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Abstract. Business process modeling is a creative task carried out by
humans. Business analysts capture process knowledge in models. Pro-
cess models are decompositions of processes into well recognized busi-
ness tasks and their structuring by means of control flow. As outcome
of a creative practice, models can be composed from tasks of different
abstraction levels, i.e., low level tasks with a short and centralized lifecy-
cles and general activities spanning over company departments. In this
paper we propose to utilize process model control flow structure for the
purpose of generalization of low level tasks to tasks of higher abstrac-
tion level. We use SPQR-tree hierarchical process model decomposition
for identification of process model components—control flow structures
with a self-contained logic suitable for abstraction. The approach allows
the highest granularity as compared to existing techniques.

Key words: business process model abstraction, SPQR-tree process
model decomposition, triconnected abstraction

1 Introduction

Many engineering disciplines benefit from knowledge reuse. In order to com-
municate the knowledge it should be formalized. The engineering discipline of
business process management proposes to formalize the process knowledge in the
form of process models [1]. Research community and industry propose modeling
notations to aid in process formalization, e.g., Business Process Modeling Nota-
tion (BPMN) [2], Event-driven Process Chains (EPC) [3], Petri nets [4], etc. In
general, the formalization initiatives treat processes as collections of individual
tasks with isolated logic and execution order constraints defined by control flow.
Each process task, as well as each process model fragment is an abstraction of
concrete work practices to be accomplished during process execution.

By developing process models, business analysts apply abstractions of real
world procedures and capture information sufficient to fulfill the purpose envi-
sioned for a model, e.g., the precise instructions for automating business proce-
dures or the core process logic for the fast process investigation by management.
In business process model abstraction initiative [5,6] we aim at study of common
process model generalization principles, e.g., in order to allow automated deriva-
tion of coarse models—those designed for company management, from detailed
ones—those designed to support low level process execution.
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In the core of the process model abstraction methodology lies the idea of
exchange between different process abstraction entities, e.g., between a process
model fragment and a task. Such an exchange step should result in generalization
of process model details. Thus, the resulting process model reflects the process
on a higher abstraction level. In this paper we propose which process model
fragments can be generalized to one task of a higher abstraction level. The
methodology for a discovery of the fragments within a process model is suggested.
Afterwards, the abstraction rules that allow generalization of identified fragments
are defined and organized in the algorithm. The approach allows handling of
arbitrary graph structured process models with the highest level of granularity
as compared to existing techniques.

The rest of the paper is organized as follows. In the next section we sketch
the research field of business process model abstraction, its perspectives and
challenges. In section 3 we provide definitions and a basic corollary that give
the basis for further discussion. Afterwards, in section 4 the approach of the
hierarchical process model decomposition into triconnected graph fragments is
presented. Following, in section 5 the fragments are employed for the task of
process model abstraction to result in the triconnected abstraction. The paper
closes with pointers to related work, ideas on future steps aimed at refinement
of the proposed approach, and conclusions that summarize our findings.

2 Business Process Model Abstraction

This section explains business process model abstraction (BPMA). In [6] we sum-
marized the results of the research project together with the industry partner;
it resulted in the pattern-based abstraction approach. In [5] we discussed the
visionary idea of the slider mechanism for control of process model abstraction.
Now, we shape the obtained experience to obtain the common understanding of
BPMA.

Abstraction is the process or result of generalization or removing properties
from an entity or a phenomenon in order to reduce it to a set of essential charac-
teristics. Therefore, information loss is the fundamental property of abstraction
and is its intended outcome. In software engineering, abstraction is the funda-
mental concept of object-oriented programming paradigm [7]. Engineers abstract
from complex reality of objects by extracting only important properties and be-
havioral aspects. In BPMA, we investigate the problems relevant and specific
to abstraction of process model entities. It is a challenge to identify what are
the meaningful aggregations of process knowledge aimed to generalize or remove
certain process characteristics and to emphasis the other.

BPMA is about finding meaningful aggregations. In the context of process
knowledge, the search for meaningful aggregations is about finding process model
fragments with well-defined and self-contained process logic, i.e., fragments con-
stituting complete and independent components with precisely stated behavior.

BPMA is about performing abstractions. Identified process model fragments
might be removed or replaced by concepts of a higher abstraction level that con-



The Triconnected Abstraction of Process Models 3

ceal, but also represent, the logic of the underlying fragments. In both cases of
elimination or aggregation of process knowledge, sophisticated handling mecha-
nisms need to be proposed. We refer to such mechanisms as abstraction steps.

BPMA is about abstraction control, i.e., combining individual abstraction
steps into abstraction strategies [6]. Even after that we know how to derive
process fragments, and after we have developed formal methods for performing
abstractions, still the approach for combining abstractions has to be specified.
One can envision manual strategies, where a user specifies what should be ab-
stracted, semi-automated, or fully automated control mechanisms. For instance,
an automated mechanism can be guided by the average execution time of tasks
included in a model and try to first abstract from tasks which are rarely ob-
served. Of course, in order to allow such abstraction control, models must be
additionally annotated with average task execution times.

BPMA is about abstraction properties. Each abstraction step can be char-
acterized by its properties designed to allow their qualitative comparison, and
thus encourages introduction of new and improved abstraction step handling
mechanisms. For instance, abstraction smoothness is a property of abstraction
steps that shows how many process tasks are generalized in one step. The less
the abstraction smoothness, the more flexibility is allowed for tuning abstraction
levels.

BPMA is about preserving process model properties. Abstractions result in
model transformations. However, an arbitrary process model transformation can-
not be accepted as a process abstraction. Any process abstraction has to ensure
certain properties of abstracted process models. The properties are designed
to allow relation between original and abstracted models. The key property of
process model abstraction is order preservation.

Definition 1. An order preserving abstraction is an abstraction that assures
that neither new task execution constraints can appear after abstraction, nor
existing (except for generalized ones) go away.

For instance, assume that task A should be abstracted in the current abstraction
step. Let fa be a process fragment affected by this abstraction step (fa contains
A). As a result of abstraction, fragment f4 gets replaced by task F. If task B
also belongs to fa, information about the ordering constraints between tasks
A and B is lost. However, the order preserving abstraction should assure that
for any pair of tasks not in fa, e.g., tasks C' and D, the ordering constraints
between them are preserved. Furthermore, the order preserving abstraction must
guarantee that the execution order constraints between any task not in f4, e.g.,
task F, and any task in f,4, task A or B in our example, are the same as between
tasks E and F'. In the end, the order preserving abstraction secures the overall
process logic to be reflected in the abstracted model.

A business process model abstraction methodology is a compromised com-
bination of requirements and techniques picked out from all of the mentioned
abstraction aspects. Usually, such a combination is guided by project specific
settings. This paper primarily contributes to the BPMA aspects of finding mean-
ingful aggregation fragments and performing abstractions.
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3 Preliminaries

This section introduces basic definitions. We start with a process model for-
malism adopted from [1] that is based on generic modeling concepts. A process
model consists of a set of tasks and their structuring by directed control flow
edges and gateway nodes that implement process routing decisions.

Definition 2. P = (N, E,type) is a process model if: N = Ny U N¢ is a set
of nodes where N7 is a nonempty set of tasks and Ng is a set of gateways;
the sets are mutually disjoint. £ C N x N is a set of directed edges between
nodes defining control flow. type : Ng — {and,zor,or} is a function that as-
signs to each gateway a control flow construct. (N, F) is a connected graph.
Each task ¢ € Ny can have no more than one incoming and one outgoing edge
(lot] < 1A [|te]| < 1), where of stands for a set of immediate predecessor nodes
(ot = {n € N|(n,t) € E}) and t e stands for a set of immediate successor nodes
(te = {n e N|(t,n) € E}) of task t. There is at least one process entry task
and one process exit task. A task ¢t € N is a process entry if (|et| = 0). A task
t € Nr is a process exit if (|t o | = 0). Each gateway can be either split or join.
A gateway g € N¢ is a split if (Jeg| =1A|ge| > 1). A gateway g € Ng is a join
if (log| >1A|ge|=1).

To refer to a portion of a process model we define a process model fragment.

Definition 3. A process model fragment F = (Np, Er, type) of a process model
P = (N, E, type) is a connected subset of process model nodes N C N incident
in a subset of process model edges Er C E.

Within a process fragment, process model nodes can be classified in respect
to their structural relation to the whole process model.

Definition 4. A node n € N can either be a boundary node or an internal
node of a process model fragment F' in a process model P:

o A node n € Np is a boundary node of F if n is a process entry or a process
exit of P, or if there exist edges e; € Er and e; € E\EF adjacent through
n. A boundary node can be a fragment entry or a fragment exit node:

— A node n € Ny is a fragment entry if all the incoming edges of n are
outside of F' (en C N\Np) or all the outgoing edges of n are inside of
F (n L4 g NF)
— A node n € Np is a fragment exit if all the outgoing edges of n are
outside of F' (ne C N\Np) or all the incoming edges of n are inside of
F (OTL g NF)
o A non boundary node is an internal node of a process model fragment.

Finally, we identify a special type of a process model fragment—a process
component.

Definition 5. A process component C = (N¢, Ec,type) is a process model
fragment with two boundary nodes: one fragment entry and one fragment exit.
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Fig. 1. Example of a process model

This notion of a component was first introduced in [8] as a concept of a proper
subprogram. A process component is a fragment of a process model such that
if control flows through the fragment edge it is assured that it has first entered
the fragment through the entry node and is guaranteed to afterwards leave the
fragment through the exit node.

A process component can be treated as a self contained block of the process
logic with strictly defined boundaries. As such, a process component can be
accepted as a unit of meaningful aggregation of the process knowledge. In fact,
it is accepted as such in our approach. Therefore, in the following sections we will
discuss issues relevant to identification and abstraction of process components
in process models.

Further, we require all handled process models to be sound [9]. The require-
ment is primarily driven by an attempt to avoid hiding of process model errors,
e.g., livelocks or deadlocks, during abstraction. Figure 1 gives an example of a
process model suitable for abstraction assuming that split and join semantics
of the gateway nodes makes it sound, e.g., if all the gateways are of zor type.
The soundness requirement implicitly states that a process model should have
exactly one entry task and exactly one exit task.

4 Triconnected Decomposition

This section explains how to discover process model fragments that relate to
the notion of a process component defined in section 3. First, we give the basic
intuition inherent in the algorithm. Afterwards, we show the relation of the dis-
covery process to the approach of SPQR-tree decomposition. Finally, we discuss
SPQR-tree fragments in the context of process models.

4.1 Basic Approach for Process Component Discovery

A search for a process component in a process model is guided by its definition
which states that a process component is a process model fragment with two
boundary nodes (see Definition 5). The boundary nodes of a process fragment
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are the nodes that connect the fragment to the model, i.e., if removed the frag-
ment becomes disconnected from the model. Thus, in order to discover a process
component, one must first look for a separation pair—a pair of process model
nodes that disconnect a process fragment from the rest of the process model
(e.g., gateways j; and s3 disconnect task tg in the process model from Figure 1).
Afterwards, the boundary nodes of the fragment need to be tested to give one
fragment entry and one fragment exit.

A separation pair of process model nodes divides a model into two fragments:
a component candidate and the rest of the process model. In order to find all
the fragments with two boundary nodes, the rationale of the described discovery
step must be recursively applied to each of the fragments to obtain divide and
conquer algorithm design. Each recursive thread terminates once the problem
cannot be further subdivided, i.e., it is not possible to find a separation pair in
the process fragment.

The described algorithm is in fact the algorithm for discovery of triconnected
fragments in a graph. Connectivity is a property of a graph. It is known that a
graph is k-connected if there exists no set of k — 1 elements, each a vertex or an
edge, whose removal makes the graph disconnected (there is no path, ignoring
edge directions, between some pair of nodes in a graph). Such a set is called
a separating (k — 1)-set. Separating 1- and 2-sets of graph vertices are called
cutvertices and separation pairs. 1-, 2-, and 3-connected graphs are referred to
as connected, biconnected, and triconnected, respectively. Each recursive thread
of the algorithm terminates once it encounters a triconnected fragment.

4.2 SPQR-Tree Decomposition

In order to discover process component candidates we use SPQR-tree decom-
position. SPQR-tree decomposition is a hierarchical decomposition of an undi-
rected (edge directions are ignored) biconnected multi graph aimed to identify
its triconnected fragments. Process models are connected, but not necessarily
biconnected. For example, the process model from Figure 1 can be disconnected
by removing the cutvertice gateway s;. However, it is always possible to make
any process model biconnected by adding a back edge that connects a process
exit with a process entry (by chance, the soundness requirement guarantees the
existence of exactly one process entry and one process exit).

SPQR-tree was first introduced by Di Battista and Tamassia [10] and was
further explained in detail in [11]. [12,13,14] show the path towards a linear time
complexity algorithm of SPQR-tree decomposition. In its core, SPQR-tree is a
hierarchical representation of graph fragments induced by its split pairs, where a
split pair is either a separation pair, or a pair of adjacent vertices. It was shown
in [10,11], that split pairs result in process fragments of four structural types: S,
P, @Q, and R.

o Trivial Case. A split pair is a pair of adjacent graph vertices—the fragment
consists of one edge—the Q-type fragment.



The Triconnected Abstraction of Process Models 7

(a) Process model decomposition (b) SPQR-tree

Fig. 2. Example of SPQR-tree process model decomposition

o Parallel Case. A split pair is a pair of adjacent graph vertices in k distinct
edges (k > 2)—the P-type fragment.

o Series Case. A split pair is a pair of graph vertices to give a maximal sequence
of vertices—the S-type fragment.

o Rigid Case. If none of the above cases applies, a fragment is a triconnected
fragment—the R-type fragment.

SPQR-tree decomposition of the process model from Figure 1 is visualized in
Figure 2. Figure 2(a) shows process model fragments. Each fragment is defined
by edges that are inside or intersect with a corresponding region (visualized with
a dashed line). Fragment names also hint on structural fragment types, e.g., P1,
P2, and P3 are all the parallel case fragments of type P. Boundary nodes of a
fragment are the nodes incident with the edges crossing the region borderline
and are outside of the region. The fragments are either disjoint or fully contained
within parent fragments; this is also an implication of the recursion principle for
fragment discovery described in section 4.1.

Figure 2(b) shows SPQR-tree that visualizes hierarchical fragment relations.
Fragment P1 contains fragments R1 and S2 and is fully contained inside frag-
ment S1. Each SPQR-tree node represents fragment skeleton, i.e., its basic struc-
ture and relations with parent and child fragments. Figure 3 shows fragment
skeletons of SPQR-~tree nodes from Figure 2(b). The boundary nodes in frag-
ments are highlighted with a thick borderline, e.g., nodes s; and j3 in fragment
R1 (see Figure 3(b)). Each fragment skeleton might consist of edges of three
types. Original graph edges are drawn with solid lines. Whereas dotted and
dashed lines represent wirtual edges. Each virtual edge is shared between two
fragment skeletons and hints on a parent-child relation. An edge visualized with
a dotted line informs on a child relation of the fragment skeleton with another
containing the same virtual edge, whereas a dashed line signals on a parent re-
lation. For instance, the fragment skeleton from Figure 3(f) contains one virtual
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(a) P1 (b) R1 (c) P2 (d) S6 (e) P3 (f) S10

Fig. 3. SPQR-tree fragment skeletons

edge (j1, s3), which also hints on a child relation with another fragment skeleton
that contains the same virtual edge—{ragment skeleton P3 (see Figure 3(e)). In
order to obtain the graph fragment given by the fragment skeleton P3 one must
“glue” it together with the fragment skeleton S10 along the virtual edge (41, s3).
Once the fragments are combined, the virtual edge is removed. In general, a
graph fragment represented by an SPQR-tree node is obtained by combining all
the child fragment skeletons down the SPQR-tree hierarchy.

SPQR-tree provides process model graph decomposition ignoring control flow
edge directions. Up till now there is no distinction between entry and exit bound-
ary nodes. Obtained fragments still cannot be classified as process components.

4.3 SPQR-Tree Fragments in the Context of Process Models

In this section we examine SPQR-tree fragments in the case when the properties
of a process model are preserved while decomposition procedure, i.e., edges are
assumed to be directed and nodes distinct as tasks and gateways.

In general, SPQR-tree can be rooted to any node, however in a process model
context it makes sense to root the tree to a node representing the fragment
containing deliberately introduced back edge (node S1 in Figure 2(b)). By doing
S0, we obtain a structural hierarchical refinement of the process model.

Further observations are: task nodes can only be present (but not always
necessarily, see Figure 3(d)) inside of S-type fragments while boundary fragment
nodes are always gateways. The former property comes from the definition of the
S-type fragment. Any sequence of nodes in a process model graph can only be
formed by task nodes embraced by gateways. Thus, any maximal sequence (also
composed of one task, see Figure 3(f)) is recognized as the S-type fragment with
two boundary gateways: one at sequence entry and another at sequence exit.
This also means that other fragment skeletons are composed of gateways only
and testifies the latter property.

Until now we have recognized sequences as S-type SPQR-tree fragments.
The @Q-type fragments stand for original process model graph edges, e.g., edge
(s3,72) of fragment skeleton from Figure 3(d). The P-type fragments (see Fig-
ures 3(a), 3(c), and 3(e)) allow identification of block and loop structures within
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process model graphs. The control flow of the process model from Figure 1 spec-
ifies fragments P1 and P2 as blocks and fragment P3 as a loop (there exists a
back edge between boundary nodes j; and s3). The fragment from Figure 3(b) is
the triconnected fragment that explicitly defines what makes the process model
graph structured. There are no R-type fragments in a block structured process
model. A block structured process model can be inductively composed based on
sequence, block, and loop patterns (S-type and P-type fragments) [15].
Finally, we are ready to make the concluding proposition of section 4.

Theorem 1 Any process model fragment obtained after SPQR-tree decomposi-
tion of a structurally sound process model is a process component.

Proof. Any process model fragment obtained after SPQR-tree decomposition of
a process model has two boundary nodes. The pair of boundary nodes is the
split pair of the process model. Thus, it is required to show that one of these
boundary nodes is the fragment entry and another is the fragment exit.

First, let us show that any boundary node of a process model fragment
induced by SPQR-tree decomposition can either be the fragment entry or the
fragment exit, but not both. All the edges incident with a boundary node are
divided into two disjoint sets of those inside and those outside the fragment.
Definition 4 states that a boundary node of a fragment is the fragment entry or
the fragment exit if either all the incoming or all the outgoing edges incident with
the node are either the edges of the fragment or are outside the fragment. As
explained above, any boundary node is a gateway. For any gateway, either a set of
incoming edges or a set of outgoing edges consists of one element (Definition 2).
Thus, the relation of this one edge (either it belongs to the fragment or not)
defines the relation of the whole set. Therefore, the boundary gateway can only
expose the logic of the fragment entry or the fragment exit.

The rationale towards the formal proof of the “pure” logic nature of a bound-
ary fragment node can be approached as follows. Let p = (N, E, type) be a pro-
cess model, f = (N, E¢, type) be a process model fragment of p with a boundary
node n € Ny. Let us define auxiliary predicates:

o i:Ex N — {true, false} is true iff e € E is the input edge of node n € N,
o 0: ExN — {true, false} is true iff e € E is the output edge of node n € N.

Let us define the predicate that checks if a boundary node n € Ny can expose
the entry logic of a process model fragment f:

canEnter(n, f) = 3e; € E\Ef3ez € Ey :i(e1,n) A o(ez,n).

Analogously, one can check whether a node can expose the exit logic of a process
model fragment:

canExit(n, f) = Jer € Ey3es € E\Ey :i(e1,n) Ao(ez,n).

In order to show that any boundary fragment node cannot be the entry
and the exit at the same time, one must show that the logical statements
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o o B p

(a) (b) () (d)

Fig. 4. All possible combinations for edge separation on internal and external
fragment edges for a boundary gateway that connects three edges

canEnter(n, ) E —canExit(n, f) and canExit(n, f) &= —canEnter(n, f) hold.
Hence, one must show that canEnter(n, f) A canEzit(n, f) is a false statement
on all interpretations which in a prenex normal form says:

de; € E\EyJes € Eydes € EfJeq € E\Ey :i(e1,n) ANo(ez, n) Ai(es,n) Ao(eq, n)

In the case when n is a split gateway, the statement might evaluate to true
only if e; and e3 are bound to the same edge. This is however not possible as ey
and es belong to different sets which are disjoint: E and E\Ey. Same rationale
applies for a join gateway and edges es and e4. Therefore, a logical expression
canEnter(n, f) A canExit(n, f) always evaluates to false, which testifies the
pure logic of any boundary fragment gateway.

Figure 4 shows all possible combinations of internal and external fragment
edges incident with a boundary gateway that connects three edges. The dashed
line defines separation of edges on the fragment internal and the fragment ex-
ternal edges. Regardless of a separation and a gateway type, it is only allowed
for control flow to penetrate the fragment boundary in one direction (either to
enter or to exit the fragment).

Finally, it is required to show that only one installation of boundary nodes is
possible, i.e., one of the nodes is the fragment entry and another is the fragment
exit. We show this by contradiction; the settings of two fragment entries or
two fragment exits are not possible under the correctness criteria imposed on a
process model (a process model is structurally sound). Both cases can be reduced
to one. For instance, in case of a fragment with two exits, we can discuss a
two entries fragment formed by the edges outside the two exits fragment. A
two entries process model fragment violates the requirement of a structurally
sound process model which states that each node in the process model is on
the path from the process entry to the process exit. The process entry and the
process exit are always in one process model fragment which is not a two entries
fragment. Otherwise, the process entry has a node that leads to it. Once we
proceed with the execution of a task inside of a two entries fragment we never
leave it. Therefore, any node inside of the two entries fragment can not be on
the path from the process entry to the process exit. Thus, one of the boundary
nodes must be the fragment exit. O
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5 Triconnected Abstraction

In this section we present the process model abstraction principles. The approach
is based on the process model decomposition described in section 4. First, we
define abstraction rules. Afterwards, we provide the triconnected abstraction
algorithm.

5.1 Abstraction Rules

The developed process model abstraction mechanism proposes to interchange
process abstraction concepts of process model fragments with process tasks of
higher abstraction level. In this section we present abstraction rules that for this
purpose utilize process components obtained after SPQR-tree decomposition.
The approach assumes manual abstraction control, i.e., a user specifies which
process task, or a collection of tasks, of the original process model needs to
be generalized. Afterwards, the process components containing these tasks get
abstracted.

Once a task to be abstracted is selected, it uniquely identifies a S-type com-
ponent and its structural relation within SPQR-tree. In total, there can be seven
types of SPQR-tree edges based on the types of connected nodes of S-, P-, and
R-type (Q-type fragments are not considered). The edges of (S,S)-type and
(P, P)-type are not possible in SPQR-tree, such structural hierarchies are recog-
nized as single fragments of S- or P-type respectively. Out of seven possible edge
types, four connect a node of S-type: (S, P), (S,R), (P,S), and (R, S) (edges
are proposed as (parent, child) pairs). Following, the proposed abstraction rules
operate inside a single process component of S-type, or assume one of the four
stated structural S-type process component relations.

Sequential (Q-Type) Abstraction A task in a process model can be struc-
tured in a sequence with other tasks. This task can be abstracted in the process
model by aggregating it with one of its neighbors. Any maximal sequence of
process tasks is recognized within a single S-type process component. Thus, the
abstraction is performed locally, i.e., within one process component.

Figure 5 shows an example of a sequential
abstraction performed inside the S-type process
component. The original process component
structure is given at the left of the figure. The
component corresponds to a maximal sequence
of three tasks. The example ignores boundary
gateway logic, which can be either split or join.
In the case task A or C is the one to be ab-
stracted, the selection of the neighbor to aggre- Fig. 5. Sequential abstraction
gate is obvious—it is task B. However, in the example
case when task B triggers abstraction, the se-
lection should be carried out by the abstraction control mechanism. In the case
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when only structural generalization is of interest, the abstraction control mecha-
nism can allow a nondeterministic task choice. In the example, task A is selected
to be aggregated with task B, the corresponding process model graph fragment
is enclosed in the region with a dashed borderline and constitutes a single Q-type
component of the control flow edge that connects two task nodes A and B.

The process component structure at the right of Figure 5 is the output of
the sequential abstraction step. As a result, tasks A and B are aggregated into
one task AB that semantically corresponds to the activity of first accomplishing
task A and then B.

As a result of abstraction, the sequence of three tasks turned into the se-
quence of length two. The process component preserved its structural type—the
S-type. SPQR-tree stayed unchanged. Sequential abstraction is characterized by
abstraction smoothness of 2, i.e., the fragment composed of two tasks is replaced
by a single task.

S-Type Abstraction A maximal sequence of tasks can consist of one task in
a process model, i.e., there is no direct task neighbor. Such a situation might
also result after applying sequential abstractions. However, a task can be in a
sequence with process components of P- or R- types. Such structural relations
are captured in (S, P) and (S, R) edges within SPQR-tree. If it is necessary to
abstract the task, aggregation with a neighbor component is performed to result
in S-type abstraction.

Figure 6 shows the example of S-type abstraction. Task A is designed to be
abstracted (highlighted with a thick borderline at the left in Figure 6). Task A
has no task neighbor—sequential abstraction is not possible. However, the task
is in a sequence with the P-type component to give the abstraction fragment
enclosed in the region with dashed borderline. The result of the S-type abstrac-
tion step is given at the right of the figure. The abstraction results in one task
A[P] that semantically corresponds to the activity of first accomplishing task A
and then performing a process fragment captured in the P-type component.

S-type abstraction results in SPQR-
tree transformation. The tree branch
that represents abstracted component
is completely removed. The abstraction
leads to restructuring of the S-type
component that contained the task
which triggered abstraction. However,
the component remains of the same
type—the S-type.

S-type abstraction was presented by
means of aggregation of (S, P) SPQR-tree edge. In the case of (S, R) edge, the
procedure is analogous. In the example, the boundary gateways of aggregated
component were removed. However, if one of the boundary gateways of the ag-
gregated component is shared with boundary gateway of the parent S-type com-
ponent, it must be preserved. S-type abstraction is characterized by smoothness

Fig. 6. S-type abstraction example
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of equal or higher than 2. The smoothness of S-type abstraction step is 2 if the
aggregated component contains only one task, e.g., a P-type component with
two paths—one empty path and another containing a single task. We assume
each process component to include at least one task.

P-Type Abstraction Sequential and S-type abstractions tend to generaliza-
tion of S-type components to simple components. Simple components are the
S-type components with two boundary gateways and a single task (see Fig-
ure 3(f)). Simple components are the leaves of SPQR-tree and are structured
by (P, S) or (R, S) edges. In case a task from a simple component is selected to
be abstracted and it has a P-type parent component, the P-type abstraction is
performed. The task is aggregated with some branch (child component) of the
parent component. The selection of the child component to aggregate with is
performed by the abstraction control mechanism.

Figure 7 shows the example of
the P-type abstraction. Task A
is designed to be abstracted. The
task is highlighted with a thick
borderline and is the only task
of the simple component (shown
at the left of Figure 7). The sim- Fig. 7. P-type abstraction example
ple component is the child com-
ponent of the P-type fragment. It shares the virtual edge e; with its parent. The
result of the P-type abstraction step is given at the right of the figure. Two child
components of the P-type component are aggregated into one simple component
with task [P]A that semantically corresponds to the execution of two abstracted
branches following the semantics of boundary gateways. The obtained simple
component shares a virtual edge e; with the parent P-type component.

P-type abstraction results in SPQR-tree transformation. The tree branch
that represents abstracted component is completely removed. Thus, the number
of child components of the parent parallel component is reduced by one. In the
case when a P-type component initially contains two branches, the abstraction
results in a single branch. Afterwards, the boundary gateways must be reduced
in the case they do not specify any routing logic, e.g., have a single entry and a
single exit edge. In such a case, the P-type component node is further reduced in
the SPQR-tree to represent a single task within the next level parent component.

P-type abstraction is characterized by abstraction smoothness of equal or
higher than 1. The smoothness of P-type abstraction step is 1 if a simple com-
ponent is aggregated with an empty path of the parent parallel component.

R-Type Abstraction Finally, a task designed to be abstracted in a process
model can be in a simple component that is a child of a R-type component.
Such a structural relation is specified by an (R, S) edge within SPQR-tree. R-type
abstraction is proposed to handle this situation. As a result of R-type abstraction
step the task is aggregated with the whole parent component.
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Figure 8 shows the example
of the R-type abstraction. Task
A is designed to be abstracted.
The task is highlighted with a
thick borderline and is the only
task of the simple component at
the left of the figure. The sim-
ple component is the child of the
R-type component (same com-
ponent as in the example from
Figure 3(b)). The simple component shares virtual edge e with its parent and
corresponds to component S7 from Figure 2. The result of the R-type abstraction
step is given at the right of Figure 8. The abstraction results in the whole par-
ent R-type component aggregation into a simple component with task [R]A and
boundary gateways of the R-type component. The obtained task semantically
corresponds to the execution of the whole rigid component.

R-type abstraction results in SPQR-tree transformation. The abstracted
R-type component node gets replaced by a simple component node. Similar to
P-type abstraction, the boundary gateways can get eliminated to further result
in reduction of resulted simple component. R-type abstraction is characterized
by smoothness of equal or higher than 1. The abstraction smoothness of R-type
abstraction step is 1 if the simple component is the only S-type child component
of the rigid component, i.e., all the other paths are empty. However, in most
cases one should expect higher abstraction smoothness values.

Fig. 8. R-type abstraction example

5.2 Abstraction Algorithm

In this section we propose the triconnected process model abstraction algorithm.
In section 5.1 we presented four abstraction rules. Now, we organize them in a
procedure that handles a single task abstraction step. As input, the algorithm
obtains a process model, its SPQR-tree decomposition structure, and a task to
abstract. As output, the algorithm provides the process model with the specified
task abstracted. Alg. 1 formalizes the algorithm in a pseudo code.

Algorithm 1 Triconnected Abstraction

TriAbstraction(ProcessModel p, SPQRtree t, Task a)

1. ¢ := component of process model p from SPQR-tree ¢ containing task a

2. if ¢ is not a simple component then

3. if a has neighbor task in ¢ then perform sequential abstraction of a

4 else perform S-type abstraction of a

5. else // cis a simple component

6.  if ¢ is the root component in ¢ then p is already abstracted to one task return
7. c¢p:= get a parent component of ¢ in SPQR-tree t
8
9

if ¢p is P-type component then perform P-type abstraction of a
if ¢p is R-type component then perform R-type abstraction of a
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Alg. 1 orchestrates individual
abstraction rules to pursue best
abstraction smoothness; empirical
insights for the solution were ob-
tained in [6]. In line 1, component
¢ containing task a is identified—
it is a S-type component. If ¢ is
not simple (line 2), then either it
has a neighbor task (line 3) or a Fig. 9. Abstracted process model
neighbor component (line 4) that
can be aggregated with task a. Otherwise (line 5), abstraction of task a depends
on the parent component of c. If ¢ is the root component of SPQR-tree for pro-
cess p, then p consists of a single task a and there is nothing else to abstract
(line 6). If process model has other tasks than a, get the parent component
of c—component cp (line 7). If ¢p is a P-type component (line 8) or a R-type
component (line 9), then P-type or R-type abstraction has to be performed
respectively.

Theorem 2 A triconnected abstraction is an order preserving abstraction.

Proof. The property of order preservation for triconnected abstraction can be
deduced from the four types of abstraction rules it is composed of: Q-, S-, P-,
and R-type, and the notion of a process model component (Definition 5). Each
abstraction operates with a fragment obtained after SPQR-tree decomposition
of a process model. For any pair of tasks outside the fragment the ordering
constraints are not affected. After abstraction the fragment is replaced by a
single path between boundary fragment nodes with a single aggregating task on
that path. This task represents the logic of the aggregated fragment and is in the
same order relation to other tasks of the model as any of the aggregated tasks;
the aggregating task and all the aggregated tasks communicate with the process
model through the same logic of the same boundary fragment nodes. a

Figure 9 shows the abstraction example of the process model from Figure 1.
In the example, the “to be abstracted” tasks selection caused process compo-
nents 52, S5, S6, S8, S9, S10, P2, and P3 to get abstracted. These tasks can
be tg, ts, tg, t10, and t12 (see Figure 1). After abstraction, aggregating tasks aq,
az, az, and a4 (highlighted with grey background in the figure) conceal the pro-
cess logic of abstracted components. The only R-type component of the process
model (enclosed into the region with dashed borderline in Figure 9) is not ab-
stracted. The wish to abstract any of the contained tasks will cause the complete
component to aggregate into one task; the smoothness of such abstraction step
gets as high as 6. Also, an order in which tasks are selected for abstraction can in-
fluence abstraction smoothness. In the future work, we would like to concentrate
on lowering abstraction smoothness with a help of more fine-granular process
model decompositions and sophisticated abstraction control mechanisms.
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6 Related Work and Conclusions

In this paper we investigated SPQR-tree process model decomposition for the
task of process model abstraction—discovery of meaningful process model frag-
ments and their aggregation. We defined abstraction rules based on the notion
of the process component and proposed their arrangement in the algorithm.

The topic of business process model abstraction evolved from the project
with the industry partner that had a demand for generalization of its detailed
process models. First, we proposed the pattern-based abstraction [6]. Its limita-
tions originate from the impossibility to foresee all the patterns that need to be
handled. Afterwards, we looked into the applicability of the single-entry-single-
exit (SESE) process model decomposition [16] for abstraction of process models
and evaluated the abstraction smoothness of the approach on a set of real-
world process models. Comparing to the pattern-based approach, SESE-based
abstraction allows systematic treatment of all recognized control flow structures
that subsume the patterns from [6]. The proposed technique of triconnected ab-
straction outperforms SESE-based abstraction in smoothness, i.e., allows more
fine-granular process component discovery. For example, a SESE decomposition
cannot discover process model fragments S6, P1, P2, P3, and R1 shown in
Figure 2. Triconnected abstraction is by now the best known to us technique
that allows discovery of fine-granular process components and their further or-
der preserving abstraction in graph structured process models. The proposed
abstraction methodology is validated in the implemented tool prototype.

The refined process structure tree (RPST) decomposition technique [17] in-
troduced the tree of triconnected components [8], known from the compiler the-
ory of sequential programs, to the business process management community.
The tree of triconnected components is in the core of SPQR-tree decomposition.
RPST further extends the decomposition methodology to allow identification of
process components when a process model allows existence of “mixed” gateways,
i.e., gateways with multiple entries and multiple exits. The triconnected abstrac-
tion can be extended to handle additional component structures introduced by
RPST. Simple transformation of all mixed gateways of a process model to a
sequence of “pure” join and then “pure” split allows as-is application of tricon-
nected abstraction algorithm (see Theorem 1). Also, there is an ongoing work for
transformation of the problematic mixed gateways in a model to allow derivation
of RPST process components with SPQR-tree decomposition. Finally, in order
to further increase the granularity of process components, we plan to investigate
multiple-entry-multiple-exit (MEME) components.
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