy im-
plementations. Therefore, the projection to concrete policy languages (i.e. WS-Policy
or XACML [3]) has to be defined and it must be proofed that our model can be used
to translate concrete security policy implementations to semantic security information
used by the business layers. Finally, the negotiation mechanisms in the proposed fed-
erated identity architecture need to be adapted to use semantic descriptions. These
topics will be addressed by future work.

Fall 2007 Workshop 4-15

Federation in SOA - Secure Service Invocation across Trust Domains

———————————————————-

References

[1] The liberty alliance project page. Online, 2007.

[2] Rama Akkiraju, Joel Farrell, John Miller, Meenakshi Nagarajan, Marc-Thomas
Schmidt, Amit Sheth, and Kunal Verma. Web service semantics - wsdl-s. Public
Draft Specification, November 2007.

[3] Anne Anderson. Core and hierarchical role based access control (RBAC) profile
of XACML v2.0. OASIS Standard, 2005.

[4] Hai bo Shen and Fan Hong. An attribute-based access control model for web
services. In pdcat, pages 74–79. IEEE Computer Society, 2006.

[5] Barbara Carminati, Elena Ferrari, and Patrick C. K. Hung. Security conscious web
service composition. icws, 0:489–496, 2006.

[6] Giovanni Della-Libera, Martin Gudgin, and et all. Web services security policy
language (ws-securitypolicy). Public Draft Specification, Juli 2005.

[7] Grit Denker, Lalana Kagal, Tim Finin, Massimo Paolucci, and Katia Sycara. Se-
curity for daml web services: Annotation and matchmaking. The SemanticWeb -
ISWC 2003, 2870/2003:335–350, 2005.

[8] Grit Denker, Lalana Kagal, Timothy W. Finin, Massimo Paolucci, and Katia P.
Sycara. Security for daml web services: Annotation and matchmaking. In In-
ternational Semantic Web Conference, pages 335–350, 2003.

[9] Grit Denker, Son Nguyen, and Andrew Ton. Owl-s semantics of security web
services: a case study. ESWS 2004, LNCS 3053:240–253, 2004.

[10] Marc Goodner, Maryann Hondo, Anthony Nadalin, Michael McIntosh, and Don
Schmidt. Understanding WS-Federation. Microsoft and IBM, 2007 May.

[11] Martin Gudgin, Anthony Nadalin, and et al. Web services secure conversation
language. public draft Specification, February 2005.

[12] Holger Lausen, Axel Polleres, Dumitru Roman, and et al. Web service modeling
ontology (wsmo). OASIS public draft specification, June 2005.

[13] David Martin, Massimo Paolucci, Sheila McIlraith, Mark Burstein, Drew McDer-
mott, Deborah McGuinness, Bijan Parsia, Terry Payne, Marta Sabou, Monika
Solanki, Naveen Srinivasan, and Katia Sycara. Bringing semantics to web ser-
vices: The owl-s approach. SWSWPC 2004, LNCS 3387:26–42, 2005.

4-16 Fall 2007 Workshop

REFERENCES

[14] Francis McCabe Peter Brown Rebekah Metz Matthew MacKenzie, Ken Laskey.
Reference model for service oriented architecture 1.0. OASIS Committee Specifi-
cation, February 2006.

[15] Harald Meyer. On the semantics of service compositions. In Proceedings of The
First International Conference on Web Reasoning and Rule Systems (RR 2007),
2007.

[16] Anthony Nadalin, Marc Goodner, Martin Gudgin, Abbie Barbir, and Hans
Granqvist. Ws-trust 1.3. OASIS Standard, March 2007.

[17] Anthony Nadalin, Chris Kaler, and et al. Web services federation language (ws-
federation) v 1.1. Specification public draft, December 2006.

[18] Anthony Nadalin, Chris Kaler, Ronald Monzillo, and Phillip Hallam-Baker. Web
services security: Soap message security 1.1. OASIS Standard Specification,
February 2006.

[19] Charles P. Pfleeger and Shari Lawrence Pfleeger. Security in Computing. Prentice
Hall Professional Technical Reference, 2002.

[20] Jothy Rosenberg and David Remy. Securing Web Services with WS-Security: De-
mystifying WS-Security, WS-Policy, SAML, XML Signature, and XML Encryption.
Pearson Higher Education, 2004.

[21] Ravi S. Sandhu and Edward J. Coyne. Role-based access control models. IEEE
Computer, 29:38–47, 1996.

[22] Roshan K. Thomas and Ravi S. Sandhu. Task-based authorization controls (tbac):
A family of models for active and enterprise-oriented autorization management. In
DBSec, pages 166–181, 1997.

[23] William H. Winsborough, Kent E. Seamons, and Vicki E. Jones. Automated trust
negotiation. discex, 01:0088, 2000.

Fall 2007 Workshop 4-17

KStruct: A Language for Kernel Runtime
Inspection

Alexander Schmidt

alexander.schmidt@hpi.uni-potsdam.de

Modern operating systems are complex. The behavior of many resource manage-
ment algorithms implemented in the kernel (memory management, working set man-
agement, CPU scheduling, etc.) depends on a multitude of data structures making up
the state of the operating system kernel. Although this state is crucial to the perfor-
mance of user applications, typically it is hidden from the application developer and
system administrator

Within this paper, we present KStruct, a domain-specific language that allows for
inspecting kernel data structures while the operating system is running. KStruct al-
lows the specification of kernel data structures which is used by a code generator that
generates a device driver that accesses these structures. We further demonstrate how
consistent access to the kernel data is possible and present the KStruct framework that
facilitates the generated device driver for accessing kernel data via a Web browser; this
provides the opportunity for integrating other types of information, like documentation
or source code, into the rendered contents of kernel data.

Although this paper addresses the Windows implementation of KStruct, the con-
cepts presented herein are more general and applicable to a wide range of current
operating systems.

1 Introduction

When a software developer tries to learn how an existing software system works, var-
ious sources of information might be available: typically, there is product documenta-
tion listing the functions of the system and their intended behavior, and possibly design
documents explaining the architecture and the rationale for that architecture. In some
cases, the source code of the system might be available for inspection. Also, it is typi-
cally possible to run the software in a black-box fashion, to see how it reacts to certain
inputs.

For the detailed understanding of the system, developers sometimes prefer white-
box inspection, e.g., by running the system in a debugger. Using the debugger facilities
such as break points and data display, the developer can learn what actual values
certain variables take, and can then correlate that knowledge to the source code.

In the case of operating systems, that approach is limited. While some operating
systems, and Microsoft Windows in particular, do support debugging of the operating
system kernel, such debugging necessarily influences significantly the overall behavior

Fall 2007 Workshop 5-1

KStruct: A Language for Kernel Runtime Inspection

of the system. In particular, as the system is designed to react to all kinds of events in a
timely manner, stopping execution of the system might cause failures which otherwise
would not occur (e.g., operations, in particular network interactions, may time-out when
the system runs under debugger control). In addition, using kernel debuggers is often
a tedious task requiring a already deep understanding of the system as even “simple”
interactions may involve large amounts of kernel code.

We present a supplementary approach to studying the behavior of a complex sys-
tem like an operating system kernel, one which focuses on the data structures only. In
our system, inspection of kernel data structures is possible in a running system, using
a standard web browser. For example, to find out the list of all processes in the sys-
tem, the user points the web browser to http://<machine>/Processes. This brings up
a page (Figure 1) giving a list of all addresses, allowing the user then to navigate to
http://<machine>/Processes/81EB5D88. That page will display all information about
the process (specifically, all fields of the EPROCESS structure). Some of these are point-
ers to other data structures, which again can be inspected by following a hyperlink.

Figure 1: Screenshot of a process list.

In order to get such a display of a kernel data structure like the list of active pro-
cesses in the system, meta-data is required to gather the desired data. As the main
contribution of this paper, we present KStruct , a language for defining data structure
specific meta-data which is used by a code generator, KGen , to generate a device
driver capable of locating and accessing the desired data structure and to generate
a rendering library that is capable to render contents of a particular data structure to
some user interface.

In the remainder of the paper, we first present programming idioms that we identified
in the Windows kernel and their representation in KStruct, second, we present the
grammar of the KStruct language, and third, we present the KStruct framework the
facilitates the KGen generated device driver and the rendering library.

5-2 Fall 2007 Workshop

2 THE KSTRUCT LANGUAGE

2 The KStruct Language

The goal of this language is to allow the fully automatic generation of both a kernel-
mode device driver and of a user-mode helper library to access arbitrary data structures
in the kernel.

Using this language, a specification of kernel data structures can be made that
allows a legible rendering of the contents of a given structure at some point in time.
To really interpret the structure, the meaning of the various fields must be investigated.
In many cases, this investigation just requires inspection of the declaration of the data
structure in the kernel. However, for advanced data structures, additional inspection
of kernel implementation code must be performed, to clarify the meaning of certain
integer values, or to understand how polymorphic pointers need to be interpreted.

For such an approach, the language needs to support constructs to denote the
following information:

• For a record-based data structure: what data fields are present, and what names
and types do they have?

• For a variable-sized container structure: what is the element type, and how can
the complete collection of elements be determined?

• For a primitive value: how should it be rendered in the user interface?

• For the entire state of kernel structures: how can graphs of data structures be
traversed, and what are the roots of such traversal?

• How can access to the data be achieved in a consistent manner?

The specification above is deliberately very broad. We found that when studying
a specific operating system kernel (such as the Windows kernel) these requirements
translate into more precise concepts, as the kernel will have a set of reoccurring pro-
gramming idioms that allow programmers to better understand the kernel source code.
Relying on these idioms also allows to retrieve information from the kernel automati-
cally.

In the following sections, we will present these idioms and how they are expressed
in terms of the KStruct language.

2.1 Structures

On a first inspection, we find that many data structures in the kernel are defined using
the C language, so using the C struct definitions is a natural choice for defining the
layout of data. Indeed, the KStruct language is an extension to the subset of C which
allows the definition of structs and enums. We will motivate the usage of KStruct in the
context of the EPROCESS data structure that denotes a process control block in Windows.
The specification is shown in Figure 2.

While this has exactly the syntax of a struct definition, the semantics of the KStruct
definition is slightly different to that of the actual kernel: the KStruct definition may

Fall 2007 Workshop 5-3

KStruct: A Language for Kernel Runtime Inspection

struct EPROCESS {

KPROCESS Pcb;

EX_PUSH_LOCK ProcessLock;

LARGE_INTEGER CreateTime;

LARGE_INTEGER ExitTime;

HANDLE UniqueProcessId;

EX_FAST_REF Token;

PFN_NUMBER WorkingSetPage;

KGUARDED_MUTEX AddressCreationLock;

PFN_NUMBER NumberOfPrivatePages;

PFN_NUMBER NumberOfLockedPages;

PVOID Win32Process;

HANDLE InheritedFromUniqueProcessId;

UCHAR ImageFileName[16];

LIST_ENTRY ThreadListHead;

ULONG ActiveThreads;

ULONG JobStatus;

union {

ULONG Flags;

struct {

ULONG CreateReported :1;

ULONG NoDebugInherit :1;

ULONG ProcessExiting :1;

ULONG ProcessDelete :1;

ULONG Wow64SplitPages :1;

ULONG VmDeleted :1;

ULONG OutswapEnabled :1;

ULONG Outswapped :1;

ULONG ForkFailed :1;

ULONG Wow64VaSpace4Gb :1;

ULONG AddressSpaceInitialized :2;

ULONG SetTimerResolution :1;

ULONG BreakOnTermination :1;

ULONG SessionCreationUnderway :1;

ULONG WriteWatch :1;

ULONG ProcessInSession :1;

// further fields omitted here

};

};

UCHAR PriorityClass;

MM_AVL_TABLE VadRoot;

ULONG Cookie;

};

Figure 2: The KStruct specification of the EPROCESS data structure.

5-4 Fall 2007 Workshop

2 THE KSTRUCT LANGUAGE

silently omit fields which are considered irrelevant for display, or whose exact interpre-
tation has not been yet discovered. Our implementation will then map the fields given
in the KStruct definition to the fields in the kernel declaration of the type.

In addition to these basic constructs, we found that a number of extensions (com-
pared to C) are necessary to capture the idioms used in the Windows kernel. Discov-
ering these idioms is still work-in-progress.

2.2 Enumerations

Also borrowed from C is the concept of enum type definitions which allow to use sym-
bolic names for integer values. Unlike the usage in C, where the source code specifies
the symbolic enumerator, and the compiler converts that to an integer, the KStruct
implementation finds the numeric value at run-time, and then looks up the correspond-
ing symbolic name according to the enum definition. As an example we present the
NT_PRODUCT_TYPE enumeration:

enum NT_PRODUCT_TYPE {

NtProductWinNt = 1,

NtProductLanManNt,

NtProductServer

};

Whenever a field is declared to be of that type, the KStruct framework will resolve
the numerical value of that field to one of the symbolic names given above. This greatly
improves the readability of a displayed data structure.

2.3 Locking

For the device driver generated by KGen, consistency of data is major concern. In
particular, when accessing pointers, it has to be ensured that the pointer actually points
to a structure of the specified type (i.e., it is not a dangling pointer); else an infamous
blue screen may occur. Additional requirements for consistency are that atomic values
really are displayed with the value that they had at a certain point in time, or that all
fields of a struct are displayed with the values that they had at the same point in time.

In the Windows kernel, we found that consistency is achieved through locking. While
we are not certain whether this was an explicit design principle of the Windows kernel,
so far, in all cases (with one exception) we found that all data available to different
threads or processors are protected with some synchronization mechanism, and that
the kernel itself consistently acquires the necessary locks before accessing the fields
of a structure.

However, there is no uniform name or data type in use that allows to determine
what lock needs to be held when locking a certain structure, nor does every structure
incorporate a lock. Instead, we found that structures without locks are assumed to be
protected by the lock to the container in which that structure lives (either directly em-
bedded, or referred-to from a pointer of that container). To access such a structure, one
must first find the container, lock it, and then traverse to the embedded data structure.

Fall 2007 Workshop 5-5

KStruct: A Language for Kernel Runtime Inspection

These observations led to the introduction of the lock and mlock keywords. The
lock attribute must be used for locks that must be acquired before the data structure
that contains the lock is accessed. In the EPROCESS data structure that lock is the
ProcessLock field (Figure 2. The mlock attribute is used to denote a field that guards
another field in the same structure. This is necessary for data structures that are used
to implement lists or binary trees and that have only a single lock protecting the whole
list or tree. In Figure 2, the field VadRoot represents a binary tree which is guarded
by the field AddressCreationLock. To express the relation between both fields, mlock
requires the name of the field that is protected by the attributed lock field. The modified
specification is given below:

struct EPROCESS {

KPROCESS Pcb;

lock EX_PUSH_LOCK ProcessLock;

// ...

mlock(VadRoot) KGUARDED_MUTEX AddressCreationLock;

// ...

MM_AVL_TABLE VadRoot;

ULONG Cookie;

};

The KStruct framework is responsible for invoking the appropriate operating system
API to acquire and release the lock. The code generated by KGen will only contain
generic synchronization functions following the following naming pattern:

BOOLEAN KStructAcquire_LOCK_OBJECT_TYPE(LOCK_OBJECT_TYPE *lock);

VOID KStructRelease_LOCK_OBJECT_TYPE(LOCK_OBJECT_TYPE *lock);

LOCK_OBJECT_TYPE is replaced by KGen with the appropriate lock type. In the ex-
ample above, KStructAcquire_EX_PUSH_LOCK and KStructAcquire_KGUARDED_MUTEX,
respectively, are invoked by the generated device driver.

2.4 Fast References

To access a field that is declared with a pointer type, it is usually sufficient to just
dereference the pointer in the structure using a regular C pointer dereference operation.
However, in some kernel structures, pointers are declared with the EX_FAST_REF type.
This is a Windows kernel mechanism where the three least-significant bits of a pointer
hold a count of spare references to an object, so that the reference counter in the object
itself does not need to be adjusted as frequently as it would without that mechanism.

As a consequence, a field of type EX_FAST_REF cannot be dereferenced directly,
because neither the type of the structure the pointer points to is known, nor is can the
address be used directly from the field. Instead, the 3 least-significant bits must be
masked out from the pointer address.

5-6 Fall 2007 Workshop

2 THE KSTRUCT LANGUAGE

In KStruct, such a field is declared with the fastref keyword, and the type of the
field is the actual target type of the pointer. In Figure 2, the field Token is such a “fast
reference” pointer. Actually, this pointer points to a data structure of type TOKEN, thus
the pointer type is PTOKEN. To express that fact, in KStruct the Token field is defined
as follows:

struct EPROCESS {

// ...

fastref PTOKEN Token;

//..

};

2.5 Bitfield Unions

In general, interpreting the data in a union type requires information that cannot be
inferred from the type declaration, as it is not clear what union alternative is active
at any point in time. Different design patterns have been established, e.g., the use
of tagged unions, where a separate field in a surrounding union indicates what union
alternative is valid. Identifying the specific set of patterns used in the Windows kernel
is still a subject of ongoing research.

One specific case that we already identified is a union between a ULONG (32-bit)
value and a struct whose fields are all bitfields. One example is the Flags field in
Figure 2. This pattern is used quite a significant number of times in the kernel and the
reason for that is mainly to ease debugging. In KStruct such unions can be indicated
by the bitfield union keywords.

The specification of a bitfield union results in a different rendering of the con-
tents of that union. Instead of displaying the numerical value of each bitfield, e.g.,
CreateReported or VmDeleted, the code generated by KGen will evaluate each bitfield
and renders its symbolic name only if that bitfield evaluates to the boolean value true.
In KStruct, the specification of a bitfield union is given below:

bitfield union {

ULONG Flags;

struct {

ULONG CreateReported :1;

ULONG NoDebugInherit :1;

ULONG ProcessExiting :1;

ULONG ProcessDelete :1;

ULONG Wow64SplitPages :1;

ULONG VmDeleted :1;

ULONG OutswapEnabled :1;

ULONG Outswapped :1;

ULONG ForkFailed :1;

// ... further fields ommitted here

ULONG Spare2 :1;

Fall 2007 Workshop 5-7

KStruct: A Language for Kernel Runtime Inspection

ULONG Spare1 :1;

};

};

2.6 Variable-sized Arrays

There are two kinds of dynamic containers in the Windows kernel: arrays and lists. To
interpret an array, the size of the array and its element type needs to be known. While
the element type is readily available, the size is only declared for an array if the array
has a fixed size.

A variable-sized array comes in two forms: as the last element of a structure (a
form which standard C calls “flexible array member”), and as a pointer which is to be
interpreted as pointing to the first element. In either case, the size must be determined
somehow.

As a special case of dynamic arrays, strings are commonly null-terminated in C; the
length of the string is nowhere stored. KStruct supports this concept through an explicit
string keyword (the example is again from the EPROCESS struct):

string UCHAR ImageFileName[16];

In this example, a fixed-size storage of 16 UCHAR elements is provided, yet the field
is still understood as variable-sized, terminated by a null string.

In the general case of arbitrary arrays, Windows typically follows the idiom of storing
the array size in a different field of the same struct. In KStruct, this can be expressed
through the item_count keyword; the example is taken from the TOKEN structure:

struct TOKEN {

ULONG UserAndGroupCount;

ULONG RestrictedSidCount;

ULONG PrivilegeCount;

ULONG VariableLength;

ULONG DynamicCharged;

ULONG DynamicAvailable;

ULONG DefaultOwnerIndex;

item_count(UserAndGroupCount) PSID_AND_ATTRIBUTES UserAndGroups;

item_count(RestrictedSidCount) PSID_AND_ATTRIBUTES RestrictedSids;

PSID PrimaryGroup;

item_count(PrivilegeCount) PLUID_AND_ATTRIBUTES Privileges;

// ...

};

In this type definition, UserAndGroups is a pointer to an array of SID_AND_ATTTRIBUTES
structures with UserAndGroupCount elements.

5-8 Fall 2007 Workshop

2 THE KSTRUCT LANGUAGE

2.7 Lists

The other dynamic container in the Windows kernel is the list; lists are typically double-
linked. Rather than allocating separate memory blocks for the spine of the list and
the elements, the fields for adding elements to the list (i.e., the forward link and the
backward link) are members of these elements.

In the C declarations of the structures, all link fields are declared with the type
LIST_ENTRY. Such a field could either be used to make the structure element of a list
for similar structures, or the field could act as the head of a list (where an empty list is
indicated by the back and forward links pointing to the list entry itself).

What specific type of element is linked in a given list cannot be determined merely
from the type definitions, nor can it be determined at run-time. Instead, inspection of
the entire kernel source code is necessary to find out what kinds of elements are listed
in a list. Fortunately, Windows follows the design principle of only linking like objects in
a list, although polymorphic type variations may occur.

To declare the relationship between the list head and the list elements, the lhead
keyword is used. The EPROCESS structure contains such a list, denoted by the field
ThreadListHead. This doubly linked list is composed of ETHREAD structures and each
element is linked via the ThreadListEntry field of the ETHREAD structure. KGen needs
this information to appropriately compute the address of each ETHREAD component
in the list. To specify this list, the KStruct specification is given below:

struct EPROCESS {

// ...

lhead(ETHREAD::ThreadListEntry) LIST_ENTRY ThreadListHead;

// ...

};

2.8 Rendering

In addition to the declarations above which deal with the retrieval and interpretation of
information, we found that it is also helpful if the user interface for rendering the data
could be derived automatically from our data specification.

For regular structures, this is trivially possible: to render a struct, a two-column
display can be used (possibly indented according to the nesting of structures), giving
the field name and field value. At the end of the recursion, primitive values need to be
displayed. As the list of primitive types that occur in data structures is small 1, rendering
can just enumerate all the types. As there is a larger number of type aliases for integral
types, it might be necessary to extend KStruct to support the declaration of type aliases
(i.e., to support the typedef keyword).

For variable-sized structures, the same approach is possible in principle as well: the
array or list could be rendered by displaying all its elements, recursively then displaying

1We currently support 18 primitive types

Fall 2007 Workshop 5-9

KStruct: A Language for Kernel Runtime Inspection

the structures by enumerating all their fields. However, such a display gets very large
if the structures are large (e.g., for the ETHREAD or EPROCESS structures, each having
more than 80 fields), or if the number of elements gets large (which, again, happens
for threads and processes).

Therefore, we offer rendering hints in the type declaration, allowing the user inter-
face to make an educated choice of what information to display in what manner. So far,
we found the need for one such declaration, but we anticipate that we may need more
declarations solely for rendering in the future.

The keyword that we defined so far is listing; it indicates that a field of a structure
should get a column in a tabular view displaying lists of the structure. For example, for
EPROCESS, we declare that the fields UniqueProcessId, InheritedFromUniqueProcessId,
ImageFileName, ThreadListHead, ActiveThreads, and PriorityClass should be in-
cluded in the listing. As an example, the declaration of ActiveThreads then reads

listing ULONG ActiveThreads;

The choice of listing fields was fairly arbitrary, and user interfaces may decide to
ignore these hints.

2.9 Grammar

To summarize the previously presented elements of the KStruct language, we present
the grammar thereof in this section. Figure 3 contains the grammar for the KStruct
language in EBNF notation. As the number of idioms supported by KStruct has not
been completed yet, the grammar also might change when KStruct evolves.

3 How to obtain KStruct descriptions

In order to inspect kernel data structures, KStruct descriptions of the fields in the data
structure must be available. In our experiments, we found that an iterative, systematic
process for defining these data structures is possible.

In order to create KStruct descriptions systematically, one needs to start with the C
declarations of the same data structures. In many cases, it is possible to copy them
literally into the KStruct source file. In translating the new declaration, it might be that
certain identifiers are not known, in particular the type names of some fields. In these
cases, the following options are available to produce a correct specification:

• the missing field type can be added as well, thus extending the specification re-
cursively, or

• the field with the missing type can be commented-out, in which case it will be
suppressed from access, or

• if the field type is a pointer type, its type can be changed to PVOID (i.e., void*),
thus temporarily disabling access to the data pointed-to, until a proper type defi-
nition can be provided

5-10 Fall 2007 Workshop

3 HOW TO OBTAIN KSTRUCT DESCRIPTIONS

specification =

{structdef | enum};

enum = 'enum' ID '{'

enumerator {',' enumerator}

'}' ';'

;

enumerator =

ID [EQUALS INT];

structdef =

'struct' ID '{' {field} '}' ';';

kstruct_attribute = locks | fastref | string | itemcount | lhead;

locks = 'lock' | mlock

mlock = 'mlock' '(' ID ')';

fastref = 'fastref';

string = 'string';

itemcount =

'item_count' '(' ID ')';

lhead = 'lhead' '(' ID '::' ID ')';

field =

['listing', kstruct_attribute | kstruct_attribute]

type ID [bitfield | {array}] ';'

| bitfield_union

;

bitfield_union =

'bitfield' 'union' '{'

field

'struct' '{' {field} '}' ';'

'}' [ID] ';'

;

bitfield = ':' INT;

array = '[' INT ']';

type = ID | ID '*';

Figure 3: The syntax of the KStruct language in EBNF notation.

Fall 2007 Workshop 5-11

KStruct: A Language for Kernel Runtime Inspection

Once the layout of a structure has been declared, annotations must be added to
fields. The set of annotations and their meaning has been elaborated above; authors
need to systematically inspect each field to determine whether an annotation must be
added.

Particular care must be made in applying locking attributes correctly; if they are
incorrect, kernel data consistency might be at risk. In order to determine the proper
locking mechanism for a data strucutre, it is, in principle, necessary to study all uses of
that data structure in the kernel. However, we found that the Windows kernel architects
followed a convention of including the substring Lock in field names used for locking.
With that convention, it should be possible to find out what fields need to be locked for
access.

While the C type definitions will be sufficient for most cases, they do not work suffi-
ciently for polymorphic fields. In particular, the Windows kernel sometimes uses PVOID;
in these cases, assignments to the fields need to be studied to find out what kind of
data structure the pointer points to.

The definition of the KStruct language is an ongoing process; as further relevant
idioms in the kernel data definitions are discovered, the KStruct language itself may
need to be extended.

4 KStruct Framework

The KStruct language can be used to specify data structures. This specification is
used by KGen, a code generator, that generates automatically a device driver and a
rendering library that are capable of both accessing a data structure and rendering the
contents of the data structure. However, both components need runtime support to be
executed and to be queried for certain data structures. The KStruct framework forms
a basic execution environment providing the user interface as well as some basic API
required by the device driver. This section will briefly introduce the KStruct framework,
as shown in Figure 4

A client can connect over the Internet to the KStruct HTTP server specifying an ob-
ject path for a particular kernel object. The server passes the object path to the KStruct
framework that is implemented partly in user-mode and partly in kernel-mode. The
framework starts parsing the object path invoking appropriate functions of the KStruct
driver. If the object could be located successfully, the driver extracts those fields de-
scribed in the KStruct specification and copies them to the KStruct buffer. Finally the
KStruct renderer renders gathered data into a human readable format. The standard
output proposed by this paper is HTML which allows for hyper-linking fields of the ac-
tual object with either external information like source code or documentation or another
KStruct invocation to follow a chain of objects into the kernel.

4.1 Object Path

Object paths are essential for using the KStruct runtime system. An object path is
similar to a URI, that uniquely identifies an object in the address space of the kernel.

5-12 Fall 2007 Workshop

4 KSTRUCT FRAMEWORK

KStruct System

Framework

Buffer

Object Path KStruct Object

Rendering Library

Driver

Kernel-Mode

User-Mode

Kernel Object
Kernel Object

Kernel Object

KStruct HTTP
Server

Figure 4: Architecture of the KStruct runtime system.

The object path has a similar structure as the path component of a URL:

/<root>/<member1>/<member2>/.../<membern >

The root item is a special item in the object path: it identifies no instance of a kernel
data structure; it rather indicates the function that starts the traversal process through
the object graph of the kernel. We discuss root objects later in this section. All other
items in the path point to an instance of a kernel data structure. The item name can be
either the object ID, i.e., the address of the instance, or the field name that points to or
contains the object. For example, refer to the following object path:

/Processes/87654321/Pcb/ThreadListHead

The root object, Processes, denotes the list of EPROCESS objects. The next member
is the address of a particular EPROCESS object that contains a field Pcb, denoting a
KPROCESS object that finally contains a field named ThreadListHead. This object is
displayed to the user. The type of field name is resolved by the KStruct specification
file: Each data structure contains both primitive types, like an int, and other structure
types identified by their name.

The KStruct system expects such an object path as input for all operations. The
object path is parsed item wise; before accessing the next item, it is verified that (1)
the item correctly denominates a field contained by the current object, and (2), if an
address is specified, that address is valid and reachable. This prevents the KStruct
system from crashing the system caused by an invalid memory reference and makes it
more robust against erroneous input.

Fall 2007 Workshop 5-13

KStruct: A Language for Kernel Runtime Inspection

4.2 The KStruct Framework

Although we have designed and implemented a generator which allows to generate
code in order to access kernel data structures, there are some basic tasks that we
moved from the generator to the KStruct framework in order to keep the generator as
simple and maintainable as possible.

4.2.1 Driver Management

Kernel objects can only be accessed when the processor is in kernel-mode as they re-
side in the kernel’s address space. This is an inherent feature common to most modern
operating systems. To access them anyway, the running application must also run in
kernel-mode, i.e., a device driver. Our generator generates a device driver responsible
for the access to kernel objects. However, the OS requires some basic management
for the driver in order to properly load it.

4.2.2 Root Objects

Root objects are methods provided by the framework serving as entry points into an
object graph. They require implementation efforts as their handling is too specific to
generate appropriate code. However, we assume that the kernel provides only a very
limited number of data structures appropriate to be a root object. Indeed, the number
of objects that can be reached from a root object and that can be generated by KStruct
Access is far greater than the overhead necessary to manually implement root object
handling.

Actually, the framework supports the process list (/Processes) as the only root ob-
ject, but we are currently working on a root object that allows access to objects of the
Windows Object Manager.

4.2.3 Locking Synchronization Primitives

We decided to remove implementation details from the KStruct code generator. The
Kernel Runtime module provides a generic API for well known kernel synchronization
primitives. The API has the following signature:

BOOLEAN KStructAcquire_LOCK_OBJECT_TYPE

(LOCK_OBJECT_TYPE *lock);

VOID KStructRelease_LOCK_OBJECT_TYPE

(LOCK_OBJECT_TYPE *lock);

LOCK_OBJECT_TYPE is a place holder for a well known kernel synchronization primi-
tive. So far, we discovered the following three types, but we expect to find more:

• KGUARDED_MUTEX

5-14 Fall 2007 Workshop

5 CORRECTNESS OF DATA

• EX_PUSH_LOCK

• ERESOURCE

Although locking kernel objects is important for consistently accessing this object,
the implementation must guarantee that no deadlock is injected to the system. To
prevent deadlocks, the implementation of our acquire and release API calls checks
for contention before blocking. If a lock cannot be acquired, KStructAcquire_XXX re-
turns FALSE. The code generated by KStruct checks for that return value and if that is
the case, all acquired locks will be released in the reverse order they were acquired.
Afterwards, the acquisition process is started again. This might result in increasing re-
sponse time of the KStruct application, but we consider this a fair price for the guaranty
to be deadlock free.

4.2.4 Iterators for Collections of Objects

Collections of objects are typically arrays or lists. While it is simple to iterate through a
list, iterating through a list of arbitrary objects requires special handling. In Windows,
lists are organized as either singly linked lists or doubly linked lists. For these vari-
ants an API exists that allows for inserting, removing, and traversing items. The driver
framework provides an API for iterating through such a list, and, if necessary, invokes a
supplied callback function, generated by KStruct. The API for iterating is shown below:

NTSTATUS KStructIter_LIST_TYPE(

LIST_TYPE *Head,

PKSTRUCT_CONTEXT Context);

LIST_TYPE is either LIST_ENTRY, if a doubly linked list should be traversed, or SLIST_ENTRY,
if an singly linked list should be traversed. The second parameter, Context, defines a
context for the iterator that contains, for example, the callback function, and the con-
straints for invoking the callback function.

5 Correctness of Data

KStruct allows for an insight into the Windows kernel by displaying contents of kernel
objects (instances of kernel data structures). By providing this facility it helps under-
stand and derive design decisions of the kernel and, in particular, helps motivate the
purpose of certain fields or data structures. It is essential that displayed kernel objects
contain correct data, i.e., the kernel object’s state is valid in the system context, so that
KStruct users may not be confused by seeing contradictory information. For example,
we consider a process control object – an instance of an EPROCESS data structure – that
contains both a thread list (field ThreadListHead) containing all threads belonging to
that thread and an integer field (ActiveThreads) denoting the number of threads being
in the thread list. It seems obvious that such a displayed kernel object is invalid in the
system context, if the number in the field ActiveThreads differs from the number of

Fall 2007 Workshop 5-15

KStruct: A Language for Kernel Runtime Inspection

threads in list denoted by ThreadListHead. Although it is trivial to verify the correct-
ness, or consistency, of that structure in that particular case, it is the very opposite
regarding all fields of the structure or even of all kernel objects. There are a number of
publications [2, 6–8, 13, 14] that allow for verifying consistency constraints in the after-
math of an object retrieval. However, we consider a more general approach to assure
consistency of retrieved kernel objects, as we consider defining consistency constraints
for all data structures, at least for those discovered yet, an unsolvable task because of
the maturity of the Windows kernel.

Let us assume the Windows kernel being a shared-memory system and all thread-
s/processes composing the Windows kernel being virtual processors of that system.
The shared-memory is composed of kernel objects that are jointly used of all kernel
modules. Then there must be an agreement of all processors on the order of accesses
to the shared-memory in order to assure the proper functioning of the kernel. We call
this agreement on the order of shared-memory accesses the consistency model of the
kernel, because shared-memory access executed in the order defined by the consis-
tency model transfer a kernel object from a consistent state to another.

In the past, memory consistency models have been well discussed in a number
of publications. They can be classified by their strictness as done by Mosberger [11].
We examined several of those trying to identify the most appropriate one. We left out
the strictest consistency model, sequential consistency proposed by Lamport [9], from
our examination as implementing the sequential consistency in software results in un-
necessary concurrency penalties. Furthermore, we concentrated on weaker, more re-
laxed consistency models, like weak consistency proposed by Dubois et al. [3], release
consistency proposed by Gharachorloo et al. [4], and Entry consistency proposed by
Bershad and Zekauskas [1]. We found the entry consistency model to be the most
appropriate model to be implemented by the Windows kernel. There are a number of
reasons for that:

• The Windows kernel distinguishes special accesses, i.e., (synchronizing) ac-
cesses to acquire and release a kernel object, and ordinary accesses, i.e., read-
/write accesses, to the kernel object. Special accesses can be identified after a
certain naming pattern, like XxAcquireYyy, or XxReleaseYyy, where Xx denotes
the kernel module the synchronizing access belongs to (in most cases “Ex” for
the Executive or “Ke” for the Kernel module) and Yyy denotes the name of the
lock object type.

• The entry consistency model requires explicit association of synchronization ob-
jects and kernel objects. We found that most major kernel data structures include
such an object or, if the kernel object is a root object, there is an associated
global synchronization object. For example, each EPROCESS structure contains a
field ProcessLock representing the lock to be acquired before accessing other
fields of the structure. Similarly, the list of processes, denoted by the global
symbol PsActiveProcessHead, is guarded by the global synchronization object
PspActiveProcessMutex. To be precise, we also found structures that have no
explicit lock object, but they are accessed by instructions of the processor that

5-16 Fall 2007 Workshop

5 CORRECTNESS OF DATA

guarantee mutual exclusion, e.g., CMPXCHG on an IA. Such special processor in-
structions are a sequence of acquire, modify, and release operations all in one
instruction.

• Ordinary accesses, i.e., non-synchronizing, read/write accesses, to shared kernel
objects are executed only after the associated lock has been acquired. In this
paper, all accesses to the presented structures apply that rule.

• The thread owning a lock receives the most recent update of the associated ker-
nel object from the previous owner. This rule follows implicitly because of the
usage of a non-distributed global shared-memory.

The weak consistency model [3] does not match the programming model of the
Windows kernel, as it is only the generalization of the entry consistency and release
consistency model. The release consistency model [4] does not match, as its program-
ming model does not allow for explicitly associating a synchronization object to a kernel
object. Instead, the library implementing the consistency model automatically assigns
a synchronization object that is considered appropriate. In a kernel environment, se-
lecting the right synchronization primitive is a question of the design of the kernel as it
directly influences the performance of the system.

We designed KStruct to implement the entry consistency model and faced a prob-
lem that may not occur in the kernel: the danger of deadlock injection by introducing
lock dependencies. In general, each lock object guards its associated kernel object for
a certain purpose. For example, the lock of the process control object list guards inser-
tion, traversal and deletion of list members, regardless of their particular type. On the
other hand, the ProcessLock field in the EPROCESS structure guards the fields inside the
structure, regardless of the circumstances the process control object might be used in.
In KStruct, we define a dependency between both formerly independent lock objects.
If we display a list of EPROCESS objects, we need to guarantee that the displayed list has
existed at a certain point in time in the history of the OS. That is, the consistency con-
straints of both the process list and each EPROCESS object must be satisfied. Figure 5
shows a simplified object graph of the process list and its EPROCESS objects. Circles de-
note structures, rectangles denote base or primitive types, and hexagons denote lock
objects. A directed edge between structures or between a structure and a primitive de-
notes a “contains” relation relation. (The process list “contains” EPROCESS structures.)
A double-line directed edge between a structure and a lock denotes a “guards” rela-
tion, i.e., the lock indicated by the rectangle besides the process list “guards” the list.
The dotted line is just for grouping purposes; it groups all components that belong
to the same structure. To display the whole structure of Figure 5, it is necessary to
acquire first the process list lock and then all EPROCESS object locks before accessing
any EPROCESS structure. Thus, the acquire operation for the list of processes requires
acquisition of a bunch of locks. Similarly, a release operation on the list of processes
requires several release operations on the lock objects of participating objects.

The hierarchy in which the locks must be acquired is derived from the KStruct def-
inition file. The order in which the lock must be acquired is the same as if the object
graph is traversed in level-order. However, this discovery process must be executed on-
line, i.e., at run-time of the system. Each time a new lock object is discovered, KStruct

Fall 2007 Workshop 5-17

KStruct: A Language for Kernel Runtime Inspection

EPROCESSEPROCESS

EPROCESS list

EPROCESS

Primitives Structures Locks

Figure 5: Lock hierarchy of the process list and its contained EPROCESS objects

attempts to acquire the lock. If the acquisition fails, all previously acquired locks will
be released and the acquisition process is started again. This is to guarantee the ab-
sence of any deadlock injected by KStruct. This, however, might lead to a situation
where KStruct is unable to display a certain object because other threads are perma-
nently holding lock objects. Though we never discovered such a situation yet, we are
currently working on other ways to achieve the consistency of displayed data structures
in a more relaxed manner, for example, by observing the structure over a period of time
and determine whether its state has changed. If not the state may be considered as
stable and the contents of the structure may be considered as consistent with respect
to the OS.

6 Related Work

Although we find the KStruct approach unique with respect to how data structures can
be examined at run-time of the operating system and to link displayed data structures
with other kinds of information, several key aspects were separately discussed in re-
search publications.

6.1 Debuggers

In the Windows domain, there are several kernel debuggers available [10,16]: KD is a
command line oriented kernel debugger, while WinDbg also provides a graphical user
interface. Both require two PCs for debugging: the host that runs the kernel debugger
and the target that is being debugged. Both machines must be end-to-end connected,
either via a null modem cable, or am IEEE 1394 connection. In contrast, a KStruct
client only requires a Web browser and an active Internet connection.

Also, KD, and WinDbg, respectively, stops the execution of all threads except the
debugger controller thread on the target machine which tremendously affects the target

5-18 Fall 2007 Workshop

7 CONCLUSION AND OUTLOOK

machine with respect to timing and network IO. KStruct, on the other, only affects those
threads that try to access the specified kernel object and only for a very limited time.

Finally, debuggers do not guarantee the consistency of any kernel object revealed.
The KD, for example, simply forces all threads, except its own, to suspend while it ac-
cesses a specified kernel object [16]. This approach prevents the kernel object from
changes being done while KD is accessing; however, if one thread was suspended be-
fore it was able to complete all modifications, the kernel object is left in an inconsistent
state. KStruct implements the consistency model of the operating system. Thus, only
threads that are competing for an access to a kernel object are affected while other
threads can continue running. Also, if KStruct gains access rights to a kernel object,
the consistency model guarantees for the consistency of the kernel object.

6.2 Monitoring Frameworks

Monitoring frameworks like Windows Management Instrumentation (WMI) [15] or the
/proc file system [5] in UNIX, to name just a few, also allow for an insight into the running
kernel. These frameworks are designed to remotely monitor user-mode or kernel-mode
applications including some details about the kernel itself. Both lack the opportunity of
adding data structures without re-booting or re-building the kernel. While the latter
might be possible for the UNIX domain, it is definitely not in the Windows domain,
except the Windows Research Kernel [12].

WMI and /proc file system, respectively, do not consider consistency models as
they only provide a generic interface to information providers. The way this informa-
tion is gathered is no matter of interest for the framework; the gathering process must
be implemented by a developer. Due to the maturity and complexity of operating sys-
tem kernels, hand-coding the gathering process is error prone and elaborate. KStruct
relieves the developer from implementation details, it only requires a data structure def-
inition. The generated code inherently applies to the proper consistency model of the
OS.

7 Conclusion and Outlook

In this paper we presented KStruct, a system for consistently inspecting kernel data
structures, while the kernel is in use. We also presented idioms supported by KStruct
Access, our domain-specific language to describe kernel data structures which is used
to generate both a device driver and a user-mode rendering library being able to access
and inspect instances of these structures. Although our implementation is based on
the Windows Research Kernel, we find most of our presented idioms applicable to
other kernels as well; however, applicability to other kernels is still subject to ongoing
research.

KStruct allows for accessing kernel objects via a Web browser. Using HTML for
rendering kernel objects provides the opportunity for hyper-linking structures with their
definitions in source code and other kinds of information, like documentation. We are
still evaluating impacts on performance of the operating system while KStruct is in use

Fall 2007 Workshop 5-19

KStruct: A Language for Kernel Runtime Inspection

to inspect certain kernel objects, but we estimate a far less affection as is caused
by kernel debuggers. We also work on enhanced rendering methodologies of data
structures that facilitate comprehending data structures and their use throughout the
kernel.

As we have demonstrated, the codification of the kernel data structure idioms in
KStruct definitions is an ongoing process. We encourage the community to contribute
KStruct definitions in an ongoing manner, to support access to data in kernel areas not
currently supported in our research prototype.

The KStruct generated code allows for accessing data structure without halting the
whole system, a major advantage over kernel debuggers. This is implemented by ap-
plying locking schemes or consistency protocols used by the kernel itself. However,
accessing arbitrary data structures may introduce dependencies between former inde-
pendent data structures. To circumvent these inter-dependencies, future research will
concentrate on more relaxed consistency protocols that achieve the same correctness
of data as ordinary locking does but with only a minimum of locking or even completely
without locking.

8 Acknowledgments

Part of this work on the “Windows Research Kernel” was funded by Microsoft Grant No.
15899.

References

[1] Brian N. Bershad and Metthew J. Zekauskas. Midway: Shared memory paral-
lel programming with entry consistency for distributed memory multiprocessors.
Technical Report CMU-CA-91-170, Carnegie-Mellon University, 1991.

[2] Harold W. Cain and Mikko H. Lipasti. Verifying sequential consistency using vector
clocks. In SPAA ’02: Proceedings of the fourteenth annual ACM symposium on
Parallel algorithms and architectures, pages 153–154, New York, NY, USA, 2002.
ACM Press.

[3] M. Dubois, C. Scheurich, and F. Briggs. Memory access buffering in multiproces-
sors. volume 14, pages 434–442, New York, NY, USA, 1986. ACM Press.

[4] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop
Gupta, and John Hennessy. Memory consistency and event ordering in scalable
shared-memory multiprocessors. In ISCA ’98: 25 years of the international sym-
posia on Computer architecture (selected papers), pages 376–387, New York, NY,
USA, 1998. ACM Press.

[5] T. J. Killian. Processes as files. In Proceedings of the USENIX Summer Confer-
ence, Salt Lake City, 1984.

5-20 Fall 2007 Workshop

REFERENCES

[6] V. Kuncak, P. Lam, K. Zee, and M. Rinard. Implications of a data structure consis-
tency checking system, 2005.

[7] Viktor Kuncak, Patrick Lam, Karen Zee, and Martin C. Rinard. Modular pluggable
analyses for data structure consistency. IEEE Transactions on Software Engineer-
ing, 32(12):988–1005, 2006.

[8] Patrick Lam, Viktor Kuncak, and Martin Rinard. Hob: A tool for verifying data
structure consistency. In 14th International Conference on Compiler Construction,
volume 3443/2005 of Lecture Notes on Computer Science, pages 237–241, April
2005.

[9] Leslie Lamport. How to make a multiprocessor computer that correctly exe-
cutes multiprocess programs. IEEE Transactions on Computers, C-28(9):690–
691, September 1979.

[10] Microsoft. Debugging Tools for Windows. http://www.microsoft.com/whdc/devtools/
debugging/default.mspx.

[11] David Mosberger. Memory consistency models. SIGOPS Oper. Syst. Rev.,
27(1):18–26, 1993.

[12] Andreas Polze and Dave Probert. Teaching operating systems: the Windows
case. In SIGCSE ’06: Proceedings of the 37th SIGCSE technical symposium on
Computer science education, pages 298–302, New York, NY, USA, 2006. ACM
Press.

[13] Shaz Qadeer. Verifying sequential consistency on shared-memory multiproces-
sors by model checking. IEEE Transactions on Parallel and Distributed Systems,
14(8):730–741, 2003.

[14] A. Silberschatz and R. B. Kieburtz. The external consistency of abstract data
types. SIGPLAN Not., 15(2):64–73, 1980.

[15] Craig Tunstall and Gwyn Cole. Developing WMI Solutions. Addison-Wesley, 2002.

[16] Richard A. Willems. System and method for collecting system data using record
based requests with tag lists and pausing all but one thread of a computer system.
United States Patent 6,983,452 B1, January 2006.

Fall 2007 Workshop 5-21

Deconstructing Resources

Hagen Overdick

hagen.overdick@hpi.uni-potsdam.de

1 Introduction

There has been a lot of discussion about service-orientated architectures (SOA) [4],
lately. A service is a mechanism to enable access to one or more capabilities. The
eventual consumers of the service may not be known to the service provider and
may demonstrate uses of the service beyond the scope originally conceived by the
provider [16]. If a provider may not know the actual use of a service, what makes
a service a service? What minimum level of functionality must a service provide to
be called a service? Furthermore, according to recent studies [9], about two-thirds
of all services deployed today are data-centric. Is a memory cell already a service?
Resource orientation [8] solves this dilemma by making every entity explicit, not just
services. Such explicit entity is called a resource. If one can find a noun for an entity,
it qualifies as a potential resource. All restrictions declared for services still hold for
resources, i.e. they have an independent life-cycle, a globally unique reference, and
their interaction style is stateless message exchange.

Resource orientation is the dominant architectural style on the Internet, as it is the
scientific foundation of the World Wide Web [3]. Resources have a globally shared
request message classification system, confusingly called uniform interface. The idea
is, that even without semantic understanding of the messages exchanged, the classifi-
cation provides additional benefits to the overall architecture. However, up to now, the
World Wide Web favors an informal, ad-hoc description of complex resource behav-
iors. Roy Fielding coined the term ”hypertext as the engine of application state” [8],
upgrading this ad-hoc fashion from bug to feature; quite a successful feature indeed
measured by the success of the World Wide Web itself.

In the course of this paper, a meta model for resource orientation is introduced and
design strategies for implementing resources based upon this meta model are outlined.
The remainder of this paper is structured as follows: In section 2, an introduction to
resource orientation is given. In section 3, an example of a complex resource behavior
is shown to illustrate the requirements of a resource-oriented process language. In
section 4, a meta model for resource orientation is given to aid the design of a resource-
oriented process language. In section 5, BPEL is introduced as a viable candidate
for such a language and the necessary extensions are outlined. Section 6 discusses
related work and section 7 concludes this paper with a summary and outlook.

Fall 2007 Workshop 6-1

Deconstructing Resources

2 Resource Orientation

As already described in the introduction, resource orientation is a subset of service
orientation. As such, it can be regarded as a modeling strategy for services. Instead
of a few ”gateway” services, with carefully crafted custom interfaces, all entities of the
modelled system expose a uniform interface. To illustrate this, let us look at a concrete
example. The Hypertext Transfer Protocol (HTTP) [7] defines its uniform interface for
requests as:

GET : Messages labeled as GET have an empty service request and are guaranteed
to have no substancial effect within the receiver of such request, i.e. they are safe to
call. GET responses are expected to be a description of the current state of the tar-
geted resource. These attributes allow GET to act as a universal reflection mechanism,
it can be issued without any prior knowledge of the resource. Also, as GET does not
alter the state of the targeted resource, the response can be cached. This has great
benefits to a distributed architecture and both aspects can be seized without prior se-
mantic knowledge of the targeted resources. In the physical world, GET request can
be correlated to looking.

PUT : Messages labeled as PUT do cause an effect in the targeted resource, but
do so in an idempotent fashion. An idempotent interaction is defined as replayable,
i.e. the effect of N messages is the same as that of 1. In a distributed system, where
transactions may not be readily available, this is a great help to error recovery. Again,
this assumption can be made without any prior semantic knowledge of the resource
involved. In the physical world, this correlates to physical interaction, although replaying
the exact same ”message” is only a theoretical mind exercise.

DELETE : Messages labeled as DELETE do cause an effect in the targeted resource,
where that effect is expected to be a termination. Just as PUT, DELETE is defined as
idempotent. However, as with all messages, the interpretation is solely the responsi-
bility of the receiver, i.e. a DELETE has to be regarded as ”please terminate”. In the
physical world, this correlates to sending a notice of cancelation.

POST : All other types of messages are labeled as POST, i.e. they cause an effect
in the receiver and they are not safe to replay. This is a catch all mechanism for all
messages that can not be described by the prior verbs. Without a uniform interface,
all messages would be treated like this, loosing context free reflection, caching and
replayability.

The uniform interface tries to lower the barrier of entry to a client and it also includes
a characterization of response messages. Thus, interaction with a resource can start
purely on the basis of semantic understanding of the uniform interface. If one obtains a
resource identifier, the uniform interface provides a minimum level of shared semantics

6-2 Fall 2007 Workshop

3 EXAMPLE OF A COMPLEX RESOURCE

to start. To increase the likelihood of understanding, both client and resource perform
content type negotiation on each request. Content type negotiation honors the fact that
there are many ways of encoding information.

Resource URI

Resource
Behavior

Uniform
InterfaceClient

Figure 1: Exposing behavior in resource-oriented architectures

Conceptually, a resource is outside the architecture, a client can only communicate
with it via the uniform interface it addresses by a globally unique identifier, e.g. a
URI [18]. The relationship between a resource and a URI may change over time. Yet,
resource orientation today spends very little effort on describing the underlying process
defining the relationship between a resource and its URIs.

3 Example of a complex resource

As an illustration, let us now introduce a complex resource most people should be
familiar with: an online ordering process. In figure 2, a very simple version is illustrated.
A shopping cart is created by the user by adding an initial item. Adding items can be
repeated as many times as the user likes. If the user simply stops interacting with the
shopping cart, it may time out or the user decided to check out by choosing a payment
method. At this point the user is presented with the content of the shopping cart, the
chosen payment method, and the total bill to confirm before actually committing the
order.

The first step towards a good resource-oriented design is to identify the relevant re-
sources. Is a shopping cart actually a resource on its own, or just a state of an order?
By modeling the later—the shopping cart to be just a state of an order resource—we
can uniquely identify the order in all stages, e.g. shopping cart, check-out, assembly,
in-delivery, and post-delivery. The user is given a single URI, something to bookmark
in a browser. Clicking on such a bookmark will issue a GET request. A GET request
in a resource-oriented view is nothing else than introspecting the current state of a re-
source. In the true spirit of hypermedia as the engine of application state the returned
representation of the current resource should include all relevant links and currently
possible interactions. By doing so, the client is never forced to understand the pro-
cess as such, being able to browse and post is the only requirement to participate

Fall 2007 Workshop 6-3

Deconstructing Resources

O
rd

er

Add Items
Receive
Order

Commit

Receive
Choice of
Payment

Us
er

Figure 2: Shopping cart as a complex resource

as a client. This simplicity is the true strength of a resource-oriented design and the
foundation of the World Wide Web’s success story. At the same time, this motivates
the resistance against formal descriptions of interfaces and processes as practiced in
a Web Services environment. While resource orientation does not conflict with formal
interface descriptions and in fact would benefit from it, any attempt to introduce such
formalism to resource orientation must honor the fact that resource orientation can and
will work without such formalism.

Nevertheless, it should have become apparent that resources are indeed complex
state machine and that such state machines can be expressed as processes, matching
the business concepts used to motivate the system in the first place. We already identi-
fied a shopping cart to be just a state or dependent sub-resource of an order. However,
this opens the question of how to choose resource boundaries. Is the order a resource
in itself or is it a sub-resource of the store? In [14] a very pragmatic answer is given:
Breaking down an application into as many resources as possible benefits scalability
and flexibility, but at the same time the resource is the scope of serializability, i.e. there
may not be transactions across resource boundaries. I.e. the order is not dependent
on the store (at least in a transactional view), but the order items probably are depen-
dent on the order, as an order item may only be changed as long as the order has not
been committed.

Before we evolve these concepts into a meta model in the next chapter, let us
summarize our findings: A resource may consist of several complex states, each able
to expose a set of URIs. Each of these URIs expose a certain behavior of the resource.
Interaction with any of the resource’s URIs is classified into safe (one interaction has the
same effect as zero interactions), idempotent (one interaction has the same effect as n
interactions), or unrestricted, i.e. such interaction is able to produce an uncontrollable
side-effect and/or change the internal state of the resource. Also, a resource must be
able to extract URIs from representations received via interaction and be able to then
interact with the extracted URIs, as this is a fundamental aspect of resource orientation.

6-4 Fall 2007 Workshop

4 A RESOURCE META MODEL

4 A Resource Meta Model

Resource orientation is an instance of a client-server architecture. However, neither
client nor server are monolithic. In the last chapter, a typical example of a resource
was given. Based on these finding, the following meta model can be deduced:

Client
Application Client State

Representation

URI

Operation

Interaction

Uniform
Interface

Resource
Resource

Scope Resource State

Intention

GETPOST

Idempotent Safe

PUT

DELETE

Side-effect

Figure 3: A Resource Meta Model

Client Application The best-known resource-oriented client application is a common
browser. All applications can be broken down into distinct states, with operations mov-
ing the application from state to state. However, in a resource-oriented application,
these states and the operations acting as transitions are not fixed. Instead they are
dynamically altered by interaction.

Interaction Resource orientation has direct support for only one interaction style:
Stateless request-response cycles. The client starts the interaction by sending a mes-
sage, the server responds, and all necessary state at the protocol level is released.
Hence, any interaction will conceptually look like any other, including the very first one.

Unified Resource Identifier (URI) As interactions are stateless, the target of a
request-response cycle needs to be directly addressable. Various schemes do exist to
encode such identifiers. To ease interaction, resource orientation introduces a uniform

Fall 2007 Workshop 6-5

Deconstructing Resources

mechanism as a superset to existing schemes. A resource-oriented client thus only
needs to handle the uniform resource identifiers, the handling of the concrete scheme
is moved to the protocol implementation.

Representation Client and server are conceptually completely separated, they can
only exchange representations, i.e. documents describing the intended request and
response. Once transmitted, a representation has no connection to it’s sender at all,
it is self-contained and detached. Just as the URI decouples the identification, this
approach decouples the client application from the transport layer. This communication
style is sometimes called document-oriented.

Client State A client state is the sum of all then available representations. In the case
of a browser, the initial representation available is the bookmark list and the default
home page. Representations may contain URIs to resources. Any interaction with a
URI will result in a new representation, thus a new client state. As representations
are dynamically created upon request, this in fact turns the client application into a
dynamically changing process, where all possible transitions are represented by URIs.

Uniform Interface All URIs expose the same interface, i.e. a client only needs to be
able to interact with one, uniform interface. As described before, interaction with the
uniform interface is always a synchronous request response cycle. Both request and
response are representations. The encoding of the representation is negotiated upon
each interaction. As the resource does not need to keep track of the resource, this
simplifies support for different content types and increases the likelihood of successful
interaction.

Intention Part of every request is the intention of the interaction. Resource orien-
tation does not dictated which intentions are to be supported, just that the overall in-
terface should be uniform, i.e. any intention should be meaningful to every possible
resource. Having an explicit intention at the protocol level allows for seizing certain
side conditions of an interaction without a semantic understanding of the content. The
most relevant sub-classes of intention are safe, idempotent, and side-effect. A safe
intention guarantees the requester to cause no side-effect in the interaction target. The
seizable side condition of a safe intention is caching. If no side-effect is caused, the
interaction does not actually have to be delivered to the receiver, as the response will
be the same. Idempotent interactions guarantee N > 0 identical requests to cause
the same side-effect as a single request. The seizable side condition of an idempotent
interaction is replayability. All other intention can be thought of as causing a side-effect
each time when called. In figure 3 the relevant intentions of HTTP (GET, PUT, DELETE,
and POST) are shown.

Resource Resource orientation is a client-server architecture and a resource is the
abstraction used for the server side. Any information that can be named can be a

6-6 Fall 2007 Workshop

4 A RESOURCE META MODEL

resource, both virtual (e.g. computer-based) and non-virtual (e.g. a person):

A resource is a conceptual mapping to a set of entities, not the entity that
corresponds to the mapping at any particular point in time.

More precisely, a resource R is a temporally varying membership function
MR(t), which for time t maps to a set of entities, or values, which are equiva-
lent. The values in the set may be resource representations and/or resource
identifiers. A resource can map to the empty set, which allows references to
be made to a concept before any realization of that concept exists–a notion
that was foreign to most hypertext systems prior to the Web [11]. Some re-
sources are static in the sense that, when examined at any time after their
creation, they always correspond to the same value set. Others have a high
degree of variance in their value over time. The only thing that is required to
be static for a resource is the semantics of the mapping, since the semantics
is what distinguishes one resource from another. [8]

The meta model introduced here tries to capture the membership function MR(t)
and the side condition of the three intention classes in the concepts resource scope
and resource state.

Resource Scope Given the above definition of a resource, there is a one to many re-
lationship between resource and URI. This relationship is hidden to the outside–the URI
completely decouples the communication system from the resource–and may change
over time. A resource scope defines a fixed relationship between a resource and its
bound URIs. Changing the set of URIs is only possible by a scope transition. In a truly
resource-oriented environment, we can assume all side-effects to be addressable by
an URI. Hence, POSTing to a URI can safely be assumed to produce a fresh URI and
consequently to cause a scope transition within the resource.

Resource State Within a resource scope, idempotent interactions may transfer the
resource into distinct resource state. The given resource state determines the re-
sponse to safe interactions, but a resource state transition must not cause a change to
the set of bound URIs of the resource, as this is limited to resource scope transitions.

4.1 Comparison to Remote Procedure Calls

While at first glance remote procedure calls (RPC) and resource orientation look simi-
lar, they are not. In RPC concepts are defined in terms of language APIs, not network-
based applications. In resource orientation, the target of any interaction is a concept,
the request uses a uniform interface wit standard semantics. This allows any inter-
mediary to process the request with the same effort as the final destination of the
interaction. The result is an infrastructure that allows for layers of transformation and
indirection that are independent of the information origin, tailored to the heterogeneous
and multi-organizational reality for the Internet.

Fall 2007 Workshop 6-7

Deconstructing Resources

4.2 Comparison to Object-Oriented Programming

There are many programming languages today being called object-oriented. However,
the original conception thought of objects being like biological cells and/or individual
computers on a network, only able to communicate with messages:

OOP to me means only messaging, local retention and protection and hiding
of state-process, and extreme late-binding of all things [15]

In this sense, true object orientation and resource orientation share a lot of features.
However, just as with RPC, resource orientation puts a strong focus on the message
itself and its intention, allowing intermediaries to transparently influence the interaction.

5 Process-oriented Resources

Given from the example and the deduced meta model, modeling resources as pro-
cesses exposing URIs seems viable. In this section, BPEL is introduced and exten-
sions for modeling complex resources are outlined.

5.1 BPEL

BPEL is arguably the de facto standard for specifying processes in a Web Services
environment. BPEL provides structured activities that allow the description of the con-
trol flow between the interaction activities. BPEL does not support explicit data flow,
but rather relies on shared variables referenced and accessed by interaction activities
and manipulation activities. The control flow between activities can be structured either
block-based by nesting structured activities like < sequence > and < flow >, or graph-
based by defining directed edges (called < links >) between activities inside < flow >
activities. Both styles can be used as the same time, making BPEL a hybrid language.

Beyond control flow and data manipulation, BPEL also supports the notion of
scopes and allow for compensation handlers and fault handlers to be defined for
specific scopes. Hence, scopes represent units of works with compensation-based
recovery semantics. Fault handlers define how to proceed when faults occur, com-
pensation handlers define how to compensate already completed activities, as pro-
cesses not transactional and consequently must be rolled back explicitly. Further more,
scopes allow for event handlers which can be regarded as repeatable, attached sub-
processes [12] triggered by events.

5.2 BPEL without Web Services

The wide-spread acceptance and the sophistication of the control flow constructs,
make BPEL a strong candidate when trying to formally express the process governing
the relationship between a resource and its URIs. Both the interaction activities and
the grouping mechanism that allows modeling complex message exchanges depend
on WSDL. However, in [17] BPEL light is introduced, a WSDL-less version of BPEL.

6-8 Fall 2007 Workshop

5 PROCESS-ORIENTED RESOURCES

While BPEL light itself still is not a good match for resource orientation, a clear path
on how to remove the dependency on WSDL from BPEL and adding new interaction
models in a compatible way is shown clearly. In essence, the elements < receive >,
< reply >, < invoke >, < onMessage > within a < pick >, as well as < onEvent >
within an < eventHandler > need to be replaced by constructs not relying on WSDL.

5.3 Using BPEL to model resource states

BPEL does not have an explicit state modeling, but an implicit via the < scope > con-
struct. Generally speaking, a POST message or an event may cause a state transition.
However, while in a state, as many GET, PUT, and/or DELETE messages may arrive,
as they are safe and/or idempotent.

Event Handler

Scope Scope

POST

GET

PUT

DELETE

POST receiver

Environment

Figure 4: Using BPEL to model resource states

As shown in figure 4, BPEL provides the concept of event handlers to model GET,
PUT, and DELETE interaction as attached, repeatable subprocesses. Enforcing safe
and idempotent characteristics of those interactions is beyond the scope of this paper.
However, a straight forward solution may be disallowing write access to any variable
during a GET interaction to ensure safeness. PUT and DELETE can be enforced
idempotent by disallowing write access to any variable read, i.e. overwriting a variable
is ok, computing a new value based on the old one is not. Such interaction may be
executed several times and in parallel, while POST interaction or events move the
BPEL process into a new scope. Relating these concepts to the meta model from
chapter 4, a BPEL process instance directly maps to a resource, a BPEL scope maps
to a resource scope and the activities within each scope and all interaction in the event
handlers map to resource state transitions.

Fall 2007 Workshop 6-9

Deconstructing Resources

5.4 Resource interaction in BPEL

Web Services try to abstract from the communication protocol, providing support for a
wide range of interaction models, such as asynchronous or one-way interaction. Re-
source orientation on the other hand puts much effort into the core protocol as the
lowest level of shared semantics. The dominate resource-oriented protocol is HTTP.
Consequently there is no point in abstracting away from it when modeling interaction in
BPEL. In fact many proponents of resource orientation have major concerns with any
attempt to hide the protocol layer behind an abstraction.

All interaction in HTTP is based on synchronous request-response. Asynchronous
communication is supported by identifying either the asynchronous sender or receiver
by an explicit URI and sending it along in the initial request. I.e. at the protocol level,
there will be a synchronous request and then an independent synchronous response
push or pull. This design makes the interaction much simpler, but requires an easy
mechanism to construct URIs. There is currently one attempt to standardized URI tem-
plating [10] applicable to creation, matching, and selection of URIs. Within WADL, URI
templates are already used for matching and selection of URIs. To a resource itself,
creation of URIs must be available, too. Coming back to our example process, upon
receiving a shopping item, it must be added to the shopping cart, in turn generating
one or more URIs for the newly created item.

<assign>
<copy>
<from>rbpel:generate-uri("./item/{itemNumber}")</from>
<to variable="newItemURI" />

</copy>
</assign>

Figure 5: URI creation by XPath-method

The easiest way to provide such functionality is to offer an XPath function. Figure 5
shows how the regular < assign > construct is used to create a new URI using such
XPath function. URIs themselves do not need a special construct and can be kept in
normal variables.

With URIs introduced to BPEL, let us look at URI interaction again, as shown in
figure 6. Any URI interaction is synchronous and the tuple of request and response
is grouped into a message exchange. Both request and response contain a header
and a body, where the header includes the content type of the body. The response
also includes a status, which is part of the uniform interface of HTTP and encodes a
general indication of how the request was processed.

Remember, a message exchange is always synchronous. This reduced the possi-
ble interaction patterns to send-receive and receive-reply. While it is tempting to simply
the BPEL constructs into a < send > and < receive > element with the complete han-
dling of the request as child elements, the BPEL specification does not appear to allow
extension activities with child elements, hence we refrain from doing so and stick with
the tradtional < send >, < receive >, and < reply > constructs without children. How-

6-10 Fall 2007 Workshop

5 PROCESS-ORIENTED RESOURCES

Message
Exchange

Request

Header Body

Response

Header BodyStatus

Figure 6: URI interaction

ever, the newly introduced activities all have a messageExchange attribute by which
the required data structures—as shown in figure 6 are referenced.

<rbpel:onMessage path="./item/new" messageExchange="createItem">
<wadl:method name="POST" />
<sequence>
<assign>
<copy>
<from>rbpel:generate-uri("./item/{itemNumber}")</from>
<to variable="newItemURI" />

</copy>
</assign>
<rbpel:reply messageExchange="createItem">
<rbpel:status>201</rbpel:status>
<rbpel:param name="Location" style="header">$newItemURI</rbpel:param>

</rbpel:reply>
</sequence>

</rbpel:onMessage>

Figure 7: Creating a shopping cart item

In figure 7 the fragment from figure 5 is completed to a complete < onMessage >
block. Notice the path attribute containing a relative URI template. The given template
is relative to the BPEL process, as each instance of the process is assigned a URI itself.
The exact details of the message the < onMessage > activity is waiting for is described
by reusing the < method > element of WADL [13]. Here, the only criteria is that
the message is send as a POST. WADL itself is quite descriptive and this descriptive
power can be used to model pattern matching on request, i.e. several < onMessage >
activities waiting on the same URIs with the same verb but different contents. The
< reply > activity again references the messageExchange data structure by attribute.
Here, some convenience elements are shown (< status > and < param >), there
functionality could be simply mapped to < assign > working on the data structure.
However, this fragment shows how a new URI is generated by template and returned

Fall 2007 Workshop 6-11

Deconstructing Resources

to the requester in the Location Header as outlined in the HTTP specification.
The complete BPEL for all functionality hidden in the Add Items activity of figure 2

is shown in figure 8.
The loop—depicted by a curved arrow on the ”Add Items” activity in figure 2–is

mapped to a < repeatUntil > block. Upon receive a POST to the checkout URI the
loop is left by settint the commitRequest variable to true. Also, the new internal state
of the resource modeled by BPEL process outlined has a URI by itself. The requesting
client is redirect to that URI by issuing a 303 status, again as outlined by the HTTP
specification.

6 Related work

There are many other language available as a foundation to modeling resource behav-
ior, such as Web Service Choreography Interface (WSCI) [1] or the Web Service Con-
versation Language (WSCL) [2]. The Bite language [6] follows are similar approach,
but does not appear to focus on the intentional aspect of the uniform interface. Also,
Bite is influenced but not based on BPEL. However, mind share is vital to language
selection and BPEL seems to be able to form a common ground for various interest
groups. Also, even though some constructs my be expressed more elegantly, BPEL is
designed as an open, extensible language laying a clear track of how to integrate the
required functionality, as shown in the course of this paper. Describing static resource
interfaces, the author is unaware of any alternative to the Web Application Description
Language. On the other hand, WADL can be seen as a mashup of HTTP, RelaxNG [5],
and XML Schema [19], so these standards should be mentioned here as well.

7 Summary and Outlook

In the course of this paper, resource orientation was introduced as a viable subset of
service orientation. Resource as such are complex state machines, exposing one or
more uniform interfaces over time. This can be formally expressed as a complex state
machine. The main contribution of this paper is to introduce a meta model for resource
orientation clearly relating the intentions exposed via a uniform interface to the inner
structure of resources. This inner structure may be described as a complex state ma-
chine. BPEL was identified as a suitable candidate for modeling such state machines
and the necessary modifications to BPEL were outlined. All of these modifications are
in the scope of the extension mechanisms of the BPEL specification.

However, at this point, the application of BPEL to describe resources is still regarded
by the author as just an illustration of the core concepts of resource orientation. While
an understanding of these concepts is stabilizing, research of how to best describe the
inner structure of resources is just beginning. There are many web frameworks avail-
able, but they are lacking a process aspect. Also, there are many process languages
available, but none seem to honor the intention aspect of the uniform interface. The

6-12 Fall 2007 Workshop

7 SUMMARY AND OUTLOOK

<repeatUntil>
<scope xmlns:rbpel="http://bpt.hpi.uni-potsdam.de/ns/rbpel"

xmlns:wadl="http://research.sun.com/wadl/2006/10">
<eventHandlers>
<rbpel:onMessage path="./item/{itemNumber}" messageExchange="itemShow">
<wadl:method name="GET" />
<!-- return representation of item $itemShow.itemNumber -->

</rbpel:onMessage>
<rbpel:onMessage path="./item/{itemNumber}" messageExchange="itemUpdate">
<wadl:method name="PUT" />
<!-- update and return item $itemUpdate.itemNumber -->

</rbpel:onMessage>
<rbpel:onMessage path="./item/{itemNumber}" messageExchange="itemDelete">
<!-- delete item $itemDelete.itemNumber -->

</rbpel:onMessage>
<rbpel:onMessage path="./item/new" messageExchange="createItem">
<wadl:method name="POST" />
<sequence>
<assign><copy>
<from>rbpel:generate-uri("./item/{itemNumber}")</from>
<to variable="newItemURI" />

</copy></assign>
<rbpel:reply messageExchange="createItem">
<rbpel:status>201</rbpel:status>
<rbpel:param name="Location" style="header">$newItemURI</rbpel:param>

</rbpel:reply>
</sequence>

</rbpel:onMessage>
</eventHandlers>
<pick>
<rbpel:onMessage path="./checkout" messageExchange="transfer_to_payment">
<wadl:method href="/wadl/post/method/definition" />
<sequence>
<assign>
<copy><from>true</from><to>$commitRequest</to></copy>

</assign>
<rbpel:reply messageExchange="transfer_to_payment">
<rbpel:status>303</rbpel:status>
<rbpel:param name="Location" style="header">"./checkout"</rbpel:param>

</rbpel:reply>
</sequence>

</rbpel:onMessage>
<onAlarm><for>’2h’</for><exit/></onAlarm>

</pick>
</scope>
<condition>$commitRequest</condition>

</repeatUntil>

Figure 8: Complete example of ”Add Items” activity

Fall 2007 Workshop 6-13

Deconstructing Resources

author believes such a language to be an important contribution to web application
development and will put his future focus towards shaping such a language.

References

[1] A. Arkin, S. Askary, S. Fordin, W. Jekeli, K. Kawaguchi, D. Orchard, S. Pogliani,
K. Riemer, S. Struble, P. Takacsi-Nagy, I. Trickovic, and S. Zimek. Web service
choreography interface (wsci). Technical report, W3C, 2002.

[2] A. Banerji, C. Bartolini, D. Beringer, V. Chopella, K. Govindarajan, A. Karp,
H. Kuno, M. Lemon, G. Pogossiants, S. Sharma, and S. Williams. Web services
conversation language (wscl). Technical report, W3C, 2002.

[3] T. Berners-Lee. Www: Past, present, and future. IEEE Computer, 29(10):69–77,
Oct. 1996.

[4] S. Burbeck. The tao of e-business services, 2000. http://www-128.ibm.com/

developerworks/library/ws-tao/.

[5] Jim Clark and Murata Makoto. Relax ng specification. Technical report, OASIS
Open, 2001.

[6] Francisco Curbera, Matthew Duftler, Rania Khalaf, and Douglas Lovell. Bite:
Workflow composition for the web. In Service-Oriented Computing – ICSOC 2007,
2007. http://www.springerlink.com/content/0575313210780121/.

[7] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. Hypertext transfer protocol – http/1.1. Technical report, The Internet Engi-
neering Task Force, 1999. http://www.ietf.org/rfc/rfc2616.

[8] Roy Thomas Fielding. Architectural styles and the design of network-based soft-
ware architectures. PhD thesis, University of California, Irvine, 2000. Chair-
Richard N. Taylor, http://www.ics.uci.edu/∼fielding/pubs/dissertation/

top.htm.

[9] Dana Gardner. Soa wikis, soa for saas, and the future of business applications.
Technical report, Interarbor Solutions, 2007. http://blogs.zdnet.com/Gardner/
?p=2395.

[10] J.C. Gregorio, M.H. Hadley, M.N. Nottingham, and D.O. Orchard. Uri tem-
plate. Technical report, IETF, 2008. http://bitworking.org/projects/

URI-Templates/.

[11] K. Grønbaek and R. H. Trigg. Design issues for a dexter-based hypermedia sys-
tem. Communications of the ACM, 37(2), p. 41-49, Feb. 1994.

6-14 Fall 2007 Workshop

REFERENCES

[12] Alexander Großkopf. xbpmn. formal control flow specification of a bpmn-based
process execution language. Master’s thesis, Hasso Plattner Institut and SAP
Research Brisbane, 2007.

[13] Marc Hadley. Web application description language, November 2006. https:

//wadl.dev.java.net/.

[14] Pat Helland. Life beyond distributed transactions: an apostate’s opinion. In
Third Biennial Conference on Innovative Data Systems Research, 2007. http:

//www-db.cs.wisc.edu/cidr/cidr2007/papers/cidr07p15.pdf.

[15] Alan Kay. On the meaning of ”object-oriented programming”, July 2003. http:

//www.purl.org/stefan ram/pub/doc kay oop en.

[16] C. Matthew, Ken Laskey, Francis McCabe, Peter F Brown, and Rebekah Metz.
Reference Model for Service Oriented Architecture 1.0. Technical Report
Committee Specification 1, OASIS Open, 2006. http://www.oasis-open.org/

committees/tc home.php?wg abbrev=soa-rm.

[17] Joerg Nitzsche, Tammo van Lessen, Dimka Karastoyanova, and Frank Leymann.
Bpel light. In 5th International Conference on Business Process Management
(BPM 2007). Springer, September 2007.

[18] L.Masinter T.Berners-Lee, R.Fielding. Uniform resource identifiers (uri): Generic
syntax. Technical report, The Internet Engineering Task Force, 1998. http://

www.ietf.org/rfc/rfc2396.txt.

[19] Henry S. Thompson, C. M. Sperberg-McQueen, Shudi Gao, Noah Mendelsohn,
David Beech, and Murray Maloney. Xml schema 1.1. Technical report, W3C, 2006.

Fall 2007 Workshop 6-15

FMC-QE - Case Studies

Stephan Kluth

stephan.kluth@hpi.uni-potsdam.de

This report summarizes two case studies, analyzed with the new modeling and
evaluation calculus FMC-QE. Both case studies could be seen as a Proof-of-Concept
for FMC-QE. The first case study is a comparison of the performance behavior of a
real system, its simulation and the FMC-QE model of this system. With this SAP-
based case study it could be seen, that the difference between the estimated and the
measured performance values is small and so the different techniques (measurements,
simulation and modeling) complete each other in the different development phases of
a system. In the second case study, the Axis2 Web service framework is structured
analyzed, operationally measured and modeled for quantitative evaluation. This case
study shows, that FMC-QE is suitable to model and evaluate complex Service-oriented
Architectures.

1 Introduction

In order to achieve a good scalability and the ability to preserve Service Level Agree-
ments, performance modeling of Service-oriented Systems is important in all phases
of the development. From this point of view, the performance modeling and analy-
sis calculus FMC-QE (Fundamental Modeling Concepts for Quantitative Evaluation)
is proposed. After an introduction into the basic concepts and definitions, as well as
the presentation of the graphical notations of FMC-QE at the Spring 2007 Research
School Workshop [5], this paper now presents two case studies, analytically modeled
with FMC-QE.

The first case study1, summarized in section 3, compares the performance values
of a real system, its simulation and the model of this system, as a Proof-of-Concept for
FMC-QE and the simulation framework Perfact. This work was based on the results of
the “Perfact, too” Bachelor’s Project, that the author co-supervised. In the paper [8],
written together with Marcel Seelig, Flavius Copaciu, Tomasz Porzucek, Nico Naumann
and Steffen Kuehn, the author was responsible for the modeling part of the case study
on the basis of the Bachelor’s Project Report. Because of this fact, the performance
modeling, not the simulation, is in the scope of this report.

1Parts of the work presented in section 3 will also be published in [8]: Marcel Seelig, Stephan Kluth,
Flavius Copaciu, Tomasz Porzucek, Nico Naumann, and Steffen Kuehn. Comparison of performance
modeling and simulation - a case study. Accepted at the 15th IEEE International Conference on Engi-
neering of Computer-Based Systems (ECBS 2008), Belfast, Northern Ireland.

Fall 2007 Workshop 7-1

FMC-QE - Case Studies

The second case study2, examined in cooperation with Flavius Copaciu, Tomasz
Porzucek and Werner Zorn, summarized in section 4, presents the modeling of the
Axis2 Web Service Framework. This work was another FMC-QE Proof-of-Concept.
The main contribution of the author was the performance modeling and because of
that, this part of the paper [1] is in the scope of this report.

The outline of this report is defined as followed: In order to support the reader in the
understanding of the further sections, section 2 introduces FMC-QE, its diagram types
and the FMC-QE Tableau. After that introduction, the case studies are summarized in
section 3 and section 4. Finally conclusions and an outlook are given in section 5.

2 FMC-QE

2.1 Introduction

The Fundamental Modeling Concepts for Quantitative Evaluation (FMC-QE) [10, 11]
is a modeling and evaluation calculus that originates from and extends the model-
ing technique Fundamental Modeling Concepts (FMC) [6,9], by quantitative evaluation
paradigms. In FMC-QE, the hierarchical service request is in the main focus of the
modeling. Coming from the service request structures, the server structures and the
dynamic behavior are also modeled. In order to adapt the different diagram types of
the three dimensional description space, FMC-QE integrates ideas, results and advan-
tages of the Queueing Theory and the Time Augmented Petri Nets.

Within the Queueing Theory mathematical approaches and rules to determine the
performance measurements of systems are defined. This methodology mainly focuses
on modeling of traffic flows within static structures, while the dynamic behavior is only
implicitly modeled. The modeling of dynamic behavior using Queueing Theory is sub-
optimal, because control flows are normally not considered. FMC-QE uses and ex-
tends the results of the Queueing Theory in order to define the static structures. Also
the mathematical rules and laws of the Queueing Theory are used and adapted for the
hierarchical calculations in FMC-QE.

State discrete Time Augmented Petri Nets, especially colored Time Augmented
Petri Nets, are another foundation of FMC-QE. With this methodology, the performance
analyst is able to describe complex problems in a detailed manner. The calculation of
the performance measurements with Time Augmented Petri Net models is algorith-
mically complex and the modeling often abstracts from server structure beneath. In
comparison to Time Augmented Petri Nets, the Petri Nets in FMC-QE are only one
view within the three-dimensional FMC-QE view on the performance behavior of the
systems. Here the systems are modeled within the scope of the hierarchical service
request structures and so the dynamic behavior and the control flows, defined in the
the Petri Nets complete the whole model together with the Entity Relationship Diagrams

2Parts of the work presented in section 4 have also been published in [1]: Flavius Copaciu, Stephan
Kluth, Tomasz Porzucek, and Werner Zorn. Hierarchical modeling of the Axis2 web services framework
with FMC-QE. In Third International Conference on COMmunication Systems softWAre and middlewaRE
(COMSWARE 2008), Bangalore, India, January 2008.

7-2 Fall 2007 Workshop

2 FMC-QE

and the Block Diagrams.
After modeling the performance aspects of the systems in the FMC-QE diagrams,

different performance parameters are used as input for the FMC-QE Tableau. In this
hierarchical balance sheet, based on Little’s Law [7] and the Forced Traffic Flow Law [4],
the performance values of the system are then derived on the assumption of stationary
processes.

A main feature of FMC-QE is the three-dimensional hierarchical view on the perfor-
mance behavior of a system. These three views are:

• The service request structures in Entity Relationship Diagrams,

• The dynamic behavior in Petri Nets and

• The static (server) structures in Block Diagrams.

While the main modeling focus of the Queueing Theory is on the static structures
and the dynamic behavior is implicitly defined and in Time Augmented Petri Nets vice
versa, in FMC-QE both aspects are modeled from the view of service requests. In
opposite to Queueing Theory or Time Augmented Petri Nets, FMC-QE consists of not
only one but three diagram types in order to separate different aspects of the system.
The different diagrams are derived from FMC and described in section 2.2.

FMC-QE is designed to model the steady state of a system, from the view of the
service request. As such it assumes, that the analyzed system fulfills all the steady
state conditions.

2.2 Diagram Types

FMC-QE Entity Relationship Diagrams The modeling of the service request and the
hierarchical structure of the service request is the main focus in FMC-QE. This struc-
ture and the mappings between the three diagrams are defined in Entity Relationship
Diagrams. Beside this, the traffic flow coefficients and quantitative parameters of the
service requests, are also defined in this diagram.

Service Request A

Server: S1

Service Request A.1

Server: S2

[1]

[2]vint = 2

Service Request A.2

Server: S3

[1]

[2]vint = 1

Figure 1: FMC-QE Entity-Relationship Diagram Example

Figure 1 shows the structure of a simple service request. In this example, a service
request A, executed by server S1 is hierarchically decomposed into two (vint = 2) sub-
requests A.1, served by server S1 and one subrequest A.2, computed by server S2.
The service request A is positioned at the hierarchical level [1] (the topmost) and the
service requests A.1 and A.2 are at the hierarchical level [2]. In order to provide the

Fall 2007 Workshop 7-3

FMC-QE - Case Studies

mappings to the other diagrams, in the Petri Net, the action has the same index as in
the Entity Relationship Diagram and the mappings to the static structures in the Block
Diagram are done via the Server attribute.

FMC-QE Block Diagrams The static structures are described in Block Diagrams,
which are a time extended version of the FMC Block Diagrams. In this diagram type,
aspects and ideas of the Queueing Theory are modeled. In comparison to Queueing
Theory, the views on the static structures in FMC-QE Block diagrams are an additional
view on the system. Also the hierarchical structure of the systems is considered in the
Block Diagrams and there is a strict distinction of control and service stations, as well
as active and passive components.

Channel

 Storage1

S3S2

Channel

S1

Figure 2: FMC-QE Block Diagram Example

Figure 2 describes a system of three active components (servers). Server S1 is con-
nected to server S2 and S3 through a channel (volatile passive components). Addition-
ally server S2 is connected with a storage (non volatile passive component) Storage1.
With the help of this diagram, service request independent service times, like speed of
a processor, could be defined.

FMC-QE Petri Nets The dynamic behavior is modeled in Petri Nets. These Petri
Nets also have their origin in the FMC Petri Nets, but are extended by the aspects of
performance evaluation. As a specialty, in the Petri Net, the gray places carry opera-
tional tokens (the service requests and responses) and the white places carry control
tokens.

Service Request A

Service
Request
A.1

Service
Request
A.2

[1]

[2][2]

Figure 3: FMC-QE Petri Net Example

In figure 3 a service request A with two inner service requests A.1 and A.2 is shown.

7-4 Fall 2007 Workshop

2 FMC-QE

In the above example, the parallelism of service request A.1 is infinite and the paral-
lelism of service request A.2 is one with an infinite queue.

2.3 FMC-QE Tableau

Table 1: FMC-QE Tableau
Nges 20
λbott = min (Bj) 20,0000
1>f = λbott/λ 0,9000
λ 18,0000

Hierarchy Level Service
[bb] Request SRqi p[bb-1],i vi,ext

[bb-1] vi,int
[bb] vi

[bb] Serveri Xi μi =mj/Xi λi ni,q ni,s ni=ni,q+ni,s Ri ρi

2 Service Request A.2 1 1 3 3 S3 0,0500 20,0000 54,0000 8,1000 0,9000 9,0000 0,17 0,9000
2 Service Request A.1 1 1 1 1 S2 0,0300 33,3333 18,0000 0,0000 1,6200 1,6200 0,09
1 Service Request A 1 1 1 1 0,0800 18,0000 8,1000 2,5200 10,6200 0,59
1 Generate Request 1 1 1 1 Ext. 0,5211 18,0000 18,0000 0,0000 9,3800 9,3800 0,52 1,0000

Server Xj mj μj*mj μj λj ρj p0,j nj,q nj,s nj Rj

S3 0,0500 1 20 20,0000 18,0000 0,9000 0,1000 8,1000 0,9000 9,0000 0,5000
S2 0,0300 ∞ 33,3333 54,0000 1,6200 1,6200 0,0300

Experimental Parameters:

Server Section M/M/m bzw. M/M/∞

Mapping Dynamic Evaluation SectionService Request Section

The FMC-QE Tableau, shown in table 1, is a hierarchical balance sheet used for
the performance evaluation of FMC-QE models. The Tableau consists of three linked
tables. The main mathematical support is based on Little’s Law [7] and the Forced
Traffic Flow Law [4].

The upper table in table 1 defines experimental parameters, like overall number of
service requests Nges, bottleneck throughput λbott (derived in tableau), desired bottle-
neck utilization f and the overall arrival rate λ.

The table in the middle of table 1 defines and evaluates the quantitative parameters
of the service request. In this table, for every (sub)request the following parameters or
values are defined or derived:

• [bb] – Hierarchy level - the hierarchical level of the request as shown in the FMC-
QE diagrams;

• SRqi – Service request - the non-ambiguous name of the request;

• p[bb−1],i – Routing probability from the hierarchical
higher request to this request;

• v
[bb−1]
i,ext – Absolute value of the traffic flow coefficient on the next hierarchical level;

• v
[bb]
i,int – Value of the traffic flow coefficient relative to the next hierarchical level;

• v
[bb]
i – Absolute value of the traffic flow coefficient;

• Serveri Corresponding server;

• Xi – Measured service time for every request;

Fall 2007 Workshop 7-5

FMC-QE - Case Studies

• µi – Maximal possible service rate;

• λi – Arrival rate for this request - hierarchically derived - λi = λ ∗ v
[bb]
i ;

• ni,q = nj,q ∗ (Xi/Xj) – Average number of queued requests;

• ni,s = nj,s ∗ (Xi/Xj) – Average number of requests in service;

• ni = ni,q + ni,s – Average number of requests;

• Ri = ni/λi – Average response time;

The lower table is used to describe the performance parameters of the static struc-
tures (the servers). The following parameters and values are used or derived in the
table:

• Server – labels every server;

• Xj = Σi(Xi) – Calculated service time ;

• mj – Multiplicity of the serverj;

• µj ∗mj – Service rate of serverj ;

• µj = 1/Xj – Service rate for one server in serverj;

• λj – Arrival rate at serverj;

• ρj = λj/(µj ∗mj) – Utilization of serverj;

• p0,j – Probability that no service request is in processing;

• nj,q – Average number of queued requests in serverj;

• nj,s – Average number of requests in service in serverj;

• nj – Average number of requests in serverj;

• Rj – Average response time.

The last five parameters are calculated according to the M/M/m and M/M/∞ formu-
las [3].

After setting up that Tableau, it is easy to generate “What if” scenarios, in order to
predict the behavior of the system.

7-6 Fall 2007 Workshop

3 ERMF CASE STUDY

3 ERMF Case Study

3.1 Overview

The system modeled in paper [8] is a dynamic, Web service based, alert generation
system called Emergency Risk Management Framework (ERMF). Originally the system
was developed as case study of SAP Research France. Within a Bachelor’s Project of
the HPI, this case study was modeled, measured and simulated.

The sketch of the flow in the system is as follows: Due to dynamic defined rules,
some Web services are called from the system. These Web services deliver environ-
ment data with which alerts could be generated.

ERMF System

Control Unit

ECA Engine

Controller

Rule Engine

Web Service Proxy

R

R

R

Knowledge Base

TimerApplicaton

(LoadGenerator)

Weather Server

Action Performer

R

R

R

Traffic Server

R

Figure 4: ERMF - Static Structure

Figure 4 shows the static structures of the system and its environment. The Timer
Application generates the service requests for the system. The different service re-
quests are then received by the Control Unit and dispatched for further processing.
The main part of the system is the ECA Engine (Event-Condition-Action Engine). This
component is responsible for applying the right rules in order to generate the risk esti-
mation. This is done by choosing the most relevant Web services and evaluating their
responses together with the rules. In this case study, the used public domain Web
services are a weather forecast and a traffic information service. The responses of the
ECA Engine are passed to the Action Performer through the Control Unit. Finally the
alert is generated in the Action Performer.

The test platform was provided by the SAP AG and consists of the SAP NetWeaver
Developer Studio 2004s as a development environment and the SAP Web Application
Server 6.40 as server.

Fall 2007 Workshop 7-7

FMC-QE - Case Studies

3.2 Service Request Structure and Dynamic Behavior

Generate Request

- Server: Timer Appl.
v = 1

[1]

1

[1]

requests

Make Forecast

- Server: ERMF-System

[1]

[2]vint = 1

Initialize Request
- Server: Control Unit

Generate Alert
- Server: Action Performer

Evaluate Rules and Call Web Services
- Server: ECA-Engine Controller

Determine Mappings
- Server: ECA-E. Rule Engine

Evaluate Ruleset
- Server: ECA-E. Rule Engine

Call Web Services
- Server: ECA-E. Web Service Proxy

Traffic Service
- Server:

Traffic Server

Weather Service
- Server:

Weather Server

[1]

[2]vint = 1

[1]

[2]vint = 1

[2]

[3]vint = 1

[2]

[3]vint = 1

[2]

[3]vint = 1

[3]

[4]vint = 1

[3]

[4]vint = 1

Figure 5: ERMF - Service Request Structure

[1]
Generate
Request

Call Web Services

Traffic
Service

Weather
Service

Determine
Mappings

Evaluate
Ruleset

Evaluate Rules and Call Web Services

Generate
Alert

Initialize
Request

Make Forecast
[1]

[2]

[2] [2][3]

[3]

[3][4] [4]

Figure 6: ERMF - Dynamic Behavior

Figure 5 and figure 6 illustrate the service structure and the dynamic behavior of the
system. These two diagrams have the same hierarchies and complement each other.
While the whole structure with traffic flow coefficients and the corresponding servers is
shown in the Entity-Relationship Diagram, the dynamic flow, with parallelism and the
right order is defined in the Petri Net.

As presented in figure 5 the Make Forecast request is the topmost request, which
is then hierarchically decomposed into Initialize Request, Evaluate Rules and Call Web
Services and Generate Alert requests. Accordingly the Make Forecast transition in the
dynamic structure (figure 6) is decomposed into a sequence of these three transitions.
Furthermore the Evaluate Rules and Call Web Services request was decomposed as
shown in figure 5 and figure 6.

3.3 Measurements

The original ERMF source code was modified by including a measurement mechanism
in order to provide measurements as a basis for the simulation and analysis, as well as
for the comparison of the obtained results. The events handled by the ERMF framework
are artificially generated by a so called Timer Application. These events are traced

7-8 Fall 2007 Workshop

3 ERMF CASE STUDY

throughout the system on a number of measurement points where the trace data is
asynchronically written to a database for later evaluation. For measurements on the
real system and during the simulation, the same measurement points where used.
Thereby, any influence on the systems performance through the tracing is equal on
both results.

250

275

300

325

350

0 100 200 300 400 500 600 700

Experiment number

Ti
m

e
[m

s]

Figure 7: ERMF - Response Times - Traffic Service

400

450

500

550

600

0 10 20 30 40 50 60

Experiment number

Ti
m

e
[m

s]

Figure 8: ERMF - Response Times - Weather Service

The charts in figures 7 and 8 show the response times of the traffic and weather ser-
vices with the corresponding confidence intervals (95%) for average of 285.8± 1.09ms
and 454.91± 8.21ms. The discrete values are a result of measurement resolution.

3.4 Analysis

The mean values obtained from the experimental data were used as input parameters
for model evaluation.

Fall 2007 Workshop 7-9

FMC-QE - Case Studies

Table 2: ERMF - Tableau
Nges 3
λ 1,0000

Hierarchy Service
level Request SRqi p[bb-1],i vi,ext

[bb-1] vi,int
[bb] vi

[bb] Serveri Xi μi =mj/Xi λi ni,q ni,s ni=ni,q+ni,s Ri
[bb]

2 Generate Alert 1,0 1,0 1,0 1,0 ERMF System (Action Performer) 0,010 100,000 1,000 0,001 0,010 0,011 0,011
3 Evaluate Ruleset 1,0 1,0 1,0 1,0 ERMF System (ECA Engine Rule Engine) 0,150 6,667 1,000 0,022 0,150 0,172 0,172
4 Weather Service 1,0 1,0 1,0 1,0 Weather Server 0,470 1,000 0,000 0,470 0,470 0,470
4 Traffic Service 1,0 1,0 1,0 1,0 Traffic Server 0,300 1,000 0,000 0,300 0,300 0,300
3 Call Web Services 1,0 1,0 1,0 1,0 0,770 1,299 1,000 0,000 0,770 0,770 0,770
3 Determine Mappings 1,0 1,0 1,0 1,0 ERMF System (ECA Engine Rule Engine) 0,200 5,000 1,000 0,029 0,200 0,229 0,229
2 Evaluate Rules and Call WS 1,0 1,0 1,0 1,0 1,120 1,000 0,050 1,120 1,170 1,170
2 Initialize Request 1,0 1,0 1,0 1,0 ERMF System (Control Unit) 0,350 2,857 1,000 0,050 0,350 0,400 0,400
1 Make Forecast 1,0 1,0 1,0 1,0 1,480 1,000 0,102 1,480 1,582 1,582
1 Generate Request 1,0 1,0 1,0 1,0 Timer Application 1,418 1,000 1,000 0,000 1,418 1,418 1,418

Server Xj mj μj*mj μj λj ρj p0,j nj,q nj,s nj Rj

Traffic Server 0,300 ∞ 3,333 1,000 0,000 0,300 0,300 0,300
Weather Server 0,470 ∞ 2,128 1,000 0,000 0,470 0,470 0,470
ERMF System 0,710 2 2,817 1,408 1,000 0,355 0,476 0,102 0,710 0,812 0,812

Server Section M/M/m resp. M/M/∞

Experimental Parameters:

Service Request Section Mapping Dynamic Evaluation Section

Table 2, shows the FMC-QE Tableau of ERMF case study. In comparison to table 1,
no bottleneck throughput λbott and no desired bottleneck utilization f is defined in this
Tableau, because, in order to adjust the arrival rate to the arrival rates of the simulation
and the real system, it is easier to define λ directly instead of defining it via f - with the
risk to define illegal values (λ > λbott).

3.5 Simulation

For the simulation, the Perfact framework, developed in the Bachelor’s Project Perfact
and Perfact, too, is used. More informations of this simulation framework can be found
in [2] and [8]

3.6 Comparison of the Performance Values

Figure 9 shows a comparison between simulated results, the calculated results and
measurements of the real system. The values are computed by changing experimen-
tal data in the FMC-QE Tableau and running experiments in the real system and the
Perfact simulation. The calculated results are comparable as long as the system is
operating under normal conditions (ρ < 1). Running at its limits (ρ ≥ 1), the calculation
predicts infinite response times due to the mathematical formulas of Queueing Theory,
whereas the real system crashes because of buffer overflows. Similarly the simula-
tion predicts invalid values. In this case, the calculated results of FMC-QE helped in
understanding the system crashes due to overload and in finding an error in the imple-
mentation of Perfact.

7-10 Fall 2007 Workshop

4 AXIS2 CASE STUDY

500

2000

1500

1000

3500

3000

2500

4500

4000

5000

5500

321

Measurements Simulation (Perfact) Analytical (FMC-QE)

2,81

In
v
a
lid
 D
o
m
a
in

R
e
s
p
o
n
s
e
T
im
e
 [
m
s
]

Number of Parallel Clients

Figure 9: ERMF - Result Comparison

4 Axis2 Case Study

4.1 Axis2 Model Overview

As seen in section 2, a FMC-QE model consists of three diagrams: the Block Diagram,
the Petri Net and the Entity Relationship Diagram. Using these diagrams types, a
model of an Axis2 Web service Framework instance was developed and analyzed.

Axis2 can be used in two different ways, a standalone mode or deployed inside
an application server. Due to the limitations of the standalone implementation (e.g.
threading problems) it is usually deployed on application servers as a web application.
This second case is shown in Fig. 10.

The diagram describes the components used, when new service requests are re-
ceived. After the requests pass the Admission Control, they are queued in the Request
Queue. Then the Dispatcher is responsible for allocating available threads from the
Thread Pool for processing the service requests. The allocated thread performs all the
processing required by the service request and is returned to the pool as soon as the
processing has ended. The size of the thread pool is not static, it grows during the
start phase, then it stabilizes between a minimum and a maximum thread count. New
threads can be spawned to deal with usage peeks and idle threads are removed from
the pool after a certain period of time. As soon as the processing of a service request
has been completed, the service response is sent. The Departure Control shows the
processing performed upon outgoing service responses.

The dynamic behavior of the system is presented in Fig. 11. The external world,
representing the clients generating service requests, is modeled via the Generate Re-

Fall 2007 Workshop 7-11

FMC-QE - Case Studies

Axis2 Web Application (Inside Tomcat Application Server)

Thread Pool

Worker Thread

Client Application

Client Logic

Axis2

Transport Infrastructure

Departure

Control

Business Logic

Request

Queue

Dispatcher

Admission

Control

InFlow Handler OutFlow Handler

InFlow Handler OutFlow Handler

Figure 10: Axis2 Based System - Block Diagram

quests transition. This transition is at hierarchical level [1] just as the Supervise and
Execute Service Request transition, used to model the whole Axis2 request process-
ing. The processing threads are represented using the hierarchical level [2] transition
Execute Service, while the processing flows and the business logic associated with
the service are represented via the corresponding level [3] transitions. In section 4.2,
the two processing flows are presented in detail. The service requests queue is rep-
resented by the infinite place between the level [1] and level [2] transitions. By default
Axis2 uses an infinite queue, as shown in figure 11. If a specific queue size is set, the
model has to be adapted by replacing the infinite place with finite, multi-token one.

The service request structure is presented in Fig. 12. This figure describes the
hierarchical structure of the modeled Axis2 Service Request. This diagram describes
among others the mapping between Petri Net transitions and agents in the Block Dia-
gram, for example the Execute Service is handled by the Worker Thread. Besides this,
the hierarchical levels and traffic flow coefficients are presented.

4.2 Axis2 Flows

In the Axis2 framework, the most important parts are the four SOAP processing flows
that are part of the framework core: InFlow, OutFlow, InFaultFlow and OutFaultFlow.
The first two are responsible for input and respectively output processing, while the
last two are responsible for input and output processing in the case that errors have
appeared. The error processing flows are quite similar to the regular ones and no

7-12 Fall 2007 Workshop

4 AXIS2 CASE STUDY

[2]
Execute Service (Thread 1)

[3]

Handle

OutFlow

[3]
Execute
Business
Logic

[3]

Handle

InFlow

Supervise and Execute Service Request
[1]

[1]

Generate

Request

Execute Service (Thread m)
[2]

Figure 11: Axis2 Dynamic Behavior - Petri Net

Generate Request

- Server: External Source
v = 1

[1]

1

[1]

requests

Supervise and Execute Service Request

- Server: Server

Execute Service

- Server: Worker Thread

[1]

[2]vint = 1

Handle InFlow

- Server: InFlow Handler

Execute Business Logic
- Server: Business Logic

Handle OutFlow

- Server: OutFlow Handler

[2]

[3]vint = 1

OperationOut

Phase
Determine Policy MessageOut EncryptTransport

[3]

[4]vint = 1

Dispatch
Based on

Request URI

[4]

[5]vint = 1

Dispatch
Based on

SOAP Action

Decrypt PreDispatch Dispatch

Dispatch
Based on
Address

Dispatch
Based on

URI Operation

Dispatch
Based on SOAP
MessageBody

Dispatch
Based on

HTTP Location

Dispatch

Instance

OperationIn

Phase

[2]

[3]vint = 1

[2]

[3]vint = 1

[3]

[4]vint = 1

[3]

[4]vint = 1

[3]

[4]vint = 1

[3]

[4]vint = 1

[3]

[4]vint = 1

[3]

[4]vint = 1

[3]

[4]vint = 1

[3]

[4]vint = 1

[4]

[5]vint = 1

[4]

[5]vint = 1

[4]

[5]vint = 1

[4]

[5]vint = 1

[4]

[5]vint = 1

[4]

[5]vint = 1

Figure 12: Axis2 Hierarchical Service Request - Entity Relationship Diagram

longer considered.
The Petri Net, detailing the input flow is presented in figure 13. This flow is the most

complex one, spawning over three hierarchy levels, from level [3] to level [5].
The output flow, presented in figure 14, is simpler then the input flow and has only

two hierarchical levels. This simplification is explained by the fact that the output flow
has to take into account parameters that have been set during the input flow and by
this the range of possible changes that can appear has been reduced. For example,
if during the input flow the transport protocol has been decided as HTTP, the output
flow will use this information and will not have to do any extra processing in order to
determine a transport stack.

When comparing the graphical representation from Fig. 11 and 13 with the ones
found in [5], [10] or [11], it can be noticed that the transitions have been simplified.
This has been done by removing the place representing the queued service requests
waiting to be served. This simplification is possible because there are no queues in the

Fall 2007 Workshop 7-13

FMC-QE - Case Studies

[4]
Transport

[5]
Dispatch
Based on

Request URI

[5]
Dispatch
Based on

SOAP Action

[4]

Decrypt

[4]

PreDispatch

[4]
Dispatch

[5]
Dispatch
Based on
Address

[5]
Dispatch
Based on

URI Operation

[5]
Dispatch Based

on SOAP
MessageBody

[4]

OperationIn

Phase

[3]
Handle InFlow

[5]
Dispatch
Based on

HTTP Location

[5]

Dispatch

Instance

Figure 13: Axis2 Input Flow - Petri Net

[3]
Handle OutFlow

[4]

OperationOut

Phase

[4]

Determine

Policy

[4]

MessageOut

[4]

Encrypt

Figure 14: Axis2 Output Flow - Petri Net

processing flows. All the transitions belonging to the same thread will start executing
as soon as the operation corresponding to the previous transition has finished. Inside
Axis2 the only place where service requests are being queued is the queue in front of
the Thread Pool. Another simplification was done by removing the traffic flow coeffi-
cients. This is possible since all the transformations are done one to one, that means
that the coefficients are always 1 and have been removed from the graphs. However,
the coefficients are used when building the FMC-QE Tableau, as shown in section 4.5.

4.3 Extending the Axis2 Model

One of the strengths of Axis is its flexibility and the possibilities to customize its behav-
ior. The core of the system, presented in section 4.2 can be easily extended in order to
incorporate new WS-∗ extension, deployed as modules that can be enabled or disabled
individually for each service or group of services.

When a new module is added to the handler chain and all services make use of that
module, extending the model is a trivial task. Such changes can be easily reflected in
the dynamic structure of the model by adding new handlers or phases in the existing
handler chains, according to the specification of the newly activated module.

However, it is also possible to have specific modules activated and used only by
some of the deployed Web services, as mentioned before. In order to cover such a
case, a decision-making part has to be integrated in the model, as illustrated in Fig. 15,

7-14 Fall 2007 Workshop

4 AXIS2 CASE STUDY

where the Encrypt handler is not mandatory but optional. If encryption is activated, the
service responses will be processed via the Encrypt handler. If encryption is not used,
no processing will be performed, as indicated by the no-operation (NOP) transition.

[4]
Handle Security (Additional Handler)

Encryption

 Activated

(e.g.: p=0,6)

Encryption

not activated

(e.g.: p=0,4)

[5]

Encrypt

[4]

MessageOut

Handle OutFlow

Figure 15: Axis2 - Optional handlers

For this situation it is necessary to determine the usage probability of the optional
handler and to extend the model to incorporate this, just as in Fig. 15. This solution is
appropriate if most of the services follow one branch and only a small percent follow
the other. The drawback of this solution is the fact that, when there are many optional
handlers, treating them through averages leads to a loss of representativity of the final
results. This can be considered acceptable when such cases account only for a small
amount of the total service requests.

The second solution to this problem implies transforming the problem into a multi-
class one. Services that use the same path or closely related paths through the handler
chain can be grouped together in service classes and the modeling can be done for
these classes. Both of these approaches can be used with FMC-QE.

4.4 Testbed Description

In order to perform the performance evaluation and prediction using FMC-QE, a bench-
mark of a server running Axis2 has been developed. The benchmarking has been done
by using the Java method call System.getNano(). According to JAVA API documenta-
tion the method returns the current value of the most precise available system timer,
in nanoseconds and provides nanosecond precision, but not necessarily nanosecond
accuracy. On Mac OS X, this method delivers results with micro second precision. The
Axis2 code has been extended with measuring points connected to each handler.

The server instance runs on a MacBook Pro machine with a Intel Core 2 Duo CPU
at 2.16 GHz and 2 GB RAM. The machine runs Axis2 version 1.2 inside a Tomcat

Fall 2007 Workshop 7-15

FMC-QE - Case Studies

6.0.10 application server on a Mac OS X 10.4.10 with Java 1.5.0 07. The experiments
were repeated 1.000 times and the mean value corresponding to each handler has
been calculated. For the experiments, the service Version available by default with
each Axis2 distribution, has been invoked.

4.5 Tableau

Table 3: Axis2 - Tableau
Nges 15
λbott = min (Bj) 0,0053
1>f = λbott/λ 0,9000
λ 0,0047
CPU 1

Hierarchy Service
level Request SRqi p[bb-1],i vi,ext

[bb-1] vi,int [bb] vi
[bb] Serveri Xi μi =mj/Xi λi ni,q ni,s ni=ni,q+ni,s Ri ρi

[bb]
4 Encrypt 1 1 1 1 Worker Thread 0,58 8,6207 0,0047 0,0000 0,0027 0,0027 0,58 0,0005
4 Message Out 1 1 1 1 Worker Thread 4,45 1,1236 0,0047 0,0000 0,0211 0,0211 4,45 0,0042
4 Determine Policy 1 1 1 1 Worker Thread 0,4 12,5000 0,0047 0,0000 0,0019 0,0019 0,40 0,0004
4 OperationOut Phase 1 1 1 1 Worker Thread 0,43 11,6279 0,0047 0,0000 0,0020 0,0020 0,43 0,0004
3 Handle OutFlow 1 1 1 1 5,8600 0,0047 0,0000 0,0278 0,0278 5,86
3 Execute Business Logic 1 1 1 1 Worker Thread 32,45 0,1541 0,0047 0,0000 0,1537 0,1537 32,45 0,0307
4 OperationIn Phase 1 1 1 1 Worker Thread 0,62 8,0645 0,0047 0,0000 0,0029 0,0029 0,62 0,0006
5 Dispatch Instance 1 1 1 1 Worker Thread 32,93 0,1518 0,0047 0,0000 0,1560 0,1560 32,93 0,0312
5 Dispatch Based on HTTP Location 1 1 1 1 Worker Thread 0,27 18,5185 0,0047 0,0000 0,0013 0,0013 0,27 0,0003
5 Dispatch Based on SOAP Msg Body 1 1 1 1 Worker Thread 0,1 50,0000 0,0047 0,0000 0,0005 0,0005 0,10 0,0001
5 Dispatch Based on URI Operation 1 1 1 1 Worker Thread 0,1 50,0000 0,0047 0,0000 0,0027 0,0027 0,58 0,0001
5 Dispatch Based on Address 1 1 1 1 Worker Thread 28,71 0,1742 0,0047 0,0000 0,1360 0,1360 28,71 0,0272
4 Dispatch 1 1 1 1 62,1100 0,0047 0,0000 0,2965 0,2965 62,59
4 PreDispatch 1 1 1 1 Worker Thread 5 1,0000 0,0047 0,0000 0,0237 0,0237 5,00 0,0047
4 Decrypt 1 1 1 1 Worker Thread 0,49 10,2041 0,0047 0,0000 0,0023 0,0023 0,49 0,0005
5 Dispatch Based on SOAP Action 1 1 1 1 Worker Thread 39,73 0,1258 0,0047 0,0000 0,1882 0,1882 39,73 0,0376
5 Dispatch Based on Request URI 1 1 1 1 Worker Thread 43,74 0,1143 0,0047 0,0000 0,2072 0,2072 43,74 0,0414
4 Transport 1 1 1 1 83,4700 0,0047 0,0000 0,3954 0,3954 83,47
3 Handle InFlow 1 1 1 1 151,6900 0,0047 0,0000 0,7208 0,7208 152,17
2 Execute Service 1 1 1 1 190,0000 0,0047 6,8624 0,9023 7,7647 1639,22
1 Supervise and Execute 1 1 1 1 190,0000 0,0047 0,0000 7,7647 7,7647 1639,22
1 Generate Request 1 1 1 1 1527,4495 0,0047 0,0047 0,0000 7,2353 7,2353 1527,45 1,0000

Server Name Xj mj μj*mj μj λj ρj p0,j nj,q nj,s nj Rj

Worker Thread 950,0000 5 0,005263158 0,0011 0,0047 0,9000 0,0050 6,8624 4,5000 11,3624 2398,7371

Experimental Parameters:

Server Section M/M/m

Mapping Dynamic Evaluation SectionService Request Section

The FMC-QE Tableau, shown in table 3, calculates the performance values of the
Axis2 model. A description of the calculations and different parts of the Tableau can be
found in section 2.3.

With the the help of the Tableau, performance predictions are easy to derive.

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

18,00

0 1 2 3 4 5 6
External Arrival Rate [SRq / s]

R
es

po
ns

e
Ti

m
e

[s
]

Figure 16: Axis2 - Response Times from FMC-QE Evaluation

7-16 Fall 2007 Workshop

4 AXIS2 CASE STUDY

Figure 16 shows the prediction of the response times of the whole system, evalu-
ated with FMC-QE.

0,00

0,50

1,00

1,50

2,00

2,50

3,00

0 5 10 15 20 25
Number of Service Requests (Nges)

Ex
te

rn
al

 T
im

e
[s

]

Figure 17: Axis2 - Increasing the Number of Service Requests

Figure 17 shows the dependence of Nges (the total number of service requests)
and Xext (the external service time) as a result of the Response Time Law Xext =
(Nges/Ai)−Rsys.

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

1,80

0 1 2 3 4 5 6

Number of CPUs
(- - - : Arrival Rate fix, —— : Utilization fix)

R
es

po
ns

e
Ti

m
e

[s
]

Figure 18: Axis2 - Increasing the Number of CPUs

In figure 18 the number of available CPUs is increased. Here, in the dashed line,
the arrival rate is fixed to the value of table 3 (λ = 0, 0047[ServiceRequests/ms]) and in
the solid line, the desired utilization of each server is fixed to the value in table table 3
(f = 0, 9).

During the evaluation differences have been noticed between the hierarchically esti-
mated service times and some measurements done at the phase level. Our hypothesis
is, that differences are due to Java object instantiation time, partially not taken into
account in our benchmark. Work is currently under going to in order to minimize this
differences.

Fall 2007 Workshop 7-17

FMC-QE - Case Studies

4.6 Summary

In this case study a large and complex system has been modeled using FMC-QE and
the methodology has proved suitable for modeling such systems and depicting their
hierarchical structure. The performance modeling of Axis2 has been done using mea-
surements from a test system. The results have confirmed the methodology and the
usability of FMC-QE for performance estimations.

After setting up the FMC-QE model and Tableau of Axis2, performance predictions
could be performed in a fast and simple way. A set of parameters, e.g probabilities,
service time or number of CPUs, can be changed in the Tableau and allow to investigate
the behavior of the system under a broad range of possible configurations.

5 Conclusions and Outlook

The two case studies show, that FMC-QE is suitable to describe complex service ori-
ented systems in its quantitative behavior. Also the FMC-QE Tableau with its hierar-
chies and easy computations is qualified for this type of systems. With this modeling
and evaluation technique developers and performance analysts are able to generate
“What if” scenarios for a better understanding of the the performance behavior of the
systems and developing of the architecture throughout the life cycle.

There is currently ongoing work focused on extending FMC-QE in order to increase
the range of problems that it can addressed. This includes improvement of the dia-
grams, developing systems transformations and enhancing the mathematical support.
It is of interest to see how other aspects of Service-oriented Computing, such as ser-
vice composition, can be modeled using FMC-QE and how performance estimations
can be done in such a context.

6 Acknowledgment

The author would like to thank Prof. Werner Zorn, Tomasz Porzucek and Flavius Co-
paciu for valuable discussions and cooperative work in FMC-QE. Especially for the
paper [8] the author wants to thank Marcel Seelig, Nico Naumann and Steffen Kuehn
and the other “Perfact, too” Bachelor’s Project members for the collaboration, as well as
SAP Research France, especially Cedric Ulmer, Volker Gersabeck and Martin Grund
for providing the case study, their support and valuable feedback during the develop-
ment phases of the Bachelor’s Project.

References

[1] Flavius Copaciu, Stephan Kluth, Tomasz Porzucek, and Werner Zorn. Hierar-
chical modeling of the Axis2 web services framework with FMC-QE. In Third
International Conference on COMmunication Systems softWAre and middlewaRE
(COMSWARE 2008), Bangalore, India, January 2008.

7-18 Fall 2007 Workshop

REFERENCES

[2] Gero Decker, Volker Gersabeck, Jan Schaffner, and Marcel Seelig. Architecture-
based performance simulation. Hong Kong, China, March 2007. IMECS.

[3] Donald Gross and Carl M. Harris. Fundamentals of Queueing Theory. John Wiley
& Sons, Inc., New York, 3rd edition, 1998.

[4] Raj Jain. The Art of Computer Systems Performance Analysis. Wiley, 1991.

[5] Stephan Kluth. FMC-QE - Positioning, Basic Definitions and Graphical Repre-
sentation. Presented at the Spring 2007 Workshop of the HPI Research School
on Service-Oriented Systems Engineering, Hasso Plattner Institute for Software
Systems Engineering, Potsdam, Germany, April 2007.

[6] Andreas Knöpfel, Bernhard Gröne, and Peter Tabeling. Fundamental Modeling
Concepts: Effective Communication of IT Systems. John Wiley & Sons, March
2006.

[7] John D. C. Little. A Proof of the Queueing Formula L = λ ∗ W . Operations
Research, 9:383–387, 1961.

[8] Marcel Seelig, Stephan Kluth, Flavius Copaciu, Tomasz Porzucek, Nico Nau-
mann, and Steffen Kühn. Comparison of performance modeling and simulation
- a case study. Accepted at the 15th IEEE International Conference on Engineer-
ing of Computer-Based Systems (ECBS 2008), Belfast, Northern Ireland.

[9] Peter Tabeling. Softwaresysteme und ihre Modellierung. Springer, Berlin, Heidel-
berg, 2006.

[10] Werner Zorn. FMC-QE - A New Approach in Quantitative Modeling. In Hamid R.
Arabnia, editor, International Conference on Modeling, Simulation and Visualiza-
tion Methods (MSV 2007) within WorldComp ’07, pages 280 – 287, Las Vegas,
USA, June 2007. CSREA Press.

[11] Werner Zorn. Hierarchische Modellierung basierend auf Bedienanforderungen.
In Paul Müller, editor, 21.DFN- Arbeitstagung über Kommunikationsnetze, Kaiser-
slautern, Germany, May 2007. University of Kaiserslautern.

Fall 2007 Workshop 7-19

Fall 2007 Workshop 8-1

A Matter of Trust

Rehab Al Nemr

rehab.alnemr@hpi.uni-potsdam.de

This report describes the research direction that I have been investigating in the past
five months. Starting from a security point of view, I explored some questions in
Service Oriented Architectures. Trust management appeared to be one of the major
ongoing research areas as the challenges are increased by the evolving nature of
open systems. In an environment where the system participants do not know each
other, a protocol should be defined to start the interaction between them. In order to
do that they have to start building some kind of mutual trust level. Building,
maintaining, dealing and raising this trust brings up lots of questions in the
information system and security communities.

Keyword List
Trust, Trust negotiation, Security, Policy, Semantic Web.

1 Introduction

Due to the nature of information systems and the rapid evolution into pervasive

and ubiquitous systems, more challenges are occurring everyday in many directions,
especially concerning the security. The challenges arise from the fact that systems
participants are not always pre-identified and they are changed regularly. Even
security policies are subjected to change when the system environment change or
new regulations are applied. Researchers in many areas are working seamlessly to
enable people, agents, services, and devices interact as autonomously as possible
while preserving appropriate security and privacy policies.

Recently the word Trust became a buzzword not only in the security community
but also in all the information system and intelligent systems communities. In social
science the word Trust can be defined as: a relationship of reliance. A trusted party is
presumed to seek to fulfill policies, ethical codes, law and their previous promises.
Trust is a prediction of reliance on an action, based on what a party knows about the
other party. [1] But what about the definition in Computer Science? In [2] the author
concluded that Trust in the computer literature means: reputation, security concerns,
quality of data or services, credentials, risk management, and many more. More or
less they are all playing a role when dealing with Trust.

A Matter of Trust

8-2 Fall 2007 Workshop

In a Service Oriented Architecture (SOA) the need to provide different levels of
security between services that handle private information is becoming more critical.
These services will need to provide privacy guarantees to prevent delicate
information from ending up in the wrong hands. This is not an easy task in a world
that has always new participants, laws and policies, requirements, and conditions. In
open systems, authentication-based security and privacy schemes are inadequate,
due to the fact that principals might be able to provide authentication but are
otherwise unknown to the system and thus not authorizable for specific actions. In
this case services will adopt the real-world behavior: rely on Trust-relationships.

Trust-based systems use Trust social definition, a prediction of reliance based on
what a party knows about the other party, to create a framework in which two
unrelated parties may establish the trust sufficient to perform sensitive transactions.
So in order to establish this trust, organizations or systems, and by consequence
services, state policies describing who can do what under what circumstances. This
kind of reasoning is needed not only in Web Services but critically in Semantic Web
services that exploit the Semantic Web to automate their discovery and interaction.
This is because they must autonomously decide what information to exchange and
how. The process that includes making assessments and decisions regarding trust
relationships is called trust management.

There has been extensive research in the area, including the Semantic Web
community, but there exist yet some issues that prevent policy frameworks and trust
management systems from its adoption by users and real world applications [3].

In the remainder of this report I describe in Section 2 the trust management

process and its importance in service oriented architecture, focusing on policy-based
approach with a brief description of the reputation-based model. Section 3 discusses
different types of policies, trust negotiation and the difference between strong and
lightweight evidence. Section 4 then highlights the importance of user awareness in
order to give him control over his policies – personalized policies. Section 5 states
the main challenges and open research issues I have extracted from the references.
I finish with future work in section 6.

2 Trust Management

The term Trust Management is defined as: “a unified approach to specifying and

interpreting security policies, credentials, and relationships which allow direct
authorization of security-critical actions”, and has been given later a broader
definition: “Trust management is the activity of collecting, encoding, analyzing and
presenting evidence relating to competence, honesty, security or dependability with
the purpose of making assessments and decisions regarding trust relationships”. [4]

Currently there are two different major approaches for managing trust: policy-
based and reputation-based. The two approaches have been developed within the
context of different environments and targeting different requirements. On the one
hand, policy-based trust relies on objective “strong security” mechanisms such as

 3 Policy-based approach

Fall 2007 Workshop 8-3

signed certificates and trusted certification authorities in order to regulate the access
of users to services. Moreover, the access decision is usually based on mechanisms
with well defined semantics (e.g., logic programming) providing strong verification
and analysis support. The result of such a policy-based trust management approach
usually consists of a binary decision according to which the requester is trusted or
not, and thus access to the service (or resource) is allowed or denied. On the other
hand, reputation-based trust relies on a “soft computational” approach to the problem
of trust. In this case, trust is typically computed from local experiences together with
the feedback given by other entities in the network (e.g., users who have used
services of that provider).

The two trust management approaches address the same problem - establishing
trust among interacting parties in distributed and decentralized systems. However,
they assume different settings. While the policy based approach has been developed
within the context of structured organizational environments (which is why the
research of policy-based approach within unstructured open environment is taking
place), the reputation systems have been proposed to address the unstructured user
community. Consequently, they assume different sources for trust (Certificate
Authorities and community opinion, respectively) and accordingly employ different
mechanisms. [4]

The authors in [4] analyze the two approaches and describe how Trust
Management Systems can be improved by integrating both approaches. Their
proposal is to combine both rule-based and credential-based trust with numerical
trust estimates based on a large number of sources. PROTUNE is an example of a
framework which makes use of both approaches.

Another approach – very common in today’s applications – is based on forcing
users to commit to contracts or copyrights by having users click an “accept” button on
a pop-up window. This is perhaps the lightest approach to trust, that can be
generalized by having users utter declarations (on their e-mail address, on their
preferences, etc.) e.g. by filling an HTML form. [5] This approach has the drawback
of the “take it or leave it” behavior. [6]

In this report I am focusing on the policy-based approach and the problems, and
challenges, associated with the use of this approach in open systems. My next step
will be to investigate the reputation-based approach, the integration between the two
approaches and the benefits from a security perspective, and the use of the
propagation-of-trust models in both Semantic Web and Web 2.0.

3 Policy-based approach

Policies, which usually govern the behavior of networking services (e.g., security,

QoS, mobility, etc.), are becoming an increasingly popular approach for the dynamic
regulation of web information systems. The adoption of a policy-based approach for
controlling a system requires an appropriate policy representation regarding both
syntax and semantics, and the design and development of a policy management
framework. In the context of the Web, the use of languages enriched with semantics

A Matter of Trust

8-4 Fall 2007 Workshop

(i.e. semantic languages) has been limited primarily to represent web content and
services. However the capabilities of these languages, coupled with the availability of
tools to manipulate them, make them well suited for many other kinds of applications,
as policy representation and management. [7]

In this section, different kinds of policy definitions’, requirements for an efficient
policy language and framework, trust negotiation, and the use of policies in open
systems are being discussed.

3.1 Policies

The term policy encompasses different notions like, security policies, trust
management policies, business rules and quality of service specifications. But they
all make decisions based on similar pieces of information - evidence. Web policies
play crucial roles in enhancing security, privacy, and also service usability. In general,
policies are used to control how decisions and actions are taken. [3]

Examples of business rules and quality of services policies:
o Give customers younger than 26 a 20% discount on international tickets
o Up to 15% of network bandwidth can be reserved by paying with an accepted

credit card
An example for a Pervasive Computing policy:
o My colleagues can only see the building I am in and only when they are on

company premises

Moreover, policies can specify event logging (e.g. failed transactions must be

logged) communication and notifications (e.g. Notify the admin about repeated login
failures), workflow triggering and actions that interleave with the decision process. [3]

In Web services environment, a single policy may be associated with a service or
multiple services. Policies may also change over the lifetime of a service. [8]

3.1.1 Security Polices

Security Policies can be defined as policies that:
- Describe what the entities can/cannot do in a certain context
- Describe what the entities must/must not do in a certain context
- Define permissions, obligations, norms and preferences for an agent’s actions

and interactions with other agents and programs. This can form the basics for e-
contracts and negotiating agreements.

- Are explicit representations of constraints and rules that govern an agents or
system’s behavior.

- Are a set of rules and practices describing how an organization manages,
protects and distributes sensitive information at several levels. They can be
defined to perform a wide variety of actions, from IPsec/IKE management
(example of network security policy) to access control over a web server
(example of application-level policy). [7]

 3 Policy-based approach

Fall 2007 Workshop 8-5

Conditional policies are policies that let an entity perform a certain action or set of
actions under the condition that it will assume certain additional responsibilities.

Security policies can be categorized into two broad categories: privacy and
authorization policies. Privacy policies specify under what conditions you can
exchange information and the legitimate uses of that information. For example, a
privacy policy might say that a provider could give a requester a key to access private
information only if the key is encrypted during transmission. When a requester
discovers the policy, it should decide whether it can satisfy this condition. The
requester might have its own privacy policy that requires keeping certain information
confidential, so it likewise can’t share unencrypted private information. The
requestor’s privacy policy prevents it from interacting with web services that don’t
perform the needed encryption. Privacy policies help specify data confidentiality
during transmission as well as after receipt. Consider a service that says it won’t
distribute details it receives as input. A requester that values privacy might see this
as an important requirement. You can interpret a Web Service’s privacy policies as
an obligation and contract. [9]

Authorization policies constrain the provider to accept requests for service only
from certain clients. For example, a service’s authorization policy could state that a
requester must act on behalf of a person who belongs to a certain organizational
group and can prove membership with a digital certificate. Similarly, the requester
could limit invocation to selected providers. [9] In general, authorization policies
negotiate for access, control information exchange and monitor for suspicious events
to be reported. [10] However, policies are symmetric; they may constrain both client
and service.

3.1.2 Delegation of Trust

As mentioned before, conditional policies are policies that let an entity perform a
certain action or set of actions under the condition that it will assume certain
additional responsibilities. This includes the delegation of trust. Authors in [11]
describe the delegation chain as: only users with the right to delegate a certain action
can actually delegate that action, and the ability to delegate itself can be delegated.
Users can constrain delegations by specifying whether delegated users can re-
delegate the right and to whom they can do it. Once users are given certain rights,
they are responsible for the actions of the users to whom they subsequently delegate
those rights and privileges. This forms a delegation chain in which users only
delegate to other users whom they trust. If any user along this delegation chain fails
to meet the requirements associated with a delegated right, the chain is broken.
Following the failure, no user can perform the action associated with the right.

Rein [12][13] is an example of a security framework, which supports the
delegation of trust and authorization. Rein, a framework that is grounded in Semantic
Web technologies, allows policies to be less exhaustive and provides decentralized
security control. Delegation of authorization is very important to the Web because
owners of web resources may not be able to project who should have access to their
resources or pre-establish all desirable requirements for access. This kind of
delegation allows permissions on a resource to be propagated by a set of trusted
entities without explicitly changing the policy or requirements.

A Matter of Trust

8-6 Fall 2007 Workshop

3.1.3 Security Policies in Open Systems

Consider a Health care system where patient’s records are kept in a large
information system that is connected to hospitals nation wide. The agents, or
participants, of this system are, but not limited to: Doctors, Nurses, Specialists and
paramedics. When a patient’s record is to be requested by one of the system agents,
polices, as actions, are checked to grant access to the requester. Authorization and
Access control policies in this environment will discover the services and information
of interest from the infrastructure and other devices in the vicinity, negotiate for
access, control information exchange and monitor for suspicious events to be
reported to the community. Privacy policies will keep certain information from being
disclosed, the doctor can choose not to disclose certain information concerning a
patient to anyone, e.g.: Drug Dependency, data on fertility and abortions, emotional
problems and psychiatric treatment. [10][14] In figure 1 you can see an example that
describes a scenario where Dr. Jones wishes to access the EMR of a new patient,
Ms. Sally White, who is visiting from out of town. He sends a request to the office of
Ms. White’s primary care physician, asking for her digitally signed medical record
along with the credential containing the key used to sign it. The primary care
physician’s trust negotiation system responds with a message containing a policy
stating that records will only be disclosed to licensed medical doctors.

In this case, Answering “yes” or “no” to an access request may not be sufficient

anymore, and the system may need to communicate the conditions under which
access can be granted. That is when the need to “Negotiation” comes into the
picture.

Figure 1 A request by a physician to the system

 3 Policy-based approach

Fall 2007 Workshop 8-7

3.2 Trust Negotiation

Trust negotiation is a promising approach for establishing trust in open systems,
in which sensitive interactions may often occur between entities with no prior
knowledge of each other [15]. In Policy frameworks that work to automate trust
establishment, trust is established gradually by disclosing credentials and requests
for credentials, in an iterative process; that is trust negotiation.

A trust negotiation is triggered when one party requests to access a resource
owned by another party. The goal of a trust negotiation is to find a sequence of
credentials (C1;…;Ck,R), where R is the resource to which access was originally
requested, such that when credential Ci is disclosed, its access control policy has
been satisfied by credentials disclosed earlier in the sequence—or to determine that
no such credential disclosure sequence exists. In other words, the two peers are in a
completely symmetrical situation. Each peer decides how to react to incoming
requests according to a local policy and not all relevant rules are shown immediately
to the other peer.

The negotiation phase can start if a service requires another service’s
authentication, but the credential provided doesn’t suffice. By following certain
communication protocols, the automated negotiation is used to resolve this
problem.[9]

Digital credentials (or simply credentials) make it feasible to manage trust
establishment efficiently and bidirectionally on the Internet. Digital credentials are the
on-line counterparts of paper credentials that people use in their daily life, such as a
driver’s license, membership to an association, subscriptions, eligibility to particular
services, personal properties (citizenship, age, ….) , credit cards, etc.. By showing
appropriate credentials to each other, a service requester and provider can both
prove their qualifications. In detail, a credential is a digitally signed assertion by the
credential issuer about the properties of one or more entities. The credential issuer
uses its private key to sign the credential, which describes one or more attributes
and/or relationships of the entities. The public key of the issuer can be used to verify
that the credential was actually issued by the issuer, making the credential verifiable
and non-forgeable. The signed credential can also include the public keys of the
entities referred to in the credential. This allows an entity to use her private key to
prove that she is one of the entities referred to in the credential, by signing a
challenge. [3][6]

In a broad sense credentials or evidences can be categorized into three types:
1. Strong evidence: digital credentials (id, credit card, subscriptions)
2. Soft evidence: numerical reputation measures, PGP
3. Lightweight evidence: accept buttons (copyright/ license agreements)

All of these evidences should be integrated for balancing: trust level, risk level,
computational costs and usability. [3]

Digital credentials can be implemented in many ways, including X.509 certificates,
anonymous credentials, and signed XML statements. When credentials do not

A Matter of Trust

8-8 Fall 2007 Workshop

contain sensitive information, the trust establishment procedure is very simple. [6]
For example, If Dr. Jones will show his medical license to anyone then he (or a
software agent acting on his behalf) can access the medical e-record services for
placing a request to see a patient of his own. Still, in many situations, credentials
themselves contain sensitive information. For example Dr. Jones may only be willing
to show his record of previous patient treatments to the medical association.

However, Automated Trust Negotiation (ATN) approach can at times fails
unnecessarily, either because a cyclic dependency (I will show you mine if you show
me yours), makes neither negotiator willing to reveal her credential before her
opponent, because the opponent must be authorized for all attributes packaged
together in a credential to receive any of them, or because it is necessary to fully
disclose exact attribute values, rather than merely proving they satisfy some
predicate (such as being over 21 years of age). [16]

It is also possible that the negotiation fail because of the non-partial-attributes
disclosure nature of the negotiation. That means that each attribute can be disclosed
only when the policy governing the credential and its entire contents is satisfied,
leading to unnecessary failure. For example, suppose B would allow A to access a
resource provided that A is over 21, and A has a digital driver license that includes
A’s date of birth (DoB) and address. If A does not want to reveal her address (or her
exact DoB) to B, the negotiation would fail, even if A would be willing to prove she is
over 21. The disclosure is in an all-or-nothing fashion.

Authors in [16] argue about some of the solutions that address these limitations
like: signature based envelope, hidden credentials, secret handshakes, attribute
certificates and more. They stress on the fact that these solutions can be used only
as fragments of an ATN process. They propose a framework that harnesses these
powerful cryptographic credentials and protocols.

Trust-based security differs from traditional identity-based access control that [6]:

1. Trust between two strangers is established based on parties’ properties, which
are proven through disclosure of digital credentials.

2. Every party can define access control policies to control outsiders’ access to
their sensitive resources. These resources can include services accessible
over the Internet, documents and other data, roles in role-based access
control systems, credentials, policies, and capabilities in capability-based
systems.

An example of a system that uses trust-based security is the Policy Aware Web

project (PAW). PAW is developing a general-purpose policy framework for the Web
that lets users define trust-based policies in their own policy languages— or
reuse/extend existing languages—and over their own domain information [17]. PAW
provides uniform mechanisms for reasoning over and enforcing access control
policies for Web resources. [10]

Healthcare information systems have recently used trust negotiation as a
framework for providing authentication and access control services. [14] They are
being extended to monitor patients with body sensors wirelessly linked to a mobile
phone that interacts with remote healthcare services and staff. [18] In this resource-
constrained environment, due to the nature of mobile ad hoc networks, the need to

 3 Policy-based approach

Fall 2007 Workshop 8-9

provide dynamic authentication and authorization capabilities increases. An
extension of the trust negotiation system, Surrogate Trust Negotiation (STN), is being
introduced for such case.

3.2.1 Surrogate Trust Negotiation

Healthcare information systems, that include handheld computing platforms and
wireless communication technologies, manifest numerous security challenges
beyond those in conventional health information systems. These difficulties arise
from both the broadcast nature of wireless transmission as well as the resource
limitations (including bandwidth, processing capability, battery life, and unreliable
connections) of many devices that populate wireless networks. Unfortunately, many
of the algorithms used in standard trust negotiation require computationally intensive
cryptographic calculations and reliable access to the Internet that may not be
possible for typical resource-limited mobile computing devices. [14]

Surrogate Trust Negotiation provides a flexible model that effectively leverages
the combined capabilities of network proxies, software agents, and modern
cryptographic systems. The highly sensitive and resource-intensive task of public key
cryptography that is integral to credential-based systems is offloaded to trust agents.
Trust agents are autonomous software modules on secure, offsite computers that act
as “surrogates” for mobile devices, performing cryptographic operations and
managing credentials, policies, and secret keys for use in trust negotiation. Thus,
STN allows even computationally lightweight devices to effectively participate in data
exchange scenarios using trust negotiation. [14]

3.3 Writing Policies

One problem is to write policies, which change often, in a machine
understandable way. The challenge is to provide a framework where [3]:
- The behavior is flexible, can be changed/updated in a costless manner.
- Can be managed and understood by administrators as well as users.
- Covers a broad range of different policies.

The security community has already stressed the importance of declarative policy
languages (to avoid ambiguity, separate policies and mechanisms and enable
automated policy validation) and has also proposed logic-based policy languages (to
improve readability and high level formulation and to increase flexibility).

Researchers have proposed multiple approaches for policy specification. They
range from formal policy languages that a computer can directly process, to rule-
based policy notation using an if-then-else format, or to the representation of policies
based on Deontic logic for obligation and permissibility rules. [7]

3.3.1 Policy Frameworks Requirements

The general requirements for policy languages are [3] [7] [15]:

A Matter of Trust

8-10 Fall 2007 Workshop

1. Well-defined semantics: If any party concludes that a policy is satisfied, any
other party should conclude the same. Also the meaning of policies is
independent of the implementation.

2. Declarative: closer to the way human think, defining the what not the how.
3. Monotonic: disclosure of additional credentials and policies or execution of

actions only results in additional privileges. E.g. “grant access if requester is
not a student” is invalid.

4. Decentralized, distributed evaluation: since policies are distributed then
reasoning also should be distributed.

5. Flexible and extensible: enough to extend semantics and to allow new policy
information to be expressed.

6. Can manage credentials attributes: to be used in the decision making process.
7. Use authority delegation procedure: as decisions are not always local, policies

used during evaluation may be distributed
 Fetched and centralized evaluation may not be possible due to privacy

concerns
 Required to delegate decisions to other, possibly external, entities
 Example:

- Access is granted if my partner company says so
- A credit card is accepted if VISA says it is valid

8. Control of information after disclosure:
 The information I disclose to you cannot be disclosed to 3rd parties.

9. Execute external actions: since it is unfeasible to have a single system with all
institution information and duplication also is undesirable, it is required that
policies may involve the execution of actions outside the policy framework.
Also it should be possible to specify properties for the action, e.g., the actor
that must execute the action (credential fetching)

10. Have Ontology support: define concepts using Ontologies, Different entities
may have different definitions, the need to explain what a concept mean.

11. Interoperable with other language: to allow different services from different
domains to communicate.

12. Protect Policies: policies may be sensitive and should be hidden till later
stages where more information is available during the negotiation process.

13. Implement Disclosure Policies: policies that regulate the disclosure of a
resource by imposing conditions on the credentials the requesting party should
possess. Disclosure policies for a resource can be gradually released
according to the degree of trust established, in order to ensure a better
protection of the sensitive information exchanged.

14. Extensible: as requirements can evolve and the language should be able to
adapt to these new requirements, concepts, definitions and operators.

15. Categorize evidence: policies may need to distinguish on whether information
provided as been signed (strong evidence) or not (lightweight evidence).

16. Able to get information via extensions: where extensions are either critical
(Credential should be discarded if the extension is not understood) or non-
critical.

17. Usable by others: not only by the one who created the language.

 3 Policy-based approach

Fall 2007 Workshop 8-11

More generally, the requirements for policy frameworks are:
1. Well-defined interface independent of the particular implementation in use.
2. Resolve Conflicts like: a policy grant access and other denies it, and detect all

the policies that can be applied given a request.
3. Accountable: since access control decisions may be performed on different

entities than the ones holding the resources, it is important to proof the result
of the negotiations to third parties.

4. Flexible and Implementable
5. Interoperable with other architecture (inter-domain)
6. Have tools/application
7. Scalable: maintain quality performance under an increased system load.
8. Support explanations: example in the next section

A comparison between existing policy languages can be found in [3]. A comparative
analysis between semantic and non semantic policy languages can be found in [7].

Figure 2 Policy languages comparison [3]

3.4 Policy Management

Policy Management provides the openness, flexibility, and autonomy required to

regulate open and dynamic environment as entities can reason over their own

PSPL
SD3, RT

PeerTrust
Cassandr

a
Protune

RBAC
Kaos
Rei

ACL
Java Policies

Ponder
XACML

P3P

TPL

Well-
defined
Semantics

No Formal
Semantics

Centralized
Evaluation

Distributed
Policies,

Centralized
Evaluation

Distributed
Evaluation

A Matter of Trust

8-12 Fall 2007 Workshop

policies and the policies of other entities to decide how to behave and the expected
behavior of entities they interact with.

In a Web services environment, a policy management solution needs to manage
[8]:

1. Policy Lifecycle: policies definition, maintenance and applications.
2. Policy Discovery/Access: metadata retrieval and user access to policies to

make decisions.
3. Enforcement of policies for individual and groups of services.

A policy management solution is foundational to a SOA: it provides a global model

for an organization to understand and control the services within an organization. It
provides visibility and control over a SOA topology and its characteristics.

4 User awareness and control
Policies play crucial roles in enhancing security, privacy and usability of

distributed services, and indeed may determine the success (or failure) of a web
service. However, users will not be able to benefit from these protection mechanisms
unless they understand and are able to personalize policies applied in such
contexts.[5]

Most security and privacy violations caused by lack of awareness (users ignore
security threats and vulnerabilities and polices applied by the systems they use), lack
of control (users don’t know how to personalize their policies) or social problem
(Everybody’s machine is on the internet and their computers can be exploited for
attacks). [3] As a consequence, most users ignore their computer’s vulnerabilities
and the corresponding countermeasures, so the system’s protection facilities cannot
be effectively exploited.

An experiment held by Avantgarde, tests to see how well commonly used
computer platforms withstand Internet attacks in the wild, proved that with
personalized policies connected computers were safe for 2 weeks while with default
policies the intrusion was within 5 minutes.[19]

One solution is to set the default policies to maximum security conditions. But
strong security policies may cause denial of service. It is a tradeoff between security
and resource availability. But again, the problem that common users are not able to
personalize their policies remains.

Cooperative policy enforcement involves the human-machine interaction. It is
used as a solution for occasional users and it is part of a policy framework. It is
crucial for the success of a web service where the key is never to say No for a
request but rather encourage and guide the user to fulfill the policy. [3] [5]

This leads to a new concept of Policy explanation where the user will be given the
analysis of the policy validation process. PROTUNE [20] is a Policy Explanation
facility that handles three queries: how-to, why/why-not and what-if. You can try the
steps in PROTUNE-X project explanation demo [20].This demo describes the use of
these queries before, during and after negotiation. This helps on knowing which
pieces are actually used in negotiation. This is crucial in solving information
disclosure problem (discussed in Section 3 and main challenges number 6). By this

 5 Main challenges and open research

Fall 2007 Workshop 8-13

the user is given: a static analysis (which kind of users can access resource X, which
are the permissions of a user with properties XYZ), a post mortem analysis (How
could X get Y) and a denial of services analysis (why didn’t X get Y/ Why not).

Currently, why/why not queries can be used by security managers to understand
why some specific request has been accepted or rejected, which may be useful for
debugging purposes. Why-not queries may help a user to understand what needs to
be done in order to obtain the required permissions, a process that in general may
include a combination of automated and manual actions. Such features are
absolutely essential to enforce security requirements without discouraging users that
try to connect to a web service for the first time. How-to queries have a similar role,
and differ from why-not queries mainly because the former do not assume a previous
query as a context, while the latter do. What-if queries are hypothetical queries that
allow predicting the behavior of a policy before credentials are actually searched for
and before a request is actually submitted. What-if queries are good both for
validation purposes and for helping users in obtaining permissions. [5]

5 Main challenges and open research points
In this section I will enumerate the main challenges and open research points that

were extracted from different references:

1. One Framework for all:

a. Policies: The idea is to have one common infrastructure for achieving
interoperability and for the decision making process. This includes
encompassing not only security policies, access control and privacy
policies, but also business rules, quality of service and others. In this
infrastructure the policies are to be harmonized and coordinated. By
harmonized I mean to integrate all the requirements, procedures and
strategies. The question is whether it is too complex to do this using one
representation language.

b. Trust negotiation approaches.
2. The deployment of this integrated framework in both Semantic Web and Web

2.0.
3. Reputation models are still in their early stages.
4. Enhancing user awareness and control for their policies: this can be done by

explaining the policies and how the system carries the validation process-
decision making- and put it all in an understandable way- Suitably restricted
natural language. By this, users can personalize their own policies.

5. Although to date several trust negotiation systems have been proposed, none
of them fully address the problem of privacy preservation. The problems are:
a. We need to avoid Inference attacks: Managing the hints that leads to

information disclosure or credential discovery. For example: Consider a
policy stating that a client never wants to reveal information that someone
can use to deduce his home address. Depending on the information
exchanged with the service and additional context information, this could
mean that the service could never release the client’s phone number

A Matter of Trust

8-14 Fall 2007 Workshop

because a reverse lookup could compromise the address [9]. Also
inferring sensitive information from published ones is possible, e.g.
Salaries can be inferred from roles. This kind of inference can be encoded
to be automated. [3]. In Semantic Web the need is to protect concepts-
semantic data- since it contains knowledge and reasoning abilities
(Linkable Data Source).
b. Policies themselves can be as sensitive as information. Some of the

business policies are strategic agreements between large companies
and shouldn’t be revealed.

c. Servers may release credentials during the negotiation. Some of them
are public (Certificates) and others are not even needed in this
negotiation process. A need-to-know principle should be applied!

6. Merging the strong and lightweight evidence to meet the efficiency and

usability requirements of web applications.
7. The success of the negotiation process: how can we guarantee that

negotiations succeed despite all the difficulties that may interfere: rules not
disclosed because of lack of trust; credentials not found because their
repository is unknown, what kind of properties of the policy protection policy
and of the hints guarantee a successful termination when the policy
“theoretically” permits access to a resource?

8. Optimal negotiations: which strategies optimize information disclosure during
negotiation? Can reasonable preconditions prevent unnecessary information
disclosure?

9. In the presence of multiple ways of fulfilling a request, how should the client
choose a response? We need both a language for expressing preferences,
and efficient algorithms for solving the corresponding optimization problem.
While this negotiation step is more or less explicitly assumed by most
approaches on trust negotiation, there is no concrete proposal so far.

10. Finding the right tradeoff between explanation quality and the effort for
instantiating the framework in new application domains without expensive
steps.

11. Delegation-of-trust models for services are in their early stages.
12. Since Trust is a dynamic concept, i.e., it changes over time, so should be the

Negotiation and the Framework.

6 What is next?
My next step will be to investigate some of the above mentioned challenges:

delegation policies, user awareness and control, the Integration in one framework
and its deployment in Semantic Web and Web 2.0. I plan to use the Healthcare
systems and general university systems as use cases. I am working with Frank
Kaufer on investigating the integration of rules, in terms of policies, in the domain
knowledge and service capabilities description using trust negotiation and service
matching.

 6 What is next?

Fall 2007 Workshop 8-15

References

[1] Wikipedia definition of the word Trust:

http://en.wikipedia.org/wiki/Trust_%28social_sciences%29

[2] ” The Pudding of Trust”, Staab et al., IEEE Intelligent Systems Journal, Vol. 19(5),

2004

[3] “Semantic Web policies: Where are we and what is still missing?”, Piero A.

Bonatti and Daniel Olmedilla, The 3rd Annual European Semantic Web

Conference, June 2006

[4] “An Integration of Reputation-based and Policy-based Trust Management”, Piero

Bonatti, Claudiu Duma, Daniel Olmedilla, and Nahid Shahmehri. Semantic Web

and Policy Workshop, 2005

[5] “Semantic Web Policies - A Discussion of Requirements and Research Issues”,

A. Bonatti , C. Duma, N. Fuchs, W. Nejdl, Daniel Olmedilla, J. Peer, and N.

Shahmehri, 3rd European Semanti Web Conference 2006

[6] “No Registration Needed: How to Use Declarative Policies and Negotiation to

Access Sensitive Resources on the Semantic Web”, Gavriloaie, Nejdl, Olmedilla,

Seamons, Winslett. 1st European Semantic Web Symposium 2004

[7] ”Representing Security Policies in Web Information Systems”, Félix J. García,

Gregorio Martínez Pérez, Juan A. Botía Blaya, Antonio F. Gómez Skarmeta,

Policy Management for the Web Workshop, Japan.2005

[8] “Policy Management and Web Services”, Greg Pavlik, Tim Gleason, and Kevin

Minder. Policy Management for the web workshop 2005

[9] “Authorization and privacy for semantic Web services”, Kagal, L.; Finin, T.;

Paolucci, M.; Navcen Srinivasan; Sycara, K.; Denker, G. IEEE Intelligent Systems

2004

[10] “Security and Privacy Challenges in Open and Dynamic Environment”, Lalana

Kagal, Tim Finin and Anupam Joshi, Sol Greenspan. IEEE Computer scociety

Vol. 39, No. 6 June 2006.

[11] “Trust-based Security in Pervasive Computing Environments”, Lalana Kagal,

Tim Finin, and Anupam Joshi. IEEE Computer scoiety Vol. 34, No. 12 December

2001

A Matter of Trust

8-16 Fall 2007 Workshop

[12] “Self-describing Delegation Networks for the Web”, Lalana Kagal, Tim Berners-

Lee, Dan Connolly, and Daniel Weitzner. Proceedings of the Seventh IEEE

International Workshop on Policies for Distributed Systems and Networks

(POLICY'06), 2006

[13] ” Using Semantic Web Technologies for Policy Management on the Web”,

Lalana Kagal, Tim Berners-Lee, Dan Connolly, and Daniel Weitzner. The Twenty-

First National Conference on Artificial Intelligence, AAAI 2006.

[14] “Trust Negotiation for Authentication and Authorization in Healthcare

Information Systems”, David K. Vawdrey, Tore L. Sundelin, Kent E. Seamons,

and Charles D. Knutson. Engineering in Medicine and Biology Society 2003.

Proceedings of the 25th Annual International Conference of the IEEE

[15] “PP-Trust-X: A System for Privacy Preserving Trust Negotiations”, A.

Squicciarini , E. Bertino, Elena Ferrari, F. Paci, B. Thuraisingham. ACM

Transactions on Information and System Security, Vol. 10, No. 3, Article 12,

Publication date: July 2007.

[16] “Automated trust negotiation using cryptographic credentials”, Jiangtao Li,

Ninghui Li and William H. Winsborough. Proceedings of the 12th ACM conference

on Computer and communications security 2005.

[17] Policy Aware Project: http://policyawareweb.org

[18] “Privacy Preserving Trust Negotiation for Pervasive Healthcare”, Changyu Dong

and Naranker Dulay. IEEE Pervasive Health Conference and Workshops, 2006.

[19] Avantgarde Online Experiment: http://www.avantgarde.com/xxxxttln.pdf

[20] Demo of the explanation facility PROTUNE:

 http://cs.na.infn.it/rewerse/demos/protune-x/demo-protune-x.html

[21] “Logics for Authorization and Security. Logics for Emerging Applications of

Databases”, P.A Bonatti, P. Samarati. Book chapter 277-323, Springer, 2003

[22] “Regulating service access and information release on the Web”, Pierangela

Samarati, Piero Bonatti. Proceedings of the 7th ACM conference on Computer

and communications security 2000.

From Semi-automated Service
Composition to Semantic Conformance

Harald Meyer

harald.meyer@hpi.uni-potsdam.de

In this report my research of the past six months is summed up. Together with Jan
Schaffner, I published a paper on semi-automated composition. I also continued my
work on service composition semantics by introducing the property semantic confor-
mance. Finally, I worked in two industrial research projects. In the next six months, I
will continue writing my thesis and extending my research in these areas.

1 Introduction

In the report for the retreat in April, an overview of my current work was given. Picking
up there, I will present in this report which developments happened in each area. As
mentioned there, my work for the last six months was focused on service composition
semantics. In sections 3 and 4, the algorithms to calculate service composition seman-
tics are applied to verify semantic correctness of compositions. Another focus of my
work were projects with industry partners. In Section 5 an overview of two projects is
given: one with Software AG extending the SOA suite Crossvision with semantics and
another one with T-System evaluating results in the area of service semantics with real
world Web services.

In the next six months, I will focus on two things. First, in October I will do a research
visit at the group of Amit Sheth in Dayton, Ohio to work in the area of aspects of
semantics. And secondly, I will write my doctoral thesis.

The rest of the document is structured as follows. In the next section, the outlook
from the last report is evaluated. Then in sections 3 and 4 the notion of semantic con-
formance is introduced as an aspect of semi-automated composition. Industry projects
are presented in Section 5 and the report closes with a conclusion and an outlook on
the next six months.

2 Picking up from last report’s outlook

I closed the last report with an outlook on planned publications. Table 1 is an updated
version of the table from the last report showing the current status of planned publica-
tions. Three of the planned publications have already been published, one has been
abandoned, and two are still in preparation or have not been started. The work on the
last two ones will be continued in the future.

Fall 2007 Workshop 9-1

From Semi-automated Service Composition to Semantic Conformance

Paper Planned Conference
Conference

Status

A Formal Model for Mixed Initia-
tive Service Composition

SCC 2007 published

Object Creation during Planning
For Service Composition

ICAPS 2007 abandoned

Aspects of Service Semantics BPM 2007 in preparation WWW 2008
ASG – Techniques of Adaptivity Dagstuhl Seminar on

Adaptive Web Ser-
vices

published

Paper on tagging not started
Paper on service composition
semantics

published

Table 1: Planned publications from last report

3 Semi-automated Service Composition

The idea of semi-automated service composition is to use automated composition
techniques to support manual composition. In previous work [7, 8] we defined semi-
automated composition as consisting of three distinct features:

• Filter inappropriate services reduces the set of services to those that are relevant
in the current modeling situation.

• Check validity assists the user in modeling semantically correct service composi-
tions by testing if the preconditions of the services in the composition are satisfied
and whether the composition contains redundant services.

• Suggest partial plans adopts techniques from automated service composition in
order to not only suggest individual services, but to find sub-processes that can
fill gaps in the service composition that is currently being modeled.

In a new publication [9], we provide the formal foundations for our semi-automated
composition approach unifying it with our previous work on automated composition [4].
The essence of this paper will be presented in the following.

3.1 Foundations

In the next sections we will show how the mixed initiative features are derived from the
presented scenario. We will describe how and when they can be used and provide a
formal specification for each feature. In this section, we provide the necessary formal
foundations. We begin with introducing the notion of service operations. They are the
basic building blocks from which service compositions are built. Each service operation
has a semantic specification of its functionality:

9-2 Fall 2007 Workshop

3 SEMI-AUTOMATED SERVICE COMPOSITION

Definition 1 (Service Operation) A service operation is a tuple op = (I, O, Pre, Eff)
consisting of:

• I: List of input parameters consisting of variables

• O: List of output parameters consisting of variables

• Pre: The precondition of the service is a logical expression and must be satisfied
in order to invoke the service.

• Eff : The effect of the service is a logical expression. It describes the changes
to the current state resulting from the invocation of the service.

The syntactic interface consists of the input and output parameters. The semantic
interface specifies the precondition that must hold true in order to invoke the operation
and the effect specifying the state changes resulting from invoking the operation. Both
precondition and effect are logical expressions. The logical expressions are sets of
literals defined over the relations, functions, constants, and variables. The input and
output parameters are typed variables used also in these logical expressions. Formally,
this is defined as:

Definition 2 The literals l ∈ L defined over a language L = (R,F, C, V) with the set of
relations R, the set of functions F , the set of constants C, and the set of variables V
are inductively defined. The function type : C

⋃
V → O returns the type of a constant

or variable.
T is the set of terms, where Tground ⊆ T contains only ground terms. Terms are

defined as follows:

• A variable v ∈ V is a term (v ∈ T , v /∈ Tground).

• A constant c ∈ C is a term (c ∈ Tground).

The set of literals L is defined by:

• If r ∈ R is a relation and t1, ..., tn ∈ T are terms then r(t1, ..., tn) ∈ L

• If l is a literal, so is ¬l (l ∈ L ⇒ ¬l ∈ L)

A logical expression e is a set of literals. It can be separated into e+ containing the
positive literals and e− containing the negated literals. States are a set of negation free
literals (e− = ∅). The function facts : E → C

⋃
V retrieves all the facts (variables and

constants) for a given logical expression.

Finally, we introduce the notion of a service composition. We distinguish between
service operations and control flow constructs:

Definition 3 A service composition is a triple C = (OP, CF, E) with

• OP : Set of service operations,

Fall 2007 Workshop 9-3

From Semi-automated Service Composition to Semantic Conformance

• CF = AS ∪ AJ ∪ OS ∪ OJ : Set of control flow constructs AS : AND-splits, AJ :
AND-joins, OS : OR-splits, and OJ : OR-joins

• E ⊆ (OP ∪ CF) × (OP ∪ CF) : Edges connecting operations and control flow
constructs.

A composition may not contain control flow cycles.

With these basic definitions of what a service is, how service functionality can be
expressed, and how services can be composed, we can start describing the mixed
initiative features.

3.2 Filter Inappropriate Services

The number of service operations available as building blocks for the composition can
be extremely high. In the context of SAP, for example, the central repository contains
more than 1000 services. This results in a complexity that is hard to oversee. Partic-
ularly if compositions are to be created by users from a non-technical background, a
modeling tool for service compositions should filter the set of available services.

When the leave request is to be created from scratch, the tool will first retrieve all
available services. The modeler begins with adding the role “employee” to the compo-
sition by selecting this role from a list of all available roles (e.g. “supplier”, “customer”,
“manager”). Our tool then assumes the implicit availability of a variable of the complex
type “employee”, representing the person who takes part in the business process in
this role. The tool is now able to filter the list of available service operations to those
that require an employee object as an input. The operations in the service repository
are grouped around so-called enterprise services. In our example, the modeler would
therefore now expand the “Time and Leave Management” enterprise service and select
the first three operations. As there are no dependencies among these activities, the
user connects the operations using a parallel control flow.

Filter inappropriate services filters those services that are not invocable in the cur-
rent state. To do so, we need to know what service invocability means. A service
is invocable if all its input parameters are available and its precondition is satisfied.
Formally, invocability is defined as:

Definition 4 (Invocable) A service operation op = (I, O, Pre, Eff) is invocable in a
state S if

• Pre+ ⊆ S and

• @l,¬l ∈ Pre−, l ∈ S and

• I ⊆ facts(S)

The current state is given by the effects and outputs of all preceding service opera-
tions in the service composition. The state transition is defined as follows:

9-4 Fall 2007 Workshop

3 SEMI-AUTOMATED SERVICE COMPOSITION

Definition 5 (Service invocation) Given a state S and an invocable service opera-
tion op = (I, O, Pre, Eff), The state transition function γ : S × OP → S is given
by γ(S, op) = S

⋃
eff+ \ {x|¬x ∈ eff−}

As defined aboved, states contain only positive literals. This means that we only
add the positive literals from the effect to the state. The negated literals are then used
to remove all literals from this state for which a negated literal exists in the effect. Dur-
ing our experiments, we learned that filtering all services which are not invocable is too
restrictive. For fully automated composition, such restrictive filtering is appropriate, be-
cause the algorithm may not create invalid service compositions. In the mixed initiative
environment we target at, in contrast, it might be the case that human modelers want to
add services to the composition although they are currently not invocable. Therefore,
we introduce the notion of nearly invocable services. A service is nearly invocable to
the degree k if at most k input parameters are missing. Formally:

Definition 6 (Nearly invocable) Given a state S and a service operation op = (I, O, Pre, Eff),
op is nearly invocable to the degree k if (I = {i0, ..., im, ..., im+k, ..., in} with n = |I|):

• ∀ii ∈ I, i < m, ii ∈ facts(S),

• ∀ii ∈ I, i > k + m, ii ∈ facts(S),

• ∀l ∈ Pre+ with l = r(x0, ..., xi), r ∈ R and ∀xi /∈ {im, ..., im+k}: l ∈ S, and

• ∀¬l ∈ Pre− with l = r(x0, ..., xi), r ∈ R and ∀xi /∈ {im, ..., im+k}: l /∈ S.

If an operation is invocable to a degree k, then it is also invocable to all degrees j, with
1 ≤ j ≤ k.

The first two conditions specify exactly what was described above: it might be the
case that k inputs are not satisfied in order for the operation to be invocable. The last
two conditions are necessary to relax the satisfaction requirement for the precondition.
Only those literals in the precondition not containing one of the missing inputs need to
be satisfied in the state.

Using the notions of invocable and nearly invocable services, the modeler is now
able to retrieve more service suggestions through the filtering mechanism by clicking on
the merge node of the parallel split. Amongst others, our tool will suggest the operation
Check Create Leave Request as an invocable service. The modeler adds it to the
composition and creates a link between the merge node and the operation.

3.3 Check Validity

When human modeler have full control over the modeling, they are likely to make mis-
takes. It is therefore necessary to check the semantic validity of the process. As
opposed to syntactic validity checking based on structural correctness criteria (e.g.
soundness [11]), semantic validity is based on semantic descriptions of individual ac-
tivities. When semantic descriptions for the activities in a process are available, we are

Fall 2007 Workshop 9-5

From Semi-automated Service Composition to Semantic Conformance

able define correctness criteria for processes on the semantics level. Semantic vali-
dation should be interleaved with the actual modeling of the composition by informing
the user about problems with the composition in an unobtrusive way. Such problems,
which can be seen as unresolved issues, arise from activities in the composition which
violate one or more aspect of a set of criteria for semantic validity.

We formalize the semantic validity into four different criteria. The first two criteria
define what it means if a service operation input or precondition is not satisfied:

Definition 7 (Unsatisfied Input) An input i ∈ I is unsatisfied for a service operation
op = (I, O, Pre, Eff) in a state S if i /∈ facts(S).

Definition 8 (Unsatisfied Precondition) The precondition Pre of a service operation
op = (I, O, Pre, Eff) is unsatisfied in a state S if

• ∃l ∈ Pre: l /∈ S or

• ∃¬ ∈ Pre: l ∈ S.

These definitions are inverse to the invocability definition from above. While a ser-
vice composition violating the first criterion will also be syntactically ill-formed, a ser-
vice composition violating the second criterion might very well be syntactically correct.
It only affects the composition on the semantical level. This means that it is possi-
ble to technically invoke a service composition containing operations with unsatisfied
preconditions while this is not possible if operations have unsatisfied inputs.

The third criterion defines the relevance of a service operation inside a composition.
This is necessary because it can be difficult for human modelers to determine whether
each service operation is required in a complex service composition. A service op-
eration in a composition is relevant if one of its outputs is consumed by a successor
operation in the composition. If the operation does not have no successor operation,
we assume that it is relevant. Formally:

Definition 9 (Relevance) A service operation op′ = (I ′, O′, P re′, Eff ′) ∈ OP in a ser-
vice composition is relevant if

• ∃op′′ = (I ′′, O′′, P re′′, Eff ′′) and op′
e∗→ op′′ with ∃x, x ∈ O′ ∧ x ∈ I ′′ or

• @op′′ = (I ′′, O′′, P re′′, Eff ′′) and op′
e∗→ op′′ (final activity) 1.

It might be the case that several operations in a service composition produce the
same output. Such activities are potentially redundant. Detecting redundancy in a fully
automated fashion is very complex: not only the outputs of the redundant operations,
but also the effects must exactly match. This is rarely the case. Instead, operations
without matching outputs and precondition are often redundant. We therefore define
potential redundancy as a week criterion: An operation is redundant if another opera-
tion produces the same output. Formally:

1op′ e∗→ op′′ denotes that that there is a path in the composition connecting op′ and op′′.

9-6 Fall 2007 Workshop

3 SEMI-AUTOMATED SERVICE COMPOSITION

Definition 10 (Potential redundancy) A service operation op′ = (I ′, O′, P re′, Eff ′) ∈
OP is potentially redundant if another operation op′′ = (I ′′, O′′, P re′′, Eff ′′) exists with
o′ ∈ O′, o′′ ∈ O′′type(o′) = type(o′′).

This potential redundancy needs to be addressed by the human modelers. They
can either resolve the potential redundancy or flag it as not redundant. This mechanism
leads to many potential redundancies. A potential extension could include the ranking
of possible redundancies based on the overlapping of operation outputs and to only
alarm the user if the match is higher than a predefined threshold. In summary, semantic
validity comprises the following aspects:

Definition 11 (Semantic validity) A service composition is semantically valid if

• it does not contain activities with unsatisfied inputs or preconditions,

• all activities in the composition are relevant, and

• it does not contain potentially redundant activities that have not been flagged as
explicitly not redundant.

As the last step, the modeler adds the nearly invocable operation Check Create
Leave Request. The tool highlights operations for which problems are tracked. As
the added operation is not invocable, but nearly invocable, one input type is missing.
The tool therefore marks the operation with a red border. By clicking on the Check
Create Leave Request operation, the user can open a panel showing its input and
output types as inferred from the pre- and effects. The user sees that all input types
of the operation are currently available in the composition, except TimePointPeriod,
which is also highlighted using red color in this drill-down view. The user can also get
an overview of all current problems with the composition by looking at the agenda.

The missing parameter TimePointPeriod represents the date or period for which the
employee intends to request a leave. As our scenario has been taken from Duet, this
data is provided by Microsoft Outlook after a the user selects a date from the calendar.
In our example, the modeler therefore creates a human activity (modeling a task such
as marking a period in the calendar) that produces a TimePointPeriod output. The
modeler connects the human activity with the Check Create Leave Request operation.
The coloring of the operation and the TimePointPeriod input type in the parameter view
disappear and the issue is removed from the agenda.

3.4 Suggest Partial Plans

Automated planners [1, 6, 10, 12] plan according to an algorithmic planning strategy,
such as for example forward- or backward chaining of services. Human planners, in
contrast, will not always behave according to this schema when modeling composed
service. Users might have a clear idea about some specific activities that they want to
have in the process, without a global understanding how the whole will fit together as a
process. For example, they start modeling the composed service by adding some op-
erations and chaining them together, and then continue with a non-invocable operation

Fall 2007 Workshop 9-7

From Semi-automated Service Composition to Semantic Conformance

that is intended to be in a later stage of the composition. In such and similar cases,
it is desirable for the user to let the editor generate valid service chains that connect
two unrelated activities. The task of generating such service chains can be reduced to
solving a planning problem using automated planners.

Definition 12 (Planning problem) A planning problem P = (s0, sg, SD) is a triple con-
sisting of the initial state a0 inEstate, the goal g ∈ E and a service domain SD. A
service domain SD = (OP, O) consists of a set of service operations OP and ontol-
ogy describing the concepts used to specify services.

In order to suggest a partial plan, it is therefore necessary to determine the initial
state and the goal state for the planning problem. The initial state can be determined
by adding up all the effects of the services leading to the gap. The initial state then
contains all the available information. The goal state can be determined from the pre-
conditions of the services succeeding the gap. But of course, the information already
known in the initial state can be removed from the goal state. These are preconditions
already satisfied by preceding operations. Additionally, preconditions of services af-
ter the gap can be satisfied by other services also succeeding the gap but preceding
this service. These preconditions can also be removed from the goal state. Using the
generated planning problem an automated planner can be used to fill the gap.

In the last step the modeler resolved a problem with the Check Create Leave Re-
quest operation. If the user clicks on the operation to refresh the filtered list of available
services, the tool will suggest the Create Leave Request operation. From the perspec-
tive of the user, this is the final operation. However, the modeler might not be familiar
with the fact that a specific check operation needs to be invoked in order to create a
leave request in the system. He then directly selected the Create Leave Request oper-
ation after the merge node. The modeler also creates the human activity producing the
TimePointPeriod and links it to the Create Leave Request operation. Now, the modeler
tries to create a link between the merge node of the parallel flow and Create Leave
Request. The tool will detect that the set of outputs up to the merge node does not sat-
isfy the inputs of Create Leave Request (the type CheckCreateLeaveRequestResult
is missing). The tool instantly queries the semi-automated composition engine which
detects that the insertion of the Check Create Leave Request operation would satisfy
this open information requirement. The user is prompted whether the Check Create
Leave Request should be inserted. The modeler approves this suggestion and the
composition is complete.

4 Semantic Conformance

4.1 Motivation

Following up on the work on semi-automated composition presented in the previous
section, we identified that while the feature filter inappropriate services and suggest
partial plans are well-grounded, this does not apply for verifying semantic correctness.

9-8 Fall 2007 Workshop

4 SEMANTIC CONFORMANCE

It was defined in an ad-hoc manner mostly checking properties assumed to be of impor-
tance. Hence, making semantic correctness more substantial was another important
research aspect in the last six months.

Semantic correctness of a process incorporates a lot of different aspects. But the
most important one is: does the process achieve the intended goal? To capture this
property we introduced the notion of semantic conformance [2]:

Definition 13 A process n = (P, T, f, ls) with a reachability graph rg = (V, E, lV , lE) is
semantically conform to a process specification R = (I, O, pre, eff) if:

1. preR |= pren with pren the precondition of the process,

2. effn |= effR with effn the effect of the process, and

3. (preR ∪ sm) |= prei for all activity instances i and according markings m with
∃(m,m′) ∈ E and lE(ls((m, m′))) = i.

Checking the first two properties is rather straightforward using the algorithms to cal-
culate service composition semantics presented in the last report and in [3]. The third
property is more complicated. For all activities in the process we need to determine the
markings in which they are invokable (lE(ls((m,m′))) = i), calculate the logical state of
the the marking (sm) and check whether this logical state together with the precondition
of the process specification entails the precondition of the activity ((preR ∪ sm) |= prei).

One might question whether the last property is actually necessary. We are already
checking whether the process has any preconditions that are not satisfied in the pro-
cess specification. Depending on the expressiveness of the used logical formalism,
checking the third property can be unnecessary. This is for example the case if the
logical formalism does not support negation. Then every time property one is violated,
property three is violated, too. The same is true for the other direction. The only use of
the third property without negation is that it gives detailed hints where the problem lies.

With more expressive logical formalisms, the third property becomes crucial. Then
the first property is only a necessary (but not sufficient) criterion for the third property.
If the precondition of the process is not satisfied by the process specification we know
that the precondition of at least one activity instance is not satisfied. But it can be
the case that the precondition of one activity instance is not satisfied while still the
precondition of the overall process is satisfied. How this can happen, will be illustrated
in the next section.

4.2 Example

Let us now look at an example illustrating how semantic conformance can be checked.
We will use an example process to demonstrate subsequently violations of each prop-
erty. The example we will use is a very simple order shipment process. After the order
is received, the receipt and the actual goods are shipped separately and finally the or-
der is closed. Shipping of the goods can be performed by one of two different shippers.
Let us first specify the specification for this process. The precondition of the specifica-
tion is shipper1∨shipper2 meaning that the customer must have specified which shipper

Fall 2007 Workshop 9-9

From Semi-automated Service Composition to Semantic Conformance

Transition Precondition Effect
order ordered
send receipt ordered receipt sent
shipping1 ordered ∧ shipper1 shipped
shipping2 ordered ∧ shipper2 shipped
close receipt sent ∧ shipped order closed

Table 2: Preconditions and effects of the activities.

order

shipping1

shipping2

close p6p5

p4

p3

p2p1

Figure 1: First version of the modeled process.

to use. The effect of the specification is receipt sent∧ shipped meaning that the receipt
should be send and the goods should be on their way to the customer.

Now let us look at a first example. In Table 2 the preconditions and effects of each
activity are specified. Figure 1 illustrates our first try at modeling a correct process. But
checking whether it fulfills the process specification’s effect will actually show us that it
is not sending the receipt.

We start with the final marking in which the only token is in the place after order
and traverse the reachability graph backwards until we reach the initial marking (the
one depicted). The reachability graph in this case resembles the process: it con-
tains one marking for each place in the process. And two markings are connected
if the according places are connected via a transition. Hence we know that a mark-
ing smi

is the marking in which the token is in place pi. When calculating the effect
we start with γ(sm5 , close) and continue until we reach sm1: γ(sm5) = order closed ∧
(γ(sm3 , shipping1)∨γ(sm4 , shipping2)) = (order closed∧shipped∧γ(sm1 , order))∨(order closed∧
shipped∧γ(sm1 , order)) = order closed∧ shipped∧ ordered. If we check this against the
effect of the process specification we see that we do not achieve receipt sent. Hence
the process is not complete. We will actually achieve the same result when checking
for the precondition. Because the order may only be closed if the goods have been
shipped and the receipt has been send.

In Figure 2 an updated version of the process is displayed. It now contains the
necessary sending of the receipt as well as a new activity: package gift. The idea is
that we want to give each customer for a limited time a gift (to apologize for the delayed
receipt sending). The new error we introduced is apparent: we only package the gift
after we already shipped the goods. This will not work. To check this formally we need
to know the precondition of packaging a gift. It is ¬shipped.

Calculating the precondition and checking it against the precondition of the specifi-
cation will not help us here. If negation as failure is used, the precondition of the pro-

9-10 Fall 2007 Workshop

4 SEMANTIC CONFORMANCE

o
rd
e
r

s
e
n
d
_
re
c
e
ip
t

s
h
ip
p
in
g
1

s
h
ip
p
in
g
2

p
a
c
k
a
g
e

g
if
t

p
2

p
1

p
3

p
4

p
5

p
6

p
7

p
8

p
9

c
lo
s
e

Figure 2: Second version of the modeled process.

Fall 2007 Workshop 9-11

From Semi-automated Service Composition to Semantic Conformance

cess is shipper1 ∨ shipper2
2 Therefore we need to check individually for each activity

whether its precondition is satisfied. As we already know that the problem is packag-
ing the gift, we will only check the precondition for this activity. Packaging the gift has
exactly one preceding marking, namely the one where there are tokens in p6 and p7.
We need to calculate the logical state for this marking and check whether it entails the
precondition of packaging the gift. The logical state is ordered∧ receipt sent∧ shipped.
And it is ordered ∧ receipt sent ∧ shipped 6|= ¬shipped. Hence, this activity is not invok-
able. to correct this process we need to move packaging the gift before shipping the
goods.

With the, rather artificial, example in this section we have seen how using seman-
tic conformance we can identify three different errors: unachieved effects, unsatisfied
process preconditions, and not invokable activities.

4.3 Future work

As established in the last report, the algorithms can currently only work with acyclic
processes. Supporting loops will be part of the future work. Additionally, semantic
conformance is only an aspect of semantic correctness. In the future we will investigate
other aspects like detecting conflicting activities.

5 Industrial Research Projects

Industrial research projects allow the validation of research results in a real world envi-
ronment. Hence, they play a crucial role in writing my thesis. In the last six months, I
was involved in two such projects: one with Software AG and one with T-Systems.

5.1 Software AG

In the project with Software AG the possibilities of integrating semantic service tech-
nologies into a real-world SOA suite will be investigated. The research object here is
the Crossvision SOA suite. In the first steps the service tagging approach presented in
the last report and in [5] will be integrated into centrasite and other tools of the suite.
Most of the work up until now was focused on extending the plugin mechanism of cen-
trasite. Especially, development support of the plugin mechanism is quite rudimentary.
Using the Maven2 build management tool, I developed a mechanism to allow remote
and hot deployment of new plugins. Except for the development of plugin UIs, this
extension is finished and will most likely be published in the centrasite community.

2With classical negation it would be (shipper1 ∨ shipper2) ∧ ¬shipped but the precondition of the
specification would also include shipper1 ∨ shipper2.

9-12 Fall 2007 Workshop

5 INDUSTRIAL RESEARCH PROJECTS

Figure 3: The ASG Reference Architecture.

5.2 T-Systems

The goal of the project with T-Systems was to evaluate the results from the European
research project Adaptive Services Grid (ASG). In ASG a reference architecture and
a prototypical implementation for the flexible and adaptable provision of services have
been developed (Figure 3).

In the project, we took a scenario called attraction booking and replaced the mocked
up services with real Web service provided by T-Info. The attraction booking scenario
is about providing location-based services to (mobile) users allowing them to find at-
tractions in their area, to book tickets for them, and the be guided to these attractions.
We used services to find cinemas showing certain movies and to plan routes between
two locations provided by T-Info. Figure 4 shows a screenshot from the web application
after the tickets have been bought and the route has been planned.

The project gave us several new insights into the strong and weak points of the
platform, as for the first time the application was not developed along with the platform.
It showed that it is actually possible to use the platform to develop applications based
on real world services and that the additional efforts for developing such an application
can be compensated for by the benefits of having flexible and adaptable service provi-
sioning. The prototypical nature of the platform turned out to be one of its weak points:
several components required adjustment and installing the platform on a new machine
proved to be more complicated than expected. More importantly, the project revealed
limitations how services were described semantically in ASG. The T-Info services are
quite complicated allowing for a tailoring to the specific needs of the application. The
route planning service for example can be configured to plan the fastest or shortest
route, by car or by foot, displaying a map or just textual instructions. Capturing all this,

Fall 2007 Workshop 9-13

From Semi-automated Service Composition to Semantic Conformance

Figure 4: Screenshot.

9-14 Fall 2007 Workshop

REFERENCES

appeared to be very difficult. Hence, simpler versions of the services were build using
ASG’s build-in proxy mechanism. How such complicated services can be described
completely needs to be investigated in the future.

The project has been finished recently. A presentation and demonstration was given
at T-Systems in Berlin.

6 Summary & Outlook

To sum up, I published three new papers in the last six months:

• Meyer, H.: Calculating the Semantic Conformance of Processes. In: Proceedings
of the Advances in Semantics for Web services 2007 Workshop (semantics4ws)
(2007).

• Meyer, H., Kuropka, D., Tröger, P.: ASG - Techniques of Adaptivity. In: Proceed-
ings of the Dagstuhl Seminar on Autonomous and Adaptive Web Services (2007).

• Schaffner, J., Meyer, H., Weske, M.: A Formal Model for Mixed Initiative Service
Composition. In: Proceedings of The IEEE International Conference on Services
Computing (SCC 2007), Salt Lake City, USA (2007).

The papers represent the areas in which most of the work towards my thesis has
been performed. Actually writing the thesis will be a top priority until the next report.
Additionally, I plan to finish three papers (see Table 3). One will be the outcome of my
research visit in Dayton and a collaboration with the group of Amit Sheth. The second
one will be on tagging and will probably contain results from the project with Software
AG. And the last one will provide extensions to the work on composition semantics and
the notion of semantic conformance.

Paper topic Planned Conference
Conference

Status

Aspects of Service Semantics WWW 2008 in preparation
Tagging not started
Composition semantics / se-
mantic conformance

not started

Table 3: Planned publications

References

[1] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, and Massimo Me-
cella. Composition of Services with Nondeterministic Observable Behavior. In
Proceedings of the 3rd International Conference on Service Oriented Computing
(ICSOC’05), volume 3826 of Lecture Notes in Computer Science, pages 520–526.
Springer, 2005.

Fall 2007 Workshop 9-15

From Semi-automated Service Composition to Semantic Conformance

[2] Harald Meyer. Calculating the semantic conformance of processes. In Proceed-
ings of the Advances in Semantics for Web services 2007 Workshop (seman-
tics4ws), 2007.

[3] Harald Meyer. On the semantics of service compositions. In Proceedings of The
First International Conference on Web Reasoning and Rule Systems (RR 2007),
2007.

[4] Harald Meyer and Mathias Weske. Automated service composition using heuristic
search. In Schahram Dustdar, JosÃ c© Luiz Fiadeiro, and Amit Sheth, editors,
Business Process Management (BPM 2006), volume 4102 of Lecture Notes In
Computer Science, pages 81–96, Heidelberg, 2006. Springer.

[5] Harald Meyer and Mathias Weske. Light-weight semantic service annotations
through tagging. In Asit Dan and Winfried Lamersdorf, editors, Service-Oriented
Computing - ICSOC 2006, volume 4294 of Lecture Notes In Computer Science,
pages 465–470, Heidelberg, 2006. Springer.

[6] M. Pistore, F. Barbon, P. Bertoli, D. Shaparau, and P. Traverso. Planning and Moni-
toring Web Service Composition. Lecture Notes in Computer Science, 3192:106–
115, Jan 2004.

[7] Jan Schaffner and Harald Meyer. Mixed initiative use cases for semi-automated
service composition: A survey. In Proceedings of the International Workshop on
Service Oriented Software Engineering, pages 6–12, New York, NY, USA, 2006.
ACM Press.

[8] Jan Schaffner, Harald Meyer, and Cafer Tosun. A semi-automated orchestration
tool for service-based business processes. In Proceedings of the 2nd International
Workshop on Engineering Service-Oriented Applications: Design and Composi-
tion, pages 54–65, 2006.

[9] Jan Schaffner, Harald Meyer, and Mathias Weske. A formal model for mixed ini-
tiative service composition. In Proceedings of The IEEE International Conference
on Services Computing (SCC 2007), pages 443–450, 2007.

[10] Evren Sirin, Bijan Parsia, Dan Wu, James Hendler, and Dana Nau. HTN Plan-
ning for Web Service Composition Using SHOP2. Journal of Web Semantics,
1(4):377–396, 2004.

[11] Wil M.P. van der Aalst. Verification of Workflow Nets. In ICATPN ’97: Proceed-
ings of the 18th International Conference on Application and Theory of Petri Nets,
pages 407–426, London, UK, 1997. Springer-Verlag.

[12] Liangzhao Zeng, Boualem Benatallah, Hui Lei, Anne H. H. Ngu, David Flaxer,
and Henry Chang. Flexible Composition of Enterprise Web Services. Electronic
Markets, 13(2), 2003.

9-16 Fall 2007 Workshop

Aktuelle Technische Berichte
des Hasso-Plattner-Instituts

Band ISBN Titel Autoren / Redaktion

22

978-3-940793-

29-4

Reducing the Complexity of Large EPCs

Artem Polyvyanyy, Sergy
Smirnov, Mathias Weske

21

978-3-940793-
17-1

"Proceedings of the 2nd International
Workshop on e-learning and Virtual and
Remote Laboratories"

Bernhard Rabe, Andreas Rasche

20

19

978-3-940793-
02-7

978-3-939469-

95-7

STG Decomposition: Avoiding Irreducible
CSC Conflicts by Internal Communication

A quantitative evaluation of the enhanced
Topic-based Vector Space Model

Dominic Wist, Ralf Wollowski

Artem Polyvyanyy, Dominik
Kuropka

18

978-939-469-
58-2

Proceedings of the Fall 2006 Workshop of
the HPI Research School on Service-
Oriented Systems Engineering

Benjamin Hagedorn, Michael
Schöbel, Matthias Uflacker,
Flavius Copaciu, Nikola Milanovic

17

3-939469-52-1 /
978-939469-52-

0

Visualizing Movement Dynamics in Virtual
Urban Environments

Marc Nienhaus, Bruce Gooch,
Jürgen Döllner

16

3-939469-35-1 /
978-3-939469-

35-3

Fundamentals of Service-Oriented
Engineering

Andreas Polze, Stefan
Hüttenrauch, Uwe Kylau, Martin
Grund, Tobias Queck, Anna
Ploskonos, Torben Schreiter,
Martin Breest, Sören Haubrock,
Paul Bouché

15

3-939469-34-3 /
 978-3-

939469-34-6

Concepts and Technology of SAP Web
Application Server and Service Oriented
Architecture Products

Bernhard Gröne, Peter Tabeling,
Konrad Hübner

14

3-939469-23-8 /
978-3-939469-

23-0

Aspektorientierte Programmierung –
Überblick über Techniken und Werkzeuge

Janin Jeske, Bastian Brehmer,
Falko Menge, Stefan
Hüttenrauch, Christian Adam,
Benjamin Schüler, Wolfgang
Schult, Andreas Rasche,
Andreas Polze

13

3-939469-13-0 /
978-3-939469-

13-1

A Virtual Machine Architecture for
Creating IT-Security Labs

Ji Hu, Dirk Cordel, Christoph
Meinel

12

3-937786-89-9 /
978-3-937786-

89-6

An e-Librarian Service - Natural Language
Interface for an Efficient Semantic Search
within Multimedia Resources

Serge Linckels, Christoph Meinel

11

3-937786-81-3

Requirements for Service Composition

Prof. Dr. M. Weske, Dominik
Kuropka Harald Meyer

10

3-937786-78-3

Survey on Service Composition

Prof. Dr. M. Weske, Dominik
Kuropka Harald Meyer

ISBN 978-3-940793-42-3
ISSN 1613-5652

	Titel
	Impressum
	Contents
	Styling for Service-Based3D Geovisualization1 (Benjamin Hagedorn
	1 Introduction
	1.1 The Role of Visualization in High-Level Geoservices
	1.2 Separation and Distribution of Geovisualization Concerns
	1.3 Styling 3D-Geovisualizations

	2 Styling for BIM Visualization
	2.1 Visualization of BIM by Virtual 3D City Models
	2.2 Mapping BIM to Geometry
	2.3 Enabling Insight for BIM Visualization
	2.4 Deforming Building Structures for BIM Visualization
	2.5 Web Perspective View Service for BIM (BIM-WPVS)
	2.5.1 Service Architecture
	2.5.2 Service Interface

	2.6 Results

	3 Styling with Distributed 3D Geovisualizations
	3.1 Annotation of 3D Geovirtual Environments
	3.2 Composition Concept
	3.3 The Web View Annotation Service
	3.4 Extended WPVS
	3.4.1 Extension for Depth Image Provision
	3.4.2 Service-Based User-Interactivity

	3.5 Composition Client
	3.6 Results

	4 Related Work
	5 Conclusions and Future Work

	The Windows Monitoring Kernel (Michael Schöbel)
	1 Introduction
	1.1 WRK and dynamic program analysis
	1.2 Dynamic program analysis and server systems
	1.3 Contributions and structure

	2 Design and Implementation
	2.1 Requirements
	2.2 Architecture
	2.2.1 Event Logging API
	2.2.2 Disk Writer Thread
	2.2.3 User-mode API

	2.3 Supported Events
	2.4 WMK Tools

	3 Evaluation
	4 Case Studies
	4.1 Monitoring Windows Applications
	4.2 Monitoring the Windows Kernel
	4.2.1 Boot Process
	4.2.2 Analyzing Quantum Lengths
	4.2.3 Windows Timer Expiration

	5 Related Work
	6 Summary and conclusion
	7 Next steps

	A Resource-Oriented InformationNetwork Platform for Global DesignProcesses (Matthias Uflacker)
	1 Introduction
	2 Collaboration vs. Globalization in the Software Industry
	3 Data, Information, Knowledge
	3.1 Managing Knowledge, Processing Data
	3.2 Information Networking

	4 Resource-oriented Information Networks
	4.1 Related Work

	5 The d.store Platform
	5.1 Data Model
	5.1.1 The d.store Ontology
	5.1.2 Domain-specific Project Ontologies

	5.2 Platform Services
	5.2.1 Index Resource
	5.2.2 Login Resource
	5.2.3 Project Resources
	5.2.4 Domain-specific Ontology Concepts
	5.2.5 Project-specific Instances

	5.3 Prototype Implementation
	5.3.1 Data Layer
	5.3.2 Application Layer

	6 Conclusion

	Federation in SOA - Secure ServiceInvocation across Trust Domains (Michael Menzel)
	1 Introduction
	2 Federated Identity Management
	2.1 Federation Basics
	2.1.1 Single Sign On
	2.1.2 Propagation of Identity Information
	2.1.3 Attributes and Pseudonyms
	2.1.4 Deployment

	2.2 Solutions for Web Service Federation
	2.2.1 WS-Federation
	2.2.2 Liberty Alliance
	2.2.3 Comparison

	3 Federation in SOA
	3.1 Security in Service Compositions
	3.2 Decoupling federation protocols
	3.3 Workflow Security Preconditions
	4 Security Ontology
	4.1 Specifying Security Goals
	4.2 Security Mechanisms
	4.3 Security Constraint Models
	4.3.1 Authorization Constraint
	4.3.2 Authentication Constraint
	4.3.3 Integrity Constraint
	4.3.4 Confidentiality Constraint

	5 Conclusion
	5.1 Future Work

	KStruct: A Language for Kernel RuntimeInspection (Alexander Schmidt)
	1 Introduction
	2 The KStruct Language
	2.1 Structures
	2.2 Enumerations
	2.3 Locking
	2.4 Fast References
	2.5 Bitfield Unions
	2.6 Variable-sized Arrays
	2.7 Lists
	2.8 Rendering
	2.9 Grammar

	3 How to obtain KStruct descriptions
	4 KStruct Framework
	4.1 Object Path
	4.2 The KStruct Framework
	4.2.1 Driver Management
	4.2.2 Root Objects
	4.2.3 Locking Synchronization Primitives
	4.2.4 Iterators for Collections of Objects

	5 Correctness of Data
	6 Related Work
	6.1 Debuggers
	6.2 Monitoring Frameworks

	7 Conclusion and Outlook
	8 Acknowledgments

	Deconstructing Resources (Hagen Overdick)
	1 Introduction
	2 Resource Orientation
	3 Example of a complex resource
	4 A Resource Meta Model
	4.1 Comparison to Remote Procedure Calls
	4.2 Comparison to Object-Oriented Programming

	5 Process-oriented Resources
	5.1 BPEL
	5.2 BPEL without Web Services
	5.3 Using BPEL to model resource states
	5.4 Resource interaction in BPEL

	6 Related work
	7 Summary and Outlook

	FMC-QE - Case Studies (Stephan Kluth)
	1 Introduction
	2 FMC-QE
	2.1 Introduction
	2.2 Diagram Types
	2.3 FMC-QE Tableau

	3 ERMF Case Study
	3.1 Overview
	3.2 Service Request Structure and Dynamic Behavior
	3.3 Measurements
	3.4 Analysis
	3.5 Simulation
	3.6 Comparison of the Performance Values

	4 Axis2 Case Study
	4.1 Axis2 Model Overview
	4.2 Axis2 Flows
	4.3 Extending the Axis2 Model
	4.4 Testbed Description
	4.5 Tableau
	4.6 Summary

	5 Conclusions and Outlook
	6 Acknowledgment

	A Matter of Trust (Rehab al Nemr
	1 Introduction
	2 Trust Management
	3 Policy-based approach
	3.1 Policies
	3.1.1 Security Polices
	3.1.2 Delegation of Trust
	3.1.3 Security Policies in Open Systems

	3.2 Trust Negotiation
	3.2.1 Surrogate Trust Negotiation

	3.3 Writing Policies
	3.3.1 Policy Frameworks Requirements

	3.4 Policy Management

	4 User awareness and control
	5 Main challenges and open research points
	6 What is next?

	From Semi-automated ServiceComposition to Semantic Conformance (Harald Meyer)
	1 Introduction
	2 Picking up from last report’s outlook
	3 Semi-automated Service Composition
	3.1 Foundations
	3.2 Filter Inappropriate Services
	3.3 Check Validity
	3.4 Suggest Partial Plans

	4 Semantic Conformance
	4.1 Motivation
	4.2 Example
	4.3 Future work

	5 Industrial Research Projects
	5.1 Software AG
	5.2 T-Systems

	Aktuelle Technische Berichtedes Hasso-Plattner-Instituts
	6 Summary & Outlook

